
1
RANGE DETECTION TECHNIQUE FOR

REAL-TIME VIRTUAL HERITAGE
APPLICATION
Mohd Shahrizal Sunar
Abdullah Mohd Zin

Tengku Mohd Tengku Sembok

INTRODUCTION

imulating real world demand real-time and realism of visual
appearance. In most real-time computer graphics applications
such as virtual walkthrough, flight simulator and games,

maintaining the interactive frame rate and smoothness of
movement is utmost important. This is essential to give a user an
immersive experience in which it will move very smooth during
the navigation in the virtual world. Realism as defined in Chiu et al.
(1994), means how far the image can visualize in the users mental
can be the same as real experience in the real world. According to
Dzwig (1988), to generate the realistic 3D world, the geometric
complexity level of 3D model has to be increased and this has been
agreed by Ramasubramanian (1999). The need for beautiful
textures will simultaneously increase the memory usage (Airey
1990).

Angelidis (2001) claimed that there is a trade-off between
realism and real-time and also between visual quality and
rendering performance. Increasing realism will reduce the
processing speed. Therefore, when speed is more crucial, we may
have to sacrifice realism to some level. Most of virtual reality
applications need more real-time than realism. This is because lots
of interactions by user are needed to navigate the application. But,

S

2 Advances in Computer Graphics and Virtual Environment

as agreed by Luebke (2001), realism still can be achieved without
sacrificing too many realism needs.

This chapter will discuss about the techniques for
optimization in computer graphics and why these optimization
techniques are needed. Visibility culling is one of the method that
can decrease the high computational of real-time computer
graphics applications. As defined in Moller (2002), view frustum
culling (VFC) is the simplest visibility culling among the other
methods i.e. back faces culling (Zhang 1997) and occlusion culling
(Bartz 1999; Aila 2005; Zhang 1998). Only the objects which are
inside the frustum will be displayed. This chapter is focusing on
the construction of alternative view frustum algorithm for effective
rendering and examining a new improvement on view frustum
culling approach by Placeres (2005). The approach is defined as a
range detection approach which effectively eliminates the unseen
objects in the virtual environment.

This chapter will also describe on how to develop
acceleration techniques for Ancient Malacca Virtual Walkthrough
project which focuses on the modeling and visualization of
Malacca city in 15th century. It is based on local and foreign
sources such as the Sejarah Melayu (Ahmad 1979) and the
descriptions by Portugese writer, Pires (1944) described the city
and the empire as an opulent and prosperous centre of maritime
Malay civilization. The next section will describe the related work
of the view frustum culling algorithm and some similar virtual
heritage projects. Furthermore, view frustum culling definition is
explained in detail. The six planes of view frustum culling will be
illustrated in this chapter. Then, the range detection approach in the
next section will be enlightened. Finally, the statistical
representation to portray the results delivery will be shown.

 Range Detection Technique for Real-Time Virtual Heritage Application 3

RELATED WORKS

Visibility is a wide research topic area in computer graphics. It has
been studied since early era of computer graphics. The original
idea on how to make an efficient view frustum culling was invent
by Clark (1976) who used hierarchical approach for visible surface.
When the area of computer graphics becomes more popular in
1990's, the algorithms also start growing (Cohen 2003). We focus
here on the evolution of view frustum culling techniques.

View frustum culling algorithm can be divided into two
common approaches. The first approach is to transform the
bounding volume into perspective view. The testing is performed
with perspective coordinate system, as initiated in Bishop (1998).
Second approach is by checking the bounding volume against view
frustum volume represented by its six clipping planes according to
Hoff (1999) as agreed with Greene (1994).

The advantage of this approach can make the trivial
acceptance and rejection. Then, the test recursively continued
based on intersection between a box and a frustum. Greene (1998)
showed how to detect the intersection of a rectangular and a
convex polyhedron. They also introduced the fast intersection
method between polygon and cube. A view frustum culling using
probabilistic caching scheme was developed by Slater (1997). The
algorithm is implemented using Binary Space Partition tree.
Statistical probability representation is used to get faster result than
the hierarchical bounding box scheme. The method produced
unacceptable errors in some cases.

Bittner (1998) has improved the view frustum culling based
on traversal coherency of the scene hierarchy. Certain interior node
of the hierarchy is avoided during the intersection test. This
technique is not doing the test to the object that is expected to
remain visible.

Optimized bounding boxes for view frustum culling are
explored by Assarsson (2001). They used low degree of freedom
of camera motion in the user-driven walkthrough scene. As stated
in Assarsson (1999) and Slater (1997), both algorithms are similar,

4 Advances in Computer Graphics and Virtual Environment

in which both algorithms try to minimize the work by caching
information and avoiding more expensive intersection tests.

The view frustum cullling algorithms were improved by
Placeres (2005) who used slightly different way of defining the
view frustum volume. In this approach, the view frustum volume is
identified based on camera referential point and properties.

ANALYSIS OF VIEW FRUSTUM CULLING TECHNIQUE

View frustum can be illustrated as a truncated pyramid
representing user's scope of visible view. Essentially it is the field
of view of the virtual camera which determines the region of
virtual environment that may appear on the screen during run-time.
A view frustum is defined by six planes:

 (1)

 i = 0...5, where in is the normal and id is the offset of plane iπ ,
and x is an arbitrary point on the plane. We say that a point x is

outside a plane πi if . . If the point is inside all planes
then the point is inside the view frustum.

To generate a view frustum, a pyramid with surfaces is
used. There are two surfaces that represent the nearest and furthers
viewpoint. The nearest and furthers representing the boundary of
visible objects. Another four surfaces are representing top, bottom,
left and right boundary. View frustum in our case is always set in
the perspective view mode.

View frustum culling (VFC) is important because it culls
away the invisible (unseen) objects in complex scenes from the
rendering pipeline. It saves the memory usage and it will definitely
increase the frame rates. View frustum culling is typically used in
virtual reality software, walkthrough system, 3D games and serious

 Range Detection Technique for Real-Time Virtual Heritage Application 5

visualization such as medical and military simulation for its
efficient rendering.

Each frustum plane is tested if the object is inside or
outside the view frustum. Only primitives that are totally or
partially inside the view frustum need to be rendered. Three
possible output states for bounding box and view frustum test are:

OUTSIDE: All eight points representing the bounding
box are totally outside the view frustum. So
the object is eliminated from the further
processing.

INSIDE: All eight points representing the bounding
box are totally inside the view frustum. So
there is no further culling calculation. The
object is included for the further processing.
This state is useful for the application to
avoid unnecessary computation.

INTERSECT: Any point of bounding box is inside the
view frustum. So down traverse the
hierarchy is required. Partial of object
geometry is included for the further
processing. This state will employ expensive
cost of computation. For speed up reason,
we consider this state as INSIDE.

RANGE DETECTION TECHNIQUES

Conventional view frustum culling test discussed in previous
section was based on the idea that the volume of view frustum is
surrounded by six planes. The test is performed against every
single plane to detect the bordered objects for viewing using plane
equation. Each object is compared six times in each frame to
resolve the visibility.

In this section, the introduction of alternative approach by
Placeres et al. (2005) will be explained. They stated that the VFC

6 Advances in Computer Graphics and Virtual Environment

test is done to all point in the virtual environment. The improved
approach is based on the formula given in (2).

(1)

n(Ej) = number of objects in group j which is the number of object
we sent to the frame buffer; N = total of objects in the virtual
walkthrough application; j = index of group; i = counter number
of object in N but not in group j; m = number of N but not in group
j; jc = complement of j. This section will describe the advantage of
this approach, which named as Range Detection Technique (RDT).

Figure 1.1 Six objects in virtual environment that
 bounded by sphere and AABB

The RDT approach test is based on three steps as follow:
First is front object test. Secondly, sphere bounding test and thirdly,
AABB bounding test. The front object test is done to eliminate the
objects that are not facing the camera view. The step is arranged
based on the fact that sphere testing is faster than AABB. Every

 Range Detection Technique for Real-Time Virtual Heritage Application 7

village houses and trees in the scene is bounded by sphere and
AABB. Bounding sphere is generated based on center points and
radius of each object in the application. To generate an AABB, the
minimum and maximum point information for each object is
needed. Then, based on the minimum and maximum point, a box
with another six remaining points is generated. Therefore, for each
object, eight points defining the AABB is tested to the range of the
camera visible boundary. In the front object test, only object A is
eliminated. After the sphere test is done using RDT, objects D, E
and F are to be saved in the frame buffer. Only objects D and F are
to be displayed as output when the AABB test is finished.

Figure 1.2 The range for point P in z coordinate

The next step has been taken to extract and determine the
point in visibility range. As shown in Figure 1.2, P is the point that
is being tested against the view frustum. The virtual camera
properties such as location, lookup and orientation are used to
check the distance between point P and camera. The camera
reference is based on three unit vector X, Y and Z which labeled as
C. First, checked the z-coordinate of P. Consider C is the point in
camera orientation coordinates. To find z-coordinate of P, we need
to find the vector that goes from c to P. The length of projection of
this vector on z must be computed. This can be done by dot
product where z is assumed as a unit vector.

8 Advances in Computer Graphics and Virtual Environment

 (3)

 (4)

If the z-coordinate is between the range of near and far then P is
possibly inside the view frustum. Then, the x- and y-coordinates
must be tested. Otherwise, P is absolutely out of the view frustum.

 (5)

To find x- and y-coordinate of P in camera orientation coordinate,
the similar procedure is followed.

 (6)
 (7)

Figure 1.3 Check the y coordinates of P

Figure 1.3 above shows y-coordinates of P is being checked
from the z-coordinates of P in order to find the high range of view
frustum. Therefore, as represented in Figure 1.4, y value will be
compared to the height to test whether it is in view frustum range
or not.

 Range Detection Technique for Real-Time Virtual Heritage Application 9

Figure 1.4 P.y will be compared to the height to test whether it is in
view frustum range or not

In order to get the height range of view frustum, the
following trigonometry formula is used:

 (8)

P is in the view frustum range if P.y value is larger than -h/2 and
smaller than h/2.

 (9)

Then, we will test the x-coordinate of P easily by checking P.x
range of view frustum width. Width, w is computed based on the
height and aspect ratio. Aspect ratio is the number of pixels
horizontal divided by the number of pixels that can be displayed by
the system.

 (10)

10 Advances in Computer Graphics and Virtual Environment

RESULT

This section describes the implementation and testing results of
both normal six planes of VFC, Placeres’s and RDT in Ancient
Malacca Virtual Walkthrough project.

Development of virtual heritage environment is built using
C++, OpenGL, GLVU and GLUI. The 3D objects of Ancient
Malacca are modeled by 3D Studio Max, which is modified from
previous project that run at SGI Onyx machine. Intel Pentium 4 3.2
GHz with 512MB RAM and nVidia GeForce FX5950 graphics
display card are exploited to test the VFC in virtual walkthrough
application.

For testing purpose, it is essential to fix the camera
movement path in virtual environment. This is important to ensure
the camera to follows the same path for every testing with different
culling method.

Figure 1.5 shows the difference of the number of object
drawn in the screen with and without RDT. All objects in the
virtual walkthrough appear in blue. Red dot in the figure represents
the camera position. As shown in the top figure, all objects are
drawn without the implementation of RDT. This may consume a
high computational cost. The virtual walkthrough reduced more
than three quarter number of object to be sent to the frame buffer
with the implementation of RDT. This can be shown in the Figure
1.5 (below). Figure 1.6 shows the screenshot of the Ancient
Malacca Virtual Heritage application that implemented the RDT to
effectively determine the potential visible objects.

 Range Detection Technique for Real-Time Virtual Heritage Application 11

Figure 1.5 Difference of virtual walkthrough executed between
with (bottom) and without (top) RDT

Figure 1.6 Screenshot of the Ancient Malacca Virtual Heritage
 application that implemented the RDT

12 Advances in Computer Graphics and Virtual Environment

Figure 1.7 Results of frame per second for each normal
 conventional VFC, Placeres (2005), RDT and without

VFC

The frame per second test is done to the Ancient Malacca
virtual walkthrough. The purpose of the test is to measure the
performance and the interactivity of the virtual walkthrough
system with and without RDT. Besides that, it also shows the
difference of smoothness during application run-time with RDT.
Figure 1.7 shows the result of frame per second test. The frame
rates become higher when the camera reaches to the area with not
many objects to be rendered. When, the camera arrived at the area
with crowd of objects, the low frame rates obtained. The result
shows that the RDT give the highest frame rates among others
during the run-time test (Figure 1.8). Without VFC, the frame rates
remain 23 and 24 frames per seconds, which is under the
expectation of real-time rendering standard.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
Frame

Placeres

Range
Detection

Conventional
VFC

No VFC

 Range Detection Technique for Real-Time Virtual Heritage Application 13

Figure 1.8 An advantage of RDT is the time taken to finish one
round of the testing path is shorter than normal VFC

There are five times testing procedures for each approach
including with no view frustum culling. Then, it takes the average
of the result as shown in the bar chart. As a result, the RDT is the
fastest among others.

RDT was also tested with different categories of computer
system. Figure 1.9 shows the results of frame per second (fps) for
RDT running on different specification of computer systems.
Category 1 is the highest specification which can run the virtual
heritage application in highest fps. This result also shows that RDT
can improve the application speed although it was running on the
lower specification like in category 3. The specification categories
of computer systems used for testing in this research are as follow:

Category 1:
Intel Pentium 4 3.2 GHz (HT), 2046 MB RAM, nVidia GeForce
FX5950U with 256MB VRAM.

1

149.81

36.02
32.39

30.59

0

20

40

60

80

100

120

140

160

Ti
m

e
(s

)

No VFC Conventional VFC Placeres RDT

14 Advances in Computer Graphics and Virtual Environment

Category 2:
Intel Pentium 4 3.0 GHz, 1024 MB RAM, nVidia GeForce
FX5200 with 128MB VRAM.

Category 3:
Intel Pentium 4 1.9 GHz, 512 MB RAM, ATI Radeon 7500
VRAM.

Figure 1.9 The results of frame per second for RDT running on
different system category

REFERENCES

Ahmad A. S., 1979,“Sulatus Sulatin (Sejarah Melayu)”. Dewan
Bahasa dan Pustaka.

Aila T., 2005, “Efficient algorithms for occlusion culling and
shadows”, Ph.D.dissertation, Helsinki University of
Technology, Helsinki, Finland, Feb.

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400 1600 1800
Frame

Categori 1

Categori 2

Categori 3

 Range Detection Technique for Real-Time Virtual Heritage Application 15

Airey J. M., Rohlf J. H., and Brooks F. P., 1990, “Towards image
realism with interactive update rates in complex virtual
building environments”, vol. 24, no. 2, Mar, pp. 41–50.

Angelidis A. and Fouquier G., 2001, “Visualization issues in
virtual environments: from computer graphics techniques to
intentional visualization,” in WSCG’2001, pp. 90–98.

Assarsson U.,2001 “View Frustum Culling and Animated Ray
Tracing: Improvements and Methodological
Considerations”. Tesis Ph.D. Chalmers University of
Technology, Goteborg, Sweeden.

Assarsson U. and Möller T., 1999 “Optimized view frustum
culling algorithms,” Chalmers University of Technology,
Tech. Rep. 99-3, March.

Bartz D., Meißner M., and H¨uttner T., 1999, “OpenGL-assisted
occlusion culling for large polygonal models”, Computers
and Graphics, vol. 23, no. 5, pp. 667–679.

Bittner J., Havran V., and Slavik P., 1998, “Hierarchical visibility
culling with occlusion trees”. Proc. of Computer Graphics
International, Jun, pp. 207–219.

Bishop L., Eberly D., Whitted T., Finch M., and Shantz M., 1998,
“Designing a pc game engine,” Computer Graphics in
Entertainment, pp. 46–53.

Chiu K. and Shirley P., 1994 “Rendering, complexity, and
perception,” in Proceedings of the 5th Eurographics
Rendering Workshop, Darmstadt, June ,pp. 19–34.

Clark J. H., 1976, “Hierarchical geometric models for visible
surface algorithms,” Communications of the ACM, vol. 19,
no. 10, pp. 547–554.

Cohen-Or D., Chrysanthou Y., Silva C., and Durand F., 2003, “A
survey of visibility for walkthrough applications,” Course
30, SIGGRAPH Course Notes,

Dzwig P., 1988, “Complex scene generation,” in IEE Colloquium
on Practical Applications of Parallel Signal Processing.
London, UK: IEE, November, pp. 1–7.

16 Advances in Computer Graphics and Virtual Environment

Greene N., 1994, “Detecting intersection of a rectangular solid and
a convex polyhedron”. San Diego, CA, USA: Academic
Press Professional, Inc., pp. 74–82.

Hoff K. E.,1996 “A ”fast” method for culling of oriented bounding
boxes (obbs) against a perspective viewing frustum in large
“walkthrough” models,” May 1996. [Online]. Available:
<http://www.cs.unc.edu/
hoff/research/vfculler/viewcull.html>

Luebke D. P., 2001 “A developer’s survey of polygonal
simplification algorithms,” IEEE Computer Graphics
Application, vol. 21, no. 3, pp. 24–35.

Moller T. and Haines E., 2002, Real-Time Rendering. Natick, MA,
USA: A.K. Peters, Ltd.

Placeres F. P.,2005 “Improved frustum culling,” in Game
Programming Gems 5, K. Pallister, Ed. Charles River
Media.

Ramasubramanian M., Pattanaik S. N., and Greenberg D. P., 1999
“A perceptually based physical error metric for realistic
image synthesis” in SIGGRAPH ’99: Proceedings of the
26th annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., pp. 73–82.

Slater M. and Chrysanthou Y., 1997. “View volume culling using a
probabilistic caching scheme”, in VRST ’97: Proceedings
of the ACM Symposium on Virtual Reality Software and
Technology.

Placeres F. P.,2005. “Improved frustum culling”. In Pallister, K.
(Ed.). Game Programming Gems 5, pp. 65-77.
Masssachusetts: Charles River Media.

Zhang H., 1998. “Effective occlusion culling for the interactive
display of arbitrary models”. Ph.D. dissertation, University
of North Carolina, Chapel Hill.

Zhang H.and Hoff K. E.,1997 “Fast backface culling using normal
masks,” in Symposium on Interactive 3D Graphics, pp.
103–106.

