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ABSTRACT 

 

 

 

 

This thesis proposes simple methods to improve the dynamic performances of 

a Direct Torque Control (DTC) of induction machines. The principles of direct 

control of torque and flux based on the selection of appropriate voltage vectors are 

reviewed. In DTC, the torque is directly controlled by the slip angular frequency 

which is determined by the irregular motion of stator flux vector. The stator flux is 

always forced to follow its circular reference by the application of active voltage 

vectors. During a large torque demand, no zero voltage vector is used. However, the 

active voltages are switched more often to increase (or decrease) rapidly the slip and 

the output torque as well. Moreover, this method does not give the fastest dynamic 

torque response because one of the two possible active voltage vectors switched 

during torque dynamic is not optimal. The effect of selecting two different voltages 

on torque dynamic response is investigated and evaluated. Based on the 

investigation, the most optimized voltage is identified, and it is used to perform a 

dynamic overmodulation to produce the fastest torque dynamic control. The 

improved torque dynamic control is verified by simulation and experimental results. 

Owing to the intrinsic characteristic of DTC switching, it is not possible for stator 

voltage to perform a six-step mode. The thesis proposes a simple overmodulation 

strategy for hysteresis-based DTC by transforming the flux locus into a hexagonal 

shape. This is accomplished by modifying the flux error status before it is being fed 

to a look-up table. In this way, a smooth transition of stator voltage from Pulse Width 

Modulation to the six-step mode is achieved as the number of application of zero 

voltage vectors, i.e. during the motor acceleration, is gradually dropped to zero. With 

the six-step voltage operation, it allows the DTC to extend a constant torque region 

and hence results in higher torque capability in a field weakening region. To verify 

the improvement of the proposed method, simulation and experimentation as well as 

comparison with the conventional DTC scheme are carried out. It can be shown that 

the improvement about 20% (in terms of extension of constant torque region) can be 

achieved through the proposed method. The improvements mentioned above can also 

be achieved in the DTC with constant frequency torque controller that offers constant 

switching frequency and reduced torque ripple. The improvements are verified by 

experimental results.  
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ABSTRAK 

 

 

 

 

Tesis ini mencadangkan kaedah mudah untuk meningkatkan prestasi dinamik 

bagi sebuah Kawalan Dayakilas Terus (DTC) untuk mesin aruhan. Prinsip kawalan 

terus dayakilas dan fluks berpandukan pemilihan vektor voltan yang sesuai, 

diulangkaji. Dalam DTC, dayakilas dikawal secara langsung oleh frekuensi sudut 

gelincir yang ditentukan oleh pergerakan tidak teratur oleh vektor fluks pemegun. 

Fluks pemegun sentiasa dipaksa untuk mengikut rujukan membulat dengan aplikasi 

vektor voltan aktif. Semasa permintaan daya kilas yang besar, tiada vektor voltan 

sifar digunakan. Tetapi, pensuisan voltan-voltan aktif lebih kerap untuk 

meningkatkan (atau mengurangkan) dengan pantas gelinciran dan juga keluaran 

dayakilas. Tambahan lagi, kaedah ini tidak memberikan sambutan dayakilas dinamik 

yang terpantas kerana salah satu daripada dua kemungkinan voltan aktif yang dipilih 

semasa dinamik dayakilas adalah tidak optimum. Kesan bagi pemilihan dua voltan 

yang berbeza terhadap sambutan dayakilas dinamik, diselidik dan dinilai. 

Berdasarkan penyelidikan ini, voltan yang paling optimum dikenalpasti, dan 

digunakan untuk operasi dinamik permodulatan lebih bagi menghasilkan kawalan 

dayakilas dinamik terpantas. Peningkatan kawalan dayakilas dinamik ini disahkan 

oleh keputusan simulasi dan eksperimen. Disebabkan ciri-ciri semulajadi pensuisan 

DTC, ianya tidak memungkinkan untuk voltan pemegun untuk beroperasi pada mod 

enam langkah. Tesis ini mencadangkan strategi pemodulatan lebih yang ringkas bagi 

DTC berasaskan histeresis dengan mengawal lokus fluks kepada bentuk heksagon. 

Ini dapat dilakukan dengan mengubahsuai status kesalahan fluks sebelum 

dimasukkan ke dalam jadual pemilihan. Melalui cara ini, kelancaran peralihan voltan 

pemegun dari Pemodulatan Lebar Denyut ke mod enam langkah dicapai apabila 

jumlah aplikasi vektor voltan sifar,  iaitu semasa pecutan motor, diturunkan secara 

perlahan-lahan kepada sifar. Dengan operasi voltan enam langkah, ia membolehkan 

DTC memperluaskan kawasan dayakilas tetap dan seterusnya menghasilkan 

keupayaan dayakilas yang lebih tinggi di dalam kawasan pelemahan medan. Untuk 

mengesahkan penambahbaikan oleh cadangan kaedah, simulasi dan eksperimen serta 

perbandingan dengan skim konvensional DTC dijalankan. Dapat ditunjukkan bahawa 

penambahbaikan sekitar 20% (dalam hal memperluaskan kawasan dayakilas tetap) 

boleh dicapai melalui kaedah yang dicadangkan. Penambahbaikan yang disebut di 

atas juga boleh dicapai dalam DTC dengan pengawal dayakilas frekuensi tetap yang 

menawarkan frekuensi pensuisan malar dan pengurangan riak dayakilas. 

Penambahbaikan ini disahkan oleh keputusan eksperimen. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 A Look Back on Development of Vector Control Induction Machine 

Drives 

 

 

In the past decades, DC machines have been used extensively in many 

applications due to its simplicity and offers high performance torque control.  Their 

mechanical commutation action forms the torque and flux components that are 

always orthogonal, which allows high performance control achieved under optimal 

conditions.  Despite their excellent performance and simple control structure, the 

construction using the mechanical commutator and brush cause some limitations.  

For examples, they require regular maintenance and cannot be operated in the dirty 

or explosive environment, their speed is limited and they are expensive.  Unlike DC 

machines, the induction machines are robust, require less maintenance, cheaper and 

able to operate at higher speed.  The induction machines became popular and 

gradually replacing DC machine drives in many industrial applications as the Field 

Oriented Control (FOC) introduced by F. Blachke in 1970’s can produce comparable 

performance to that obtained in DC machines [1].  Moreover, their popularity is also 

assisted by the rapid development in power semiconductor devices and the 

emergence of high-speed microprocessor and digital signal processors [2].  FOC of 

induction machines can provide a decoupled control of torque and flux using their 

respective producing current components, which is similar to the DC machine 

control method.  This is possible by considering the stator current vector in the 

rotating reference frame so that the orthogonal components of the stator current 

(represent as torque and flux producing current components) appear as DC 
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quantities.  The rotating reference frame refers to the rotating space vector quantity 

which can be either rotor flux or stator flux.  The one which is based on rotor flux 

(referred as Rotor Flux Oriented Control (RFOC)) is sensitive to the parameter 

variations, and also it requires the knowledge of rotor speed.  The improvements of 

the FOC performance were reported in many technical papers; these include the 

areas of robust control [3-5], improved flux estimator [6-9] and sensorless speed 

control [10-12].  

 

 

 

 

1.2 Direct Torque Control of Induction Machines 

 

 

Over the past years, Direct Torque Control (DTC) scheme for induction 

motor drives [13] has received enormous attention in industrial motor drive 

applications.  It was also used as the main platform for the ABB inverter technology, 

and the first DTC drive was marketed by ABB in 1996 [14-15].  Its popularity 

increases since it offers a faster instantaneous dynamic control and its control 

structure is simpler compared to the field-oriented control (FOC) scheme [13, 16-17].  

In DTC, the torque and flux are controlled independently, in which their demands are 

satisfied simultaneously using optimum voltage vectors.  Unlike the FOC drives, 

where the torque and flux are controlled corresponded to their producing current 

components (i.e.  d and q axis components of stator current) which requires frame 

transformer, knowledge of machine parameters and current regulated Pulse Width 

Modulation (PWM).  

 

 

 

 

1.2.1 The Structure of Basic DTC 

 

 

The simple control structure of DTC proposed by Takahashi [13] is shown in 

Figure 1.1.  It contains a pair of hysteresis comparators, torque and flux estimators, 

switching table for voltage vectors selection and a 3-phaseVoltage Source Inverter 

(VSI).  A decoupled control structure is provided in the scheme, wherein the 

electromagnetic torque and the stator flux can be controlled independently using 3-
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level and 2-level hysteresis comparators, respectively.  To satisfy the torque and flux 

demands, the appropriate voltage vector for a particular flux sector should be chosen, 

either to increase torque or to reduce torque and at the same time either to increase 

stator flux or to decrease stator flux; based on torque error status, flux error status 

and flux orientation.  In fact, high performance control in DTC drive with proper 

selection of voltage vectors can be established if the flux as well as torque is 

estimated accurately.  A combination of the voltage model and the current model 

using a first-order lag network was implemented in [13] to obtain a proper flux 

estimator for entire speed range operations.  The use of the current model is superior 

in estimating the flux at very low speed operations, but it requires the knowledge of 

motor speed, which in turns requires an observer or a speed sensor from the motor 

shaft.  On the other hand, the implementation of the voltage model provides better 

flux estimation for high speed operations and requires only stator resistance and 

terminal quantities (i.e. stator voltages and stator currents), which leads to the robust 

control of DTC.  However, the digital implementation of this model utilizing 

microprocessor or digital signal processor introduces some problems, i.e. the 

integration drift and initial condition problems [18-20]. 

 

 

In hysteresis-based DTC, the switching frequency of VSI is totally 

contributed by the switching in the hysteresis comparators.  It was highlighted in [21-

23] that the slopes of torque and flux, which relatively affect the switching in their 

hysteresis comparators, vary with the operating conditions (i.e. rotor speed, stator 

and rotor fluxes and DC link voltage).  This causes the switching frequency of VSI 

also varies with the operating conditions.  The variation in the switching frequency 

as a result produces unpredictable harmonic current flow.  For this reason, the 

switching devices cannot be fully utilized to its maximum frequency capability for 

most operating conditions, since the selection of hysteresis band’s width is based on 

the worst condition.  
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1.2.2 Improvements of DTC Performance 

 

 

Since DTC was first introduced in 1986 [13], several variations to its original 

structure (which referred to as DTC hysteresis-based) were proposed to improve the 

performance of DTC of induction machines.  Noticeably, most researches in last 

decades aimed to overcome the inherent disadvantages of hysteresis-based DTC 

schemes, such as variable switching frequency and high torque ripple.  In addition, 

some recent researches interested to facilitate the DTC to be operated in 

overmodulation mode that will improve the dynamic performance and the power 

output of DTC of induction machines.  To relate the study of this thesis, some 

reviews on improvements of DTC are concentrated into three following research 

areas: 

 

 

 

 

 Torque Ripple Reduction or/and Constant Switching Frequency 

 

 

Basically, the output torque ripple can be reduced by reducing the band width 

of hysteresis comparator to the appropriate value.  The selection of the appropriate 

Figure 1.1  Control structure of basic DTC-hysteresis based induction machine 
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band width is based on the worst operating conditions [24].  This will ensure the 

switching frequency of switching devices do not exceed its limit (or thermal 

restriction).  It is also desirable to use a high speed processor to keep the ripple 

within the band, in such a way the discrete hysteresis controller will perform like the 

analog one.  

 

 

Instead of decreasing the hysteresis band and using a high speed processor, 

the ripple can be minimized by injecting high-frequency triangular waveforms to the 

errors of torque and flux [25].  This method is called dithering technique, which is 

simple and effective to minimize the torque ripple even performing DTC at limited 

sampling frequency.  However, it still produces unpredictable switching frequency 

since the torque and flux slopes which are related to the switching frequency, do vary 

with operating conditions [23, 26].  

 

 

Several methods had been proposed to provide a constant switching 

frequency as well as reduced output torque ripple [22, 27-38].  In [27], a constant 

switching frequency is established in the hysteresis-based DTC by adjusting the band 

width of the hysteresis comparators according to the changes in operating conditions.  

The adjustable of band width is based on a PI controller and a pulse counter, for each 

comparator.  This, consequently, increases the complexity of the DTC drive.  

Moreover, this technique does not guarantee reduction of torque ripple as it is 

inevitable in the implementation of discrete hysteresis controllers.  Another approach 

to minimize the torque ripple is to control the DTC switching based on optimal 

switching instant that satisfies the minimum-torque ripple condition [22, 29-30].  In 

this way, the term so called a duty ratio is determined so that the appropriate active 

state is switched for some portion of a switching period, and the zero vector is 

selected for the rest of the period.  It was shown in [24] that the switching frequency 

is strongly affected by the torque hysteresis band.  Thus, it makes sense that the 

almost constant switching frequency as well as reduced torque ripple can be achieved 

if the control of torque error is performed at a higher and a constant frequency.  As 

proposed by [32], the principal operation of torque controller using the hysteresis-

based is replaced with a triangular carrier-based.  The improvement is achieved and 

at the same time retains the simple control structure of DTC.  The most common 
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approach to solve the problems is using the space vector modulation [28, 31, 33-35].  

In this approach, the switching period is subdivided into three or more states, to 

synthesize the desired voltage vector in order to produce the minimum torque ripple.   

 

 

Recently, predictive control strategy to DTC has gain considerable amount of 

attention particularly due to its ability to reduce the torque ripple and switching 

frequency [36-39].  In particular model predictive control (MPC) which was applied 

in [38] and [36] uses the hysteresis comparators but with the switching table replaced 

with online optimization algorithm.  

 

 

 

 

 Fast Torque Dynamic Control through Dynamic Overmodulation Strategy  

 

 

Without the need to use any extra hardware, the torque dynamic performance 

can be improved by fully utilizing the available DC link voltage through 

overmodulation.  To perform the DTC under the overmodulation mode, it is 

preferable to use the Space Vector Modulation (SVM) [28, 40-44] rather than other 

techniques (for example, [45-46] use the triangular carrier based).  This is because, 

the SVM is more flexible to be adopted for advanced motor control where only a 

single reference voltage vector vs,ref  is employed to define the mode of 

overmodulation. 

 

 

During large torque demand, it is inevitable that the reference voltage vs,ref  

exceeds the voltage vector limits enclosed by the hexagonal boundary.  Under this 

condition, the SVM has to be operated in what is termed as dynamic overmodulation 

mode.  The voltage reference vector vs,ref  has to be modified such that it will lie on 

the hexagonal boundary.  

 

 

Several methods [28, 43, 47-49] have been proposed and to some extent, 

these methods have managed to minimize the voltage vector error as well as obtained 

a fast torque response.  Figure 1.2 compares some modified voltage references, v[i]   

(e.g. when i =1, proposed in [1]) with respect to the original voltage reference vector, 
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vs,ref, which is beyond the hexagonal boundary of the voltage vectors.  Note that, 

voltage vector components are not drawn to scale.  It can be seen that (from Figure 

1.2), [42] and [50] switched only single voltage vector which is vs,h+2 during dynamic 

overmodulation.  This single selection of vector shows the occurrence of a six-step 

operation that produces the fastest dynamic torque control as will be discussed later 

in Chapter 4.  While the other methods result in slower dynamic torque response 

since two active states are alternately switched during the dynamic condition.  For 

example, [28] used two active states utilizing dead-beat control in order to maintain 

the magnitude of stator flux under control for any condition.  Later, [43] was 

proposed to simplify the complexity control structure in [28], (where it does not 

provide a dead beat control of the magnitude flux as a transient torque encountered) 

and hence results in a faster dynamic torque control.  In this way, the modified 

voltage vector, v[43] has the same angle, γ as the original reference voltage, vs,ref  but 

with a modified magnitude.  In [47], the reference voltage, vs,ref was modified to v[47] 

such that the error between the magnitude of v[47] and vs,ref is minimized.  This means 

the modified voltage vector, v[47] should be closest to the original reference vector 

vs,ref by ensuring that a line joining the vs,ref and v[47] is orthogonal to the hexagon 

boundary.  
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Figure 1.2  Variations of modified reference voltage vectors which is applied during 

dynamic overmodulation mode 
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 Enhanced Torque Capability using Flux Weakening or/and Overmodulation  

Strategy 

 

 

A wide-speed high torque capability is a very important feature in many 

electric motor drive applications.  In automotive applications, it is usually referred to 

as a high ‘Constant Power Speed Range’ (CPSR).  The availability of wide range of 

speed operations with the maximum capability of torque is of main concern, 

especially for the road electric vehicles where multiple gears have to be avoided.    

 

 

In practice, a flux weakening strategy is normally used to extend the motor 

speed operations beyond the base speed and to enhance the capability of torque.  

Several papers were published [42, 50-63] proposing the solution of achieving 

maximum torque capability in field weakening region.  The common approach 

adopted is to estimate the optimal flux level of the motor based on the maximum 

values of inverter voltage and inverter current.  Typically, the algorithms require 

frame transformer, knowledge of machine parameters and space-vector modulator.  

For examples, [53] used Field Oriented Control-Space Vector Modulation (FOC-

SVM) while [63] used Direct Torque Control-Space Vector Modulation (DTC-

SVM), and they consider voltage and current limit conditions to compute the 

controllable currents (in stator flux reference frame) in achieving the appropriate flux 

level in field weakening region.  Besides that, some papers had been reported to 

provide a robust field weakening strategy so that any variations of machine 

parameters used in calculating the optimal flux can be compensated [55, 59, 61-62].  

 

 

In order to achieve the fastest torque dynamic response as well as high torque 

capability in a flux weakening region, the DTC needs to have the capability to 

operate in six-step mode.  However, only a few schemes have the ability to perform 

this; i.e. [42] used DTC-SVM with the predictive-deadbeat control and [50] used 

Direct Self Control with hexagonal flux operation.  
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1.2.3 The Popularity Versus The Complexity of DTC-SVM based induction 

machines 

 

 

The most popular variation of DTC of induction motor drives is the one that 

is based on space vector modulation (SVM), which normally referred to as DTC-

SVM [28, 33, 40, 42, 64-66].  As mentioned previously, the advantages provided by 

this scheme not only solve the inherent problems in hysteresis-based DTC but also 

facilitate the DTC performs under overmodulation region.  Moreover, the study of 

the SVM itself in the area of overmodulation strategy improvement for 3-phase VSI 

was reported by many researchers [41, 46-47, 49, 66-73].  All these evidences show 

that the implementation of SVM to operate under overmodulation region is well 

established, and widely adopted for advanced motor control. 

 

 

The major difference between DTC hysteresis-based and DTC-SVM is the 

way the stator voltage is generated.  In DTC hysteresis-based the applied stator 

voltage depends on voltage vectors, which are selected from a look-up table.  The 

selections are based on the requirement of the torque and flux demand obtained from 

the hysteresis comparators.  On the other hand, in DTC-SVM, a stator voltage 

reference is calculated or generated within a sampling period, which is then 

synthesized using the space vector modulator.  The stator voltage reference vector is 

calculated based on the requirement of torque and flux demands.  Due to the regular 

sampling in SVM, the DTC-SVM produces constant switching frequency as opposed 

to the variable switching frequency in hysteresis-based DTC however, at the expense 

of more complex implementation.  

 

 

The generation of reference voltage vs,ref often involves complex calculation.  

For examples; [28] used dead-beat control with several complicated equations (i.e. 

quadratic equations) to generate the reference voltage in real-time and [64] utilized 

predictive control of stator flux error vector to estimate the reference voltage and 

needed extra calculation on the synchronous angular velocity.  While the others 

include the use of proportional-integral current controller [40], stator flux vector 

error [65, 74-75], proportional-integral torque and flux controllers [33, 76-77], 

predictive and dead-beat controllers [42-43].  Moreover, the implementation of DTC-
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SVM becomes complicated as the reference voltage needs to modify whenever it 

passes outside the hexagon (due to the physical constraint of inverter as the vs,ref 

defines mode of overmodulation), particularly during a large torque demand.  Some 

modified reference voltages as mentioned previously are shown in Figure 1.2.  

Figure 1.3 shows a general block diagram of generation of switching in DTC-SVM, 

which contains three main components and the functional of the two of them are as 

mentioned above. 

 

 

Ultimately, all of the proposed methods [28, 33, 40, 42-43, 64-65, 74-77] 

complicate the basic control structure of DTC drive systems as originally proposed in 

[13]. 

 

 

 

 
 

 

 

 

1.3 Thesis Objectives and Contributions 

 

 

The objective of this thesis is to study, implement and improve the 

performance of the DTC of induction machines.  Despite the improvements, the 

proposed methods also aim to preserve the simple control structure of DTC drive.  

The thesis proposes a simple, yet significant, method of overmodulation strategy 

employed in the DTC-hysteresis based induction machine to improve torque 

dynamic control and to enhance torque capability for a wide speed range operation.  

Figure 1.3  A general block diagram of generation of switching in DTC-SVM 
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The thesis also shows that the proposed methods can be implemented using a 

constant switching controller [32] (which has a similar control structure with the 

hysteresis-based DTC), in order to give extra advantages of providing a constant 

switching frequency and reduced torque ripple.  While doing the research, the thesis 

makes the following contributions: 

 

 

 It shows the reduction of torque ripple in [32] can be further reduced by 

enlarging the constant frequency of triangular carriers.  This is achieved 

without the need of reducing the sampling period which is useful for the DSP 

or microprocessor with a limited sampling frequency. 

 

 

 It analyses the effect of different voltage vectors selection on the performance 

of torque dynamic control in DTC induction machine drive.  Although the 

hysteresis-based DTC is well established to give a high performance torque 

control, there is still room to further improve the performance based on the 

observation of the analysis. 

 

 

 It introduces a modification block of flux error status in the hysteresis-based 

DTC drive which is responsible to perform dynamic overmodulation.  This 

technique is very simple, yet it gives the fastest torque dynamic control.  The 

introduced block can also be implemented in [32] to verify the improvements.  

 

 

 It justifies the extension of constant torque region and hence improvement of 

torque capability can be obtained by controlling the locus of flux into 

hexagonal shape.  With this method, the stator voltage in the DTC drives (i.e. 

in [32] and hysteresis-based DTC) can be transformed with a smooth 

transition from PWM to the six-step mode.  

 

 

 It describes the modification of flux error status to establish the control of 

hexagonal flux locus, particularly during dynamic conditions (i.e. large 

torque demand or motor acceleration).  The hybrid DTC is proposed to 

operate the control of flux into dual mode, i.e. circular flux locus as 
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performed in DTC during the steady state (that produces lower current’s 

THD) and hexagonal flux locus as performed in Direct Self Control (DSC) 

when dynamic condition encountered (that gives superior dynamic 

performance).  The feasibility of the proposed method is verified using the 

hysteresis-based DTC and the scheme proposed by [32]. 

 

 

 It improves dynamic performances in flux weakening region.  With the 

proposed overmodulation strategy, the fastest torque dynamic control and 

higher torque capability are achieved with the complete six-step voltage.  

 

 

 It introduces a step reduction of reference flux to ensure proper torque control 

when a motor speed reaches its target in a flux weakening region.  This is to 

avoid an inappropriate level of reference flux (i.e. too high flux level) as the 

hexagonal flux changes to the circular.  

 

 

 It develops a simulation and experimental set-up to verify the proposed 

improvements on the DTC drive.  The simulation is based on Matlab and 

Simulink program from Mathworks inc..  The experimental set-up consists of 

a DS1102 DSP controller board as the main processor and APEX20KE Altera 

FPGA.  The combined controller board is implemented so that the sampling 

period of the DSP can be minimized by distributing some of the tasks to the 

FPGA.  

 

 

 

 

1.4 Methodology of Research 

 

 

A novelty of the overmodulation strategy was developed by investigating 

various overmodulation strategies, particularly associated with the SVM approach.  

The switching pattern of the voltage vectors in overmodulation region was translated 

or mapped onto the stator flux plane since there is no reference voltage vector in the 

hysteresis-based DTC.  A thorough investigation on the various flux weakening 
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strategies, constant switching frequency and reduced torque ripple strategy was also 

carried out. 

 

 

The development of the overmodulation strategy for the hysteresis-based 

DTC is based on the modification of flux error status on the stator flux plane.  To 

achieve the fastest torque dynamic control, the most optimized voltage vector is 

switched and held.  The selection of the voltage is determined by the modified flux 

error status.  To enhance torque capability, the proposed overmodulation and flux 

weakening strategies are utilized in the hybrid DTC scheme.  This scheme performs 

the control of flux in dual mode operations.  This is established using the introduced 

block named as ‘block of Modification of Flux Error Status’.  The improvements 

using the proposed methods also can be achieved with the extra advantages, i.e. 

reduced torque ripple and constant switching frequency using the scheme proposed 

by [32].  

 

 

Once the algorithm for the overmodulation and field weakening was 

developed, it had to be applied to the DTC drive and simulated using large signal 

model.  The Matlab/SIMULINK simulation package was used for this purpose. 

 

 

The proposed overmodulation and field weakening strategies utilizing a 

hybrid DTC scheme had been verified and evaluated for its feasibility and 

effectiveness through hardware implementation.  A state-of-the-art digital signal 

processor and field programmable gate array devices (DS1102 controller board and 

APEX20KE Altera FPGA) were used to implement the DTC controllers including 

the overmodulation and field weakening strategies.  A standard induction machine 

with suitable loads and IGBT-based VSI had been used for this purpose. 
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1.5 Organisation of the Thesis 

 

 

The rest of the thesis is organised as follows: 

 

 

Chapter 2 describes the mathematical modeling of induction machine and the basic 

principle of DTC of induction machines.  The inherent problems in discrete 

implementation of hysteresis-based DTC such as variable switching frequency, high 

torque ripple and the need of high speed processor are also discussed. 

 

 

Chapter 3 suggests to use the simple method proposed by [32] to perform a constant 

switching frequency and to reduce output torque ripple, instead of using the common 

approach that is SVM.  A quick guide to design or to obtain a proper controller of the 

Constant Frequency Torque Controller (CFTC) is presented.  Further improvement in 

reducing the torque ripple can be achieved by extending the triangular carrier 

frequency to its maximum (which is equal to one-quarter of the maximum sampling 

frequency achieved by the DSP).   

 

 

Chapter 4 proposes a simple dynamic overmodulation to achieve the fastest torque 

dynamic control.  The effect of selecting two possible voltage vectors on the torque 

dynamic performance is analyzed.  Based on the observation, the most optimized 

voltage vector is identified, and it is used to produce the fastest torque dynamic 

response.  Simulation and experimental results are presented to show the 

effectiveness of the proposed method.  Experimental results on the proposed method 

implemented in [32] is also presented. 

 

 

Chapter 5 proposes a simple overmodulation and flux weakening strategy utilizing 

hybrid DTC scheme.  The hybrid DTC scheme is constructed to facilitate the DTC 

drive to operate similar to that of DSC, which is based on hexagonal flux locus.  By 

controlling the locus flux into hexagonal shape, the limit of stator voltage can be 

reached up to the six-step mode as the motor operates in flux weakening region.  As 

a result, the hybrid DTC performs at higher torque capability and hence gives a lesser 

motor acceleration time.  Simulation and experimentation as well as comparison with 



 15 

the conventional DTC scheme to verify the feasibility of the proposed method, are 

presented.  Experimental results on the proposed method implemented in [32] is also 

presented. 

 

 

Chapter 6 describes the experimental set-up used in the thesis.  Details information 

of each hardware component and the implementation of the tasks are given. 

 

 

Chapter 7 gives the conclusion of the thesis and possible directions of further 

research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




