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SLIDING MODE CONTROL OF A HYDRAULICALLY
ACTUATED ACTIVE SUSPENSION

YAHAYA MD. SAM1* & JOHARI HALIM SHAH OSMAN2

Abstract. The objective of this paper is to present a new mathematical model and robust control
technique for modeling and control of an active suspension system with hydraulic dynamics for a
quarter car model. The purpose of a car suspension system is to improve the riding quality while
maintaining good handling characteristics subject to different road profiles. The objective of designing
a controller for a car suspension system is to improve the riding quality without compromising the
handling characteristic by directly controlling the suspension forces to suit the road and driving
conditions. In this paper, a new mathematical model is presented which will give a much more
complete mathematical representation of a hydraulically actuated suspension system for the quarter car
model. However, the mathematical model obtained suffers from mismatched condition. In order to
achieve the desired ride comfort and road handling and to solve the mismatched condition, a proportional-
integral sliding mode control technique is presented to deal with the system and uncertainties. The
effect of boundary layer thickness selection in the proposed controller is also presented. Extensive
simulations are performed and the results showed that the proposed controller performed well in
improving the ride comfort and road handling for the quarter car model using the hydraulically
actuated suspension system.
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Abstrak. Kertas penyelidikan ini bertujuan untuk memperkenalkan model matematik dan
teknik kawalan yang baru dalam pemodelan dan kawalan sistem gantungan aktif berdinamik hidraulik
untuk model kereta suku. Sistem gantungan kereta berfungsi untuk memperbaik kualiti pemanduan
di samping mengekalkan ciri-ciri pengendalian yang baik dalam apa jua bentuk permukaan jalan.
Reka bentuk sistem kawalan dalam sistem gantungan kereta berperanan untuk mengawal secara terus
daya gantungan agar bersesuaian dengan keadaan permukaan jalan dan pemanduan. Dalam kertas
penyelidikan ini, model matematik sistem gantungan tergerak hidraulik untuk model kereta suku
akan dihuraikan dengan lebih terperinci. Walau bagaimanapun, pemodelan matematik sistem gantungan
ini menghadapi masalah keadaan tak terpadan. Oleh itu, suatu kaedah baru yang dikenali sebagai
kawalan ragam gelincir berkadaran-kamiran dicadangkan untuk mengatasi masalah keadaan tak
terpadan di samping mencapai tahap selesa pemanduan dan kendalian jalan yang dikehendaki. Kesan
ke atas ketebalan lapisan sempadan terhadap pengawal yang dicadangkan juga dibincangkan.
Penyelakuan komputer telah dijalankan dan keputusan yang diperolehi menunjukkan pengawal yang
dicadangkan berupaya memperbaiki tahap selesa pemanduan dan kendalian jalan untuk model kereta
suku berkenaan.

Kata kunci: Gantungan aktif, kawalan automotif, kawalan ragam gelincir
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1.0 INTRODUCTION

The development of an active suspension system for a vehicle is of great interest to
both academic and industry. The study of active suspension system has been
performed using various suspension models. Generally, vehicle suspension models
are divided into three types: quarter car, half car and full car models. In the quarter
car model, the model takes into account the interaction between the quarter car
body and the single wheel. The motion of the quarter car model is only in the vertical
direction. For the half car model, the interactions are between the car body and the
wheels and also between both ends of the car body. The first interaction in the half
car model caused the vertical motion and the second interaction produced an angular
motion. In the full car model, the interactions are between the car body and the four
wheels that generate the vertical motion, between the car body and the left and right
wheels that generate an angular motion called rolling, and between the car body and
the front and rear wheels that produce the pitch motion.

Modeling of the active suspension systems in the early days considered the input
to the active suspension to be a linear force. Active suspension with linear force
input is presented in [1, 2]. Recently, due to the development of new control theories,
the force input to the active suspension systems has been replaced by an input to
control the actuator. Therefore, the dynamics of the active suspension systems now
consists of the dynamics of suspension system plus the dynamics of the actuator
systems. Hydraulic actuators are widely used in the active suspension system as
presented in [3 - 6].

Various control laws such as adaptive control [7], backsteeping method [4], optimal
state-feedback [1], fuzzy control [6], and sliding mode control [8] have been proposed
in the past years to control the active suspension system. The sliding mode control
has a relatively simpler structure and it guarantees system stability.

In this paper, we will consider a new method in integrating the hydraulic actuator
dynamics with the active suspension system and propose a control scheme that can
further improve the ride comfort and road handling of the active suspension system.
The proposed control scheme differs from the previous sliding mode control
techniques in the sense that the sliding surface is based on the proportional-integral
sliding mode control instead of the conventional sliding surface.

2.0 DYNAMIC MODEL OF ACTIVE SUSPENSION

In the past, most active suspension designs were developed based on the quarter-car
model as shown in Figure 1, where mb and mw are the mass for the car body and car
wheel, respectively, kb and kw are the stiffness of the car body spring and car tyre,
respectively, cb is the damping constant for the damper, xb and xw are the vertical
displacement of the car body and the car wheel, respectively, fa is the control force
that is generated by the actuating ram in the hydraulic cylinder as presented in [8],
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and w is an irregular excitation from the road surface. In the model, it is assumed that
all the suspension components are linear.

From Figure 1, the dynamic equations for a quarter car model can be obtained as
follows:

( ) ( ) 0b b b b w b b w am x c x x k x x f+ − + − − = (1)

( ) ( ) ( ) 0w w b w b b w b w w am x c x x k x x k x w f+ − + − + − + = (2)

From [8], the hydraulic actuator’s dynamics is given as follows:

( )1 1y
a a b w

e e e

A
f f x x u

A A A
= − − − + (3)

where Ae and Ay are the hydraulic actuator constants.
By augmenting the above equations, the following state-space equation can be

easily obtained for the hydraulically actuated active suspension system for the quarter
car model:

Figure 1 Active suspension with hydraulic actuator for a quarter car model
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(4)

It can be seen from Equation (4) that the system suffer from mismatched
condition where the input u(t) is not in the range space of the disturbance input w(t).

In general, Equation (4) can be written in a compact form as:

( ) ( ) ( ) ( ),x t Ax t Bu t f x t= + + (5)

where x(t) ∈ ℜn is the state vector, u(t) ∈ ℜm is the control input, and the continuous
function f(x,t) represents the uncertainties with the mismatched condition. The
following assumptions are taken as standard:

Assumption i: There exists a known positive constant β such that ||f(x,t)||≤ β,
where ||•|| denotes the standard Euclidean norm.

Assumption ii: The pair (A, B) is controllable and the input matrix B has full rank.

3.0 THE CONTROLLER DESIGN

In this study, the PI sliding surface defined below is used:

( ) ( ) ( ) ( )
0

= − + ×∫
t

t Cx t CA CBK dσ τ τ (6)

where C ∈ ℜmxn and K ∈ ℜmxn are constant matrices. The matrix K satisfies
λmax (A + BK) < 0 and C is chosen so that CB is nonsingular. The integral term
provides one more degree of freedom in the design than the conventional sliding
surface [9]. This will provide more flexibility in determining the sliding surface and
also reduce the steady-state error.

It is well known that if the system is able to enter the sliding mode, σ (t) = 0.
Therefore, the equivalent control, ueq(t) can thus be obtained by letting
σ. (t) = 0 [10] i.e.,
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( ) ( ) { } ( ) 0= − + × =t Cx t CA CBK tσ (7)

If the matrix C is chosen such that CB is nonsingular, this yields:

( ) ( ) ( ) ( )1 ,equ t Kx t CB Cf x t−= − (8)

Substituting Equation (8) into system (5) gives the equivalent dynamic equation of
the system in sliding mode as:

( ) ( ) ( ) ( ){ } ( )1 ,−= + × + −nx t A BK t I B CB C f x t (9)

Theorem 1: If ( ) 1,F x t β≤  where ( ) 1
1 nI B CB Cβ β−= −  and ( ), =F x t

( ){ } ( )1 ,−−nI B CB C f x t , the uncertain system in Equation (6) is boundedly stable

on the sliding surface σ(t) = 0

Proof of Theorem 1: For simplicity, we let

( )A A BK= + (10)

( ) ( ){ } ( )1, ,nF x t I B CB C f x t−= − (11)

and rewrite Equation (9) as

( ) ( ) ( ),x t Ax t F x t= + (12)

Let the Lyapunov function candidate for the system is chosen as

( ) ( ) ( )TV t x t Px t= (13)

Taking the derivative of V(t) and substituting Equation (9) into it, gives

( ) ( )[ ] ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, ,

( ) , ,

T T T T

T T T T

V t x t A P PA x t F x t Px t x t PF x t

x t Qx t F x t Px t x t PF x t

= + + +

= − + +
(14)

where P is the solution of TA P PA Q+ = −  for a given positive definite symmetric

matrix Q. It can be shown that Equation (14) can be reduced to:

( ) ( ) ( ) ( )2
min 12λ β= − +V T Q x t P x t (15)
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Since ( )min 0Qλ > , consequently ( ) 0V t <  for all t and ( )cx B η∈ , where ( )cB η
is the complement of the closed ball ( )B η , centered at x = 0 with radius

( )= 1

min

2 P
Q

βη λ . Hence, the system (5) is uniformly ultimately bounded.

Remark 2 : For the system with uncertainties satisfying the matching condition, i.e,
rank[B|f(x, t)] = rank[B], then Equation (9) can be reduced to ( ) ( )= +x t A BK

( )[ ]11× t . Thus asymptotic stability of the system during sliding mode is assured.
The control scheme that drives the state trajectories of the system in Equation (5)

onto the sliding surface σ (t) = 0 and the system remains in it thereafter is now being
designed. For the uncertain system in Equation (5) satisfying assumptions (i) and (ii),
the following control law is proposed:

( ) ( ) ( ) ( ) ( )
( )

( )
1 1,

t
u t Kx t CB Cf x t CB

t
σρ

σ δ
− −= − −

+ (16)

where K is the vector of closed loop gains, ρ is the sliding gain, and δ  is the boundary
layer thickness which is selected to reduce the chattering problem.

Very small value of the boundary layer thickness may cause a very large control
input, consequently, the control input does not have the ability to reject the chattering
[12]. On the contrary, if the boundary layer thickness is selected as a large number,
chattering can be reduced, however, the system dynamics may become unstable
because of a wide boundary layer. Therefore, the boundary layer should be selected
very carefully based on the system characteristics.

The state trajectories that are driven by the above controller will slide on the
designed sliding surface if the reaching condition ( ) ( ) 0t tσ σ <  is satisfied. To
evaluate the reaching condition, we express,

( ) ( ) ( ) ( ) ( ) ( )[ ],t t t CBu t Cf x t CBKx tσ σ σ= + − (17)

Substituting Equation (16) into Equation (17), gives:

( ) ( ) ( )
( )

( )
t

t t t
t

σσ σ σ ρ
σ δ

 = − + 
(18)

Equation (18) shows that the hitting condition of the sliding surface (6) is satisfied
if 0ρ > .
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4.0 SIMULATIONS AND DISCUSSION

The mathematical model of the system as defined in Equation (5) and the proposed
PI sliding mode controller (PISMC) in Equation (16) were simulated on computer.
Effect of varying the boundary layer thickness in Equation (16) was also simulated.
Extensive simulations have been performed in [14]. Numerical values for the model
parameters are taken from [8], and tabulated in Table 1.

Figure 2 The road disturbance is represented by a bump
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The following road profile w(t) is used in the simulation:

( ) ( )− ≤ ≤
= 



1 cos 8 , 1.25 sec 1.5 sec

0, otherwise

a t t
w t

π

Table 1 Active suspension parameters

Parameter Symbol Value Units

Mass of car body mb 290 kg

Mass of car wheel mw 59 kg

Stiffness of the car body spring kb 16812 N/m

Stiffness of car tyre kw 190000 N/m

Damping constant cb 1000 Ns/m
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a denote the bump amplitude where a = 11 cm is used.
The road profile w(t) is shown in Figure 2. This type of road profile has been used

by [4, 13] in their studies. For the PISMC, we utilize the pole placement method to
determine the value of K such that λ(A + BK) = {–50, –100, –110, –120, –500}. This
yields K = [–1.65 × 108, –1.88 × 107, –3.34 × 109, 1.08 × 109, –970.35]. In this
simulation, the following values are selected for the respective controller parameters:
C = [3 2 5 10 30], ρ = 10, δ = 1 × 10–2, Ay = 15, and Ae = 1.13. Effects of the
boundary layer thickness are shown by using δ = 1 × 10–2 and δ = 1 × 104.

In order to fulfill the objective of designing the active suspension system, i.e. to
increase the ride comfort and road handling, there are two parameters to be observed
in the simulations. The two parameters are the car body acceleration and wheel
deflection. Figure 3(a) shows the suspension travel under the active suspension and

Figure 3 Performance of passive and active suspension: (a) Suspension travel, (b) Wheel deflection,
(c) Body acceleration
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passive suspension systems for comparison purposes. The result shows that the
oscillation of the suspension travel is very much reduced as compared to the passive
suspension system.

Moreover, the wheel deflection as shown in Figure 3(b) is also smaller using the
proposed controller. Figure 3(c) illustrates clearly how the PISMC can effectively
absorb the vehicle vibration in comparison to the passive system. The body
acceleration using the PISMC system is reduced significantly, which guarantees better
ride comfort. Figures 4(a), 5(a), and 6(a) show chattering caused by the small value of
boundary layer thickness in the suspension travel, wheel deflection and body

Figure 4 Performance of suspension travel with: (a) Chattering ( δ = 1 × 10–2), (b) No chattering
(δ = 1 × 104 )

(a) (b)

Figure 5 Performance of wheel deflection with: (a) Chattering ( δ = 1 × 10–2), (b) No chattering
(δ = 1 × 104)
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acceleration, respectively. When the boundary layer thickness was large, the chattering
is significantly reduced as shown in Figures 4(b), 5(b), and 6(b). Figures 7(a) and (b)
show that a small value of boundary layer thickness has generated a very large
control input compared to a large value of boundary layer thickness. Therefore, a
large value of boundary layer thickness can eliminate chattering and hence helps
eliminate the unnecessary vibration in the system. Thus, it is proven that the active
suspension system with the PISMC improves the ride comfort while retaining the
road handling characteristics, as compared to the passive suspension system.

Figure 7 Control input with: (a) Chattering ( δ = 1 × 10–2), (b) No chattering (δ = 1 × 104 )

Figure 6 Performance of body acceleration with: (a) Chattering ( δ = 1 × 10–2), (b) No chattering
(δ = 1 × 104 )
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5.0 CONCLUSION

This paper presents a methodology to design a controller for an active suspension
system integrated with hydraulic dynamics that is based on variable structure control
theory, which is capable of satisfying all the pre-assigned design requirements
within the actuators limitation. A detailed study of the proportional integral sliding
mode control algorithm is presented. The boundary layer thickness is varied to
observe the chattering effects in the nonlinear part of the proposed controller. The
performance characteristics of the active suspension system is evaluated and then
compared to the passive suspension system through computer simulation. The result
shows that the use of the proposed proportional integral sliding mode control
technique proved to be effective in controlling vehicle vibrations and achieve better
performance than the passive suspension system. Moreover, small value of boundary
layer thickness is capable to eliminate chattering in the proportional integral sliding
mode controller.

ACKNOWLEDGEMENTS

The authors wish to express sincere gratitude to Professor T. Yoshimura from
Tokushima University for his contributions in this research.

REFERENCES
[1] Esmailzadeh, E., and H. D. Taghirad. 1996. Active Vehicle Suspensions with Optimal State-feedback

Control. Journal of Mechanical Science. 200(4): 1-18.
[2] Huang, S. J., and H. C. Chao. 2000. Fuzzy Logic Controller for Active Suspension System. Proc. Instn.

Mech. Engrs. 214(D): 1-12.
[3] Alleyne, A., and J. K. Hedrick. 1995. Nonlinear Adaptive Control of Active Suspensions. IEEE Trans. on

Control System Technology. 3: 94-101.
[4] Lin, J. S., and I. Kanellakopoulos. 1997. Nonlinear Design of Active Suspension. IEEE Control System

Magazine. 17: 45-59.
[5] Fialho, I., and G. J. Balas. 2002. Road Adaptive Active Suspension Design Using Linear Parameter-

varying Gain-scheduling. IEEE Transaction on Control Systems Technology. 10(1): 43-54.
[6] Yoshimura, Y., K. Nakaminami, M. Kurimoto, and J. Hino. 1999. Active Suspension of Passengers Cars

Using Linear and Fuzzy-logic Controls. Control Engineering Practice. 7: 41-47.
[7] Appleyard, M., and P. E. Wellstead. 1995. Active Suspension: Some Background. Proc. Control Theory

Applications. 142: 123-128.
[8] Yoshimura, T., A. Kume, M. Kurimoto, and J. Hino. 2001. Construction of an Active Suspension System

of a Quarter Car Model Using the Concept of Sliding Mode Control. Journal of Sound and Vibration. 239:
187-199.

[9] Cao, W. J., and J. X. Xu. 2001. Nonlinear Integral-type Sliding Surface for Both Matched and Unmatched
Uncertain Systems. In Proceedings of the American Control Conference. 4369-4374.

[10] Itkis, U. 1976. Control System of Variable Structure. New York: Wiley.
[11] Edward, C., and S. Spurgeon. 1988. Sliding Mode Control: Theory and Applications. London: Taylor and

Francis.

JTjun44D[3]CRC.pmd 04/24/2007, 14:4647



YAHAYA MD. SAM & JOHARI HALIM SHAH OSMAN48

[12] Lee, J. H., P. U. Allire, G. Tao, J. A. Decker, and X. Zhang. 2003. Experiment Study of Sliding Mode
Control for a Benchmark Magnetic Bearing System and Artificial Heart Pump Suspension. IEEE Trans.
on Control System Technology. 11: 128-138.

[13] D’Amato, F.  J., and D. E. Viasallo. 2000. Fuzzy Control for Active Suspensions. Mechatronics. 10: 897-920.
[14] Yahaya, M. S. 2004. Modeling and Control of Active Suspension System Using Proportional Integral

Sliding Mode Control. Ph. D. Thesis. UTM.

JTjun44D[3]CRC.pmd 04/24/2007, 14:4648


