

3D ANALYTICAL TOOLS FOR TERRAIN SPATIAL OBJECTS

Alias Abdul Rahman and Chen Tet Khuan

Center for Geographic Information and Analysis

&
Department of Geoinformatics

Faculty of Geoinformation Science and Engineering
Universiti Teknologi Malaysia

81310 UTM Skudai, Johor
Malaysia

alias@fksg.utm.my

KEY WORDS: GIS, 3D datasets, Buffering Algorithms, Interface

ABSTRACT:

Geographic information system inevitably moves towards handling and manipulating not just two-dimensional data but more than that
e.g., three-dimensional (3D) and four-dimensional (4D) spatial objects. At this moment very few GIS systems offer real 3D analytical
operations or analyses with the exception of visualization. Buffering is one of the analytical tools that should be available in any 3D GIS
system. This paper discusses 3D buffering aspect in details such as the mathematics, the geometry as well as the development of user
interface of the 3D buffering. We tested our buffering approach by using photogrammetrically captured datasets. Finally, the paper
provides outlook to the proposed work towards the development of advanced 3D analytical solutions in 3D GIS domain.

1. INTRODUCTION

Geographic information system (GIS) deals with modeling,
manipulation, management, analysis, and representation of
geographically referenced data. GIS tools and applications are
not only for GIS specialist, but also for those who could
manipulate spatial data and make use of the generated
information that relates to locations (with attributes data).
Spatial data contains positional values and the attributes
describe what the data is and eventually the information of
objects and their surrounding through spatial analysis
operations. We would not be able to understand the objects
fully if the analytical operations were not done in 3D space as
we perceived in the real world (Abdul-Rahman et al, 2002) and
Zlatanova (2000). Current GIS system faces some difficulties
in handling certain types of datasets e.g. 3D dataset as most GIS
users dealt with in 3D applications for example in
environmental monitoring, urban mapping, city navigation,
geological exploration, etc. need a system that able to do some
3D analysis or analytical operations. The problem of doing
such buffering operation in 3D motivates us to do some
experiments in this 3D analytical operation. In order to have a
3D GIS system that handles real-world spatial objects, the
system should not be constrained by single XY plane only.
Assuming 3D analysis is one of the core components of the 3D
GIS (Zlatanova et al, 2002), an investigation towards 3D
buffering as a framework for 3D analytical operations for such
system is inevitable.

This paper discusses the analytical tools, the buffering
algorithms (for points, line, and surface) in section 2.1, section
2.1, and section 2.3 respectively and forms major discussions.
Preliminary results of the algorithms are presented at the end of
each section. Study area and the interface development are
briefly described in section 3 and 4. Finally, the conclusions in
section 5.

2. 3D ANALYTICAL TOOLS

We have developed 3D analytical tools for terrain spatial
objects. The tools are point buffering, line buffering, and
polygon buffering in 3D space and the results could be
visualized by using commercial software like ArcView. The
paper presents each algorithm in detailed and demonstrates
some visual output from the experiment.

2.1 Point Buffering

Point can be defined as single coordinate triplets of x, y, z and
can be used to represent point features like boreholes, control
towers, etc. (Raper, 2000). Point objects or features such as
survey ground control points, towers along a power line, spot
heights, other features such as ponds, lakes, underground
objects such as ore bodies, rocks, etc. Typical analytical GIS
operation that could be done on these objects is proximity
analysis like buffering. This analytical operation could be done
in 3D and would provide better understanding of the
phenomena. Our buffering algorithm for point features is based
on sphere geometry, i.e. a point of x, y, z coordinates gradually
evolved into a sphere shape and its size depends on the distance
from the centre of a point object. The following figure (Figure
1) shows the basic geometry of the generated surface around a
point object.

Figure 1: A sphere from a point.

Origin

Circle
Polar

The technique to generate a sphere begins with the creation of
polygon surface as implemented by ESRI, see (ESRI, 1998) that
is the implementation of the PolygonZ to create a solid
buffering object (sphere). PolygonZ is a one of the spatial
features appears within the ESRIís shapefile library. Polygon
represents the plane surface, whereas the Z ensures the Polygon
occupied in the three-dimensional space. We have implemented
the PolygonZ to create surfaces due to the lack of curve surface
appears within that shapefile library. Surface is created by
joining all related polygon surfaces. Figure 2 shows the
construction of circles and a sphere for the buffering.

Figure 2: Method to create circles.

The algorithm for point buffering:

The algorithm begins with the reading of point datasets. The
total number of input datasets will then be calculated
simultaneously. A point buffer model is based on a sphere. To
do that, a set of circle needs to be created (see Fig. 2). Point sets
are generated for each upper and lower circle. Later, these
datasets are used to create surface for point buffer model.

The code starts to compute the array of Z-coordinate and its
buffer length (parameter) for each upper and lower circle. The
code generates circle by using the array of Z-coordinate,
respective to the buffer length. All the datasets for upper and
lower circles will be recorded into a file that corresponds to the
format for surface generation. The file will be revised by
another code functions to generate shapefile (*.shp).

The algorithm could be written in C++ style as below:

{
 variables declaration;

 while (if data != EOF)
 {

while (read data file != END)
{

read input data: ID, X, Y, Z, Buffer Length;
calculate the amount of data: n++;

}

for (k=0;k<n-1;k++)
{

Compute the array of Z value;
Compute the array of buffer length
correspond to the Z value;

for (i=0;i<360;i++)
{

compute the circle using processed buffer
length;

 }
 compute the upper and lower polar points;

for (i=0;i<360;i++)
{
print to file;
}

for (i=0;i<360;i++)
{

print results to file
}

}

open processed data file;
read data from the file;
call the *.dbf routine and generate *.dbf file;
call the *.shp routine and generate *.shp file;
call the *.shx routine and generate *.shx file;

 }
}

Figure 3 illustrates the generated spheres that represent the
buffering surfaces of point objects.

Figure 3: 3D buffering of point objects

2.2 Line Buffering

In GIS a line or arc is represented by two end nodes. de By
(2000) noted that line data could be used to represent one-
dimensional (1-D) objects such roads, railroads, canal, rivers
and power lines. The straight part of a line between two
successive vertices (internal nodes) or end nodes are called line
segments. The buffering of a line results a cylinder, see Figure
4.

Figure 4: Method to create line buffer

x

z

y

x

z

y

x
y

x

z

y

Polar

Xo,Yo,Zo Main circle

Buffering
Object

The algorithm for line buffering:

Line buffer model consists of sphere (point buffer, see section
2.1). First, create a cylinder. The buffer model will be joint
together with spheres that form a complete line buffer model.

The algorithm begins with the reading of line datasets and the
total number of input datasets will be calculated simultaneously.
A cylinder represents a line buffer model. Joining two circles
from a line segment (start node and end node) creates this
cylinder (see Fig. 4 (i)). The circles should be perpendicular to
each line segment in three-dimensional space (see Fig.4 (ii)).
There are x-axis, y-axis, and, z-axis rotations.

All the circles datasets are recorded into a file that follows the
format to create a line buffer. With the same implementation
from the section 2.1, points buffer are also created for each
node. With the combination of both line and point buffering
models, the internal segment of the buffer object needs to be
removed. Later, all the datasets will be recorded into file.

The file will then be revised by another code functions to
generate shapefile (*.shp). Finally, all the allocated memory of
each variable will be freed.

The algorithm that implements the mathematics for line
buffering is given below:

{
 variables declaration;

 while (if data != EOF)
 {

while (read data file != END)
{

read input data: ID, X, Y, Z, Buffer Length;
calculate the amount of data: n++;

}

 (Generate line buffering dataset)

 for (k=0;k<n-1;k++)
 {
 Calculate the rotation angle for x-axis;
 Calculate the rotation angle for y-axis;
 Calculate the rotation angle for z-axis;

 for (a=0;a<360;)
 {
 compute the entire dataset for a circle;
 rotate the circle towards the x-axis;
 rotate the circle towards the y-axis;

 Determine the partial rotation of z-axis;

Substract the partial rotation with the
rotation angleof z-axis;

 }
 }

 for (k=0;k<n-1;k++)
 {
 for (a=0;a<360;)
 {
 compute the entire dataset for a circle;
 rotate the circle towards the x-axis;
 rotate the circle towards the y-axis;
 rotate the circle towards the z-axis;

 }
 }

 for (k=0;k<n-1;k++)
 {
 for (a=0;a<360;)
 {
 print the entire dataset into file;
 }
 }

extract all the point from line data with no
redundancy;

(Generate point buffering dataset)
for (k=0;k<n-1;k++)
{

Compute the array of Z value;
Compute the array of buffer length
correspond to the Z value;

for (i=0;i<360;i++)
{
compute the circle using processed buffer
length;

 }
 compute the upper and lower polar points;

compute the maximum distance to remove
the internal segment;

for (i=0;i<360;i++)
{

if (buffering datasets > maximum
distance)

 {
 print to file;
 }
}

for (i=0;i<360;i++)
{

if (buffering datasets > maximum
distance)

 {
 print the results to file;
 }
}

}

open processed data file;
read data from the file;
call the *.dbf routine and generate *.dbf file;
call the *.shp routine and generate *.shp file;
call the *.shx routine and generate *.shx file;

}

Figure 5: 3D buffering of line objects.

Buffering
Object

2.3 Surface Buffering

A polygon could be represented by several closed arcs.
Buffering of a polygon surface in 3D space involves steps
mentioned in the point, and line techniques, see Figure 6.

Figure 6: Combination of point and arcs

The algorithm for surface buffering:

We could describe the algorithm for the surface buffering as
below.

Surface buffer model is a combination of box (surface buffer
itself), cylinder (line buffer, see section 2.2), and sphere (point
buffer, see section 2.1). This section will focus on the surface
buffer model. After the model is done, it combines with the
other buffer models (lines and points) to become a complete
surface buffer model.

The algorithm starts with the reading of the surface datasets and
the total number of input datasets will be calculated
simultaneously. In order to create a box that represents a surface
buffering object, both upper and lower polygon need to be
constructed. The vector cross product is implemented to
generate points that form the upper and lower surface.

The same implementation from the section 2.1, and 2.2 are used
to create points and lines buffer. With the combination of
points, lines and polygon buffering models, the internal segment
of the buffer object needs to be removed. The processed
datasets will be recorded into file.

The file will be revised by another code functions to generate
shapefile (*.shp). Finally, all the allocated memory of each
variable will be freed.

We could describe the algorithm for the surface buffering as
below.

{
 variables declaration;

 while (if data != EOF)
 {

while (read data file != END)
{

read input data: ID, X, Y, Z, Buffer Length;
calculate the amount of data: n++;

}

 Calculate the Vector for X (point A and B);
 Calculate the Vector for Y (point A and B);
 Calculate the Vector for Z (point A and B);
 Calculate the determinant for upper-plane;
 Calculate the Vector length for upper-plane;
 Calculate the Normalized Vector for upper-plane;

 Calculate the Vector for X (point A and B);
 Calculate the Vector for Y (point A and B);
 Calculate the Vector for Z (point A and B);
 Calculate the determinant for lower-plane;
 Calculate the Vector length for lower-plane;
 Calculate the Normalized Vector for lower-plane;

 for(i=0;i<n;i++)
 {
 compute the upper and lower polygon for buffering;
 print to file;
 }

 Extract the entire line data from polygon with no redundancy;
 (Generate line buffering dataset)

 for (k=0;k<n-1;k++)
 {
 Calculate the rotation angle for x-axis;
 Calculate the rotation angle for y-axis;
 Calculate the rotation angle for z-axis;

 for (a=0;a<360;)
 {
 compute the entire dataset for a circle;
 rotate the circle towards the x-axis;
 rotate the circle towards the y-axis;

 Determine the partial rotation of z-axis;

Substract the partial rotation with the
rotation angleof z-axis;

 }
 }

 for (k=0;k<n-1;k++)
 {
 for (a=0;a<360;)
 {
 compute the entire dataset for a circle;
 rotate the circle towards the x-axis;
 rotate the circle towards the y-axis;
 rotate the circle towards the z-axis;
 }
 }

 for (k=0;k<n-1;k++)
 {
 for (a=0;a<360;)
 {
 print the entire dataset into file;
 }
 }

extract all the point from line data with no
redundancy;

(Generate point buffering dataset)
for (k=0;k<n-1;k++)
{

Compute the array of Z value;
Compute the array of buffer length
correspond to the Z value;

for (i=0;i<360;i++)
{
compute the circle using processed buffer
length;

 }
 compute the upper and lower polar points;

View

Oy

z

xMain

compute the maximum distance to remove
the internal segment;

for (i=0;i<360;i++)
{

if (buffering datasets > maximum
distance)

 {
 print to file;
 }
}

for (i=0;i<360;i++)
{

if (buffering datasets > maximum
distance)

 {
 print the results to file;
 }
}

}

open processed data file;
read data from the file;
call the *.dbf routine and generate *.dbf file;
call the *.shp routine and generate *.shp file;
call the *.shx routine and generate *.shx file;

}

The following figure (Figure 7) shows the result of the 3D
buffering of polygon or surface objects.

3. STUDY AREA

The algorithms were tested by using real datasets captured using
Leica-Helava photogrammetric system. The area covers an
entire Universiti Teknologi Malaysia campus in Skudai, Johor.
In this dataset, it contains three major data types, they are spot
heights (point object), roads (linear objects), and terrain
surfaces (polygon objects). Figure 8 shows the location of the
area.

Figure 8: The datasets (UTM campus)

4. THE SOFTWARE AND INTERFACE
DEVELOPMENT

For the tools and the interface development, we used Borland
C++ Builder (BCB) - 3D buffering tool v1.0. The interface
represents a menu for the buffering tools and it is quite user
friendly that has simple menu for users to interact with.

In this experiment, three modules have been developed ñ point,
line, and polygon buffering and three components from the
compiler were utilized; Image, Label, and Button. Image is used
as a button to access into another sections, so as to the Label,
however Label give more information to users because an
appropriate name is given to the Image. Users can put picture to
represent the Image component. Both of them are clickable ñ
enable users to proceed into next process. The final component
used into the main menu is the ì Close Allî Button. This button
closes the entire interface and stops all the process within the
software modules. The following figure illustrates the design of
the main form menu of the 3D Buffering Tools v1.0.

Figure 9: The interface design and development.

5. CONCLUSIONS

The initial investigation of the problems show that the
techniques work for simple object primitives like point, lines,
and surfaces (polygons). The buffering technique could be
extended for greater usefulness i.e. incorporates with
topological information of the primitives. We have also
implemented a set of tools for the 3D buffering and it is in the
form of software module developed by using Borland C++
Builder, see Figure 10 for the user interface.

Buffering
Object

Figure 10: The 3D buffering tools user interface

In conclusion, this paper investigated the buffering in 3D space.
The developed method for 3D buffering has some potential
applications particularly in 3D GIS e.g. 3D proximity analysis
of terrain spatial objects. The method also could be applied for
underground and subsurface analysis. Geometrically, the
buffering methods work. However, several issues have not been
addressed and these could be done in future especially issues in
the aspect of 3D topology so that a more complete 3D analysis
for terrain spatial objects could be achieved.

ACKNOWLEDGMENT

We would like to thank the Ministry of Science, Technology
and Environment (MOSTE), Malaysia for the NSF grant and
supports.

REFERENCES

Abdul-Rahman, A., Zlatanova, S., and Shi, W. (2002).
Topology for 3D spatial objects. Proc. of International
Symposium and Exhibition on Geoinformation 2002, Kuala
Lumpur, 12-14 October (CD-ROM).

de By, R. A. (2000). Principles of geographic information
systems. ITC, The Netherlands, 230 p.

ESRI (1998) White paper on polygonZ (http://www.esri.com)

Raper, J. (2000). Multidimensional geographic information
science. Taylor and Francis, 300 p.

Zlatanova, S., Abdul-Rahman, A., and Pilouk, M. (2002).
Present status of 3D GIS. GIM International, Vol. 16, No. 2, pp.
41-43.

Zlatanova, S. (2000). 3D GIS for urban development. PhD
thesis, ITC, The Netherlands.

