
ARM7 Processor Simulator with Graphical User Interface 
 

Khaw Boon Chai*, Muhammad Mun'im bin Ahmad Zabidi ** 
Department of Microelectronics and Computer Engineering 

Universiti Teknologi Malaysia 
81310 UTM Skudai 

Johor, Malaysia 
boonchai83@gmail.com, munim@utm.my** 

 
 

Abstract 
The paper describes an ARM7 processor simulator 

with graphicak user interface (GUI) which is easy and 
suitable for the beginner. This software is written in Java 
language and the graphic user interface is written using 
Eclipse Standard Widget Toolkit (SWT). GNU toolchain 
is using as the compiler and assembler for this simulator 
to produce binary machine code for ARM. The simulator 
decodes the 32-bit ARM machine instructions and 
simulate the  execution of every instruction. 
 
1.  Introduction 

ARM is a 32-bit processor architecture that is widely 
used in a number of embedded designs. Because of its 
power saving features, this architecture is dominant in the 
mobile electronics market, where low power consumption 
is a critical design goal [1].  

ARM processors come in several variations. The 
simplest version is the ARM7 which implement Version 4 
of the ARM instruction set. ARM7 is also the version 
with the lowest power consumption and widely used in 
cost-sensitive applications. 

To create software for the ARM, developers use 
commercially available toolchain or the open-source 
GNU toolchain. To run ARM software before hardware is 
available, simulators such as GDB (GNU Debugger), 
SimIt-ARM, and Green Hills Multi for ARM. However, 
these simulators were designed for professionals and too 
complex for educational use. 

The objective project is to develop a simulator to 
simulate the ARM7 processor which is suitable for 
beginner, so it can ease the learning process for them. 

 
2. ARM Architecture 

ARM is a typical Reduced Instruction Set Computer 
(RISC) with the following extra features: 

 
 usage of both the Arithmetic Logic Unit and shifter 

in every data-processing instruction 
 auto-increment and auto-decrement addressing 

modes  
 load and store multiple instructions 
 conditional execution of all instructions 

 
ARM has 31 general-purpose 32-bit registers; at any 

one time only 16 of these registers are visible. The other 
registers are used to speed up exception processing. Two 
of the 16 visible registers have special roles which are 
Register 14 (Link Register or LR) and Register 15 
(Program Counter or PC). The remaining 14 registers 
have no special hardware purpose. Their uses are defined 
purely by software. Software normally uses Register 13 
as a Stack Pointer (SP). Current operating processor 
status is stored in Current Program Status Register 
(CPSR). Each exception mode also has a Saved Program 
Status Register (SPSR) which holds the CPSR 
immediately before the exception occurred. CPSR and 
SPSR are accessed with special instructions. Information 
that is held in the status register are 4 bits of condition 
code flags (Negative, Zero, Carry and Overflow), 2 
interrupt disable bits, 5 bits current processor mode and 1 
bit of ARM or Thumb instruction set [2]. 
 
3. Simulator Design 

This simulator is designed as multi-tabbed software; 
the user may open many files with simulator program 
running. It is also designed as multi-threaded program, so 
it can run many simulations simultaneously. 

There are 3 main Java classes developed for this 
simulator. They are the GUI class, tabbedComponent 
class, and ARM7Core class. 

GUI class is the main class for this simulator. Its 
function is to create and display the main graphic user 
interface for the simulator.  

The tabbedComponent class creates the tabs when the 
user opens a file. Depending on the type of file opened it 
creates a simulation tab or editor tab. If a user open .bin 
(binary) file, a “simulation tab” will be created. If a user 
opens a .c (C language) file, a .s (ARM assembly 
language) file or other filetypes, an “editor tab” will be 
created. Refer to Figures 1 and 2 for screenshots. 

Compilation functions are only available to the editor 
tab. When the user click on a button to start compiler, the 
software activates the GNU toolchain located in the 
system path. Simulation of ARM7 instruction execution 
functions is only available to the simulation tab. 



 
Figure 1: Editor Tab 

 

 
Figure 2: Simulator Tab 

 
4.  Instruction Simulation 

The simulation process is handled by the ARM7Core 
class. Its functions are to simulate the execuiton of ARM7 
machine instructions and store the machine state. Memory 
is declared as an 8-bit wide array, while registers are 
declared as a 64-bit wide array. Each instruction is 
simulated by a separate function. 

 
ARM7Core instruction executing processes are: 
 

 fetch 32-bits instruction from memory according to 
the address in Register 15 (Program Counter) 

 decode fetched instruction and determine which 
function to call 

 increment the Program Counter by 4 
 
Every simulator tab will instantiate an ARM7Core object 
and  the GUI is updated after executing each instruction. 

Each instruction of ARM is a 32-bit binary code. Bits 
28-31 is always the condition field. This field determines 
if the instruction is to be executed depending on the value 

of N, Z, C and V flags in the CPSR. If the flags satisfy the 
condition specified in this field, the instruction will be 
executed. Otherwise, the instruction acts as a NOP and 
execution advances to the next instruction. 

The remaining bits represent the operation code and 
operand addressing modes. The instruction formats are 
shown in Figure 3. To efficiently decode these bits, the 
decoding strategy shown in Figures 4 and 5 is used. 
Clearly, most instructions have the bits 27-26 equal to 00 
so the decoding tree checks these two bits first. 

 

 
 

Figure 3. ARM Instruction Formats 
 

5.  Results and Future Works 
As tested, the simulator enables the beginner is edit 

ARM assembly language source files and simulates the 
machine instructions. Further work that can be done to 
include syntax-coloring editor and simulation of simple 
input/output devices. The simulator can also be extended 
into an emulator by connecting to an physical ARM board 
through serial or JTAG ports, so that ARM chips can be 
programmed directly and the software debugged from the 
same software. 
 
References 
[1] Stever Furber, ARM System-on-Chip Architecture, 

2e, Addison-Wesley, 2000. 
[2] ARM Limited, ARM Architecture Reference Manual 

(ARM DDI 0100E), 2000.     
[3] Standard Widget Toolkit. Available at 

http://www.eclipse.org/swt/. 



 
 

 
 

 
 

Figure 4: Machine Code Decode Table for Bits 27-26 = 00 Figure 5: Machine Code Decode Table for Bits 27-26 =  01, 10 
and 11 

 


