ARMY Processor Simulator with Graphical User Interface

Khaw Boon Chai*, Muhammad Mun'im bin Ahmad Zabidi **
Department of Microelectronics and Computer Engineering
Universiti Teknologi Malaysia
81310 UTM Skudai
Johor, Malaysia
boonchai83@gmail.com, munim@utm.my**

Abstract

The paper describes an ARM7 processor simulator
with graphicak user interface (GUI) which is easy and
suitable for the beginner. This software is written in Java
language and the graphic user interface is written using
Eclipse Standard Widget Toolkit (SWT). GNU toolchain
is using as the compiler and assembler for this simulator
to produce binary machine code for ARM. The simulator
decodes the 32-bit ARM machine instructions and
simulate the execution of every instruction.

1. Introduction

ARM is a 32-bit processor architecture that is widely
used in a number of embedded designs. Because of its
power saving features, this architecture is dominant in the
mobile electronics market, where low power consumption
is a critical design goal [1].

ARM processors come in several variations. The
simplest version is the ARM7 which implement Version 4
of the ARM instruction set. ARM7 is also the version
with the lowest power consumption and widely used in
cost-sensitive applications.

To create software for the ARM, developers use
commercially available toolchain or the open-source
GNU toolchain. To run ARM software before hardware is
available, simulators such as GDB (GNU Debugger),
Simlt-ARM, and Green Hills Multi for ARM. However,
these simulators were designed for professionals and too
complex for educational use.

The objective project is to develop a simulator to
simulate the ARMT7 processor which is suitable for
beginner, so it can ease the learning process for them.

2. ARM Architecture
ARM is a typical Reduced Instruction Set Computer
(RISC) with the following extra features:

= usage of both the Arithmetic Logic Unit and shifter
in every data-processing instruction

= auto-increment and auto-decrement
modes

= Joad and store multiple instructions

= conditional execution of all instructions

addressing

ARM has 31 general-purpose 32-bit registers; at any
one time only 16 of these registers are visible. The other
registers are used to speed up exception processing. Two
of the 16 visible registers have special roles which are
Register 14 (Link Register or LR) and Register 15
(Program Counter or PC). The remaining 14 registers
have no special hardware purpose. Their uses are defined
purely by software. Software normally uses Register 13
as a Stack Pointer (SP). Current operating processor
status is stored in Current Program Status Register
(CPSR). Each exception mode also has a Saved Program
Status Register (SPSR) which holds the CPSR
immediately before the exception occurred. CPSR and
SPSR are accessed with special instructions. Information
that is held in the status register are 4 bits of condition
code flags (Negative, Zero, Carry and Overflow), 2
interrupt disable bits, 5 bits current processor mode and 1
bit of ARM or Thumb instruction set [2].

3. Simulator Design

This simulator is designed as multi-tabbed software;
the user may open many files with simulator program
running. It is also designed as multi-threaded program, so
it can run many simulations simultaneously.

There are 3 main Java classes developed for this
simulator. They are the GUI class, tabbedComponent
class, and ARM7Core class.

GUI class is the main class for this simulator. Its
function is to create and display the main graphic user
interface for the simulator.

The tabbedComponent class creates the tabs when the
user opens a file. Depending on the type of file opened it
creates a simulation tab or editor tab. If a user open .bin
(binary) file, a “simulation tab™ will be created. If a user
opens a .c (C language) file, a .s (ARM assembly
language) file or other filetypes, an “editor tab” will be
created. Refer to Figures 1 and 2 for screenshots.

Compilation functions are only available to the editor
tab. When the user click on a button to start compiler, the
software activates the GNU toolchain located in the
system path. Simulation of ARM7 instruction execution
functions is only available to the simulation tab.

B ARM7 Simulator; g@]@'

File Edit Compile Help

{ Open Save Compile

as 3
main: mov ip, sp

strfd sp!, 4Fp, ip, Ir, pc}

subfp, ip, #4

subsp, sp, #8

mov 13, #1

sty r3, [fp, #-20]

mov 3, #1

str 13, [fp, #-16]

subsp, fp, #12

ldrfd sp, {fp, sp, pc}

testl.s | a.bin | testl.bin

Figure 1: Editor Tab

®
w @

Figure 2: Simulator Tab

4. Instruction Simulation

The simulation process is handled by the ARM7Core
class. Its functions are to simulate the execuiton of ARM7
machine instructions and store the machine state. Memory
is declared as an 8-bit wide array, while registers are
declared as a 64-bit wide array. Each instruction is
simulated by a separate function.

ARM7Core instruction executing processes are:

= fetch 32-bits instruction from memory according to
the address in Register 15 (Program Counter)

= decode fetched instruction and determine which
function to call

= increment the Program Counter by 4

Every simulator tab will instantiate an ARM7Core object
and the GUI is updated after executing each instruction.
Each instruction of ARM is a 32-bit binary code. Bits
28-31 is always the condition field. This field determines
if the instruction is to be executed depending on the value

of N, Z, C and V flags in the CPSR. If the flags satisfy the
condition specified in this field, the instruction will be
executed. Otherwise, the instruction acts as a NOP and
execution advances to the next instruction.

The remaining bits represent the operation code and
operand addressing modes. The instruction formats are
shown in Figure 3. To efficiently decode these bits, the
decoding strategy shown in Figures 4 and 5 is used.
Clearly, most instructions have the bits 27-26 equal to 00
so the decoding tree checks these two bits first.

3130 2928372625 3262322212019 1817 18IS 14131210108 8 T 6 8 4 3 2 1

Data processing immediate shit | eond[1] |0 0 0| cpeose (S| Re | Rd |snmamoum it [0 R
M'“"‘“”ﬁ?ﬁ;ﬁ?ﬁ condlf] |0 0 0f1 0 x x[0fx x % % % % x x x % % x x x x[0]% xxx
Daa procensing regstershift[2) | eond[1] |0 0 0| epende (S| Fn | et | s o |shitt 1 R
M“““"*“&;"?gﬂ;z‘_ﬂ cond[t] [0 0 010 x x[0]x x % x x x x x x x x x[0|x x|1]x x xx
""“""ie“‘g:e"ﬁgfr‘g'ﬁ cond[1] |0 0 0|x x x x % % % % ¥ x x x x x x x x[1|x x|[1|% ¥ x %
Data processing immediate [2] | eond[1] |0 0 1| epesde |8 Fn | et rote ireradiate
Undefined instucton[d | cond[] |0 0 1)1 0fx [0 0fx % x x x % x x x x x x x x xx x x x x
Move immeadiale 1 slalus register cond[i] (0 0 1|1 O|R|1 O [PETY SBO rolale | immeadiake
Loadistom immedate ofest | cond[1] [0 1 o|P|ulBW|L| Rn i immadiate
Load/slore ragister offsal cond 1] (0 1 1|P|U|BW|L Rn Rd shifl amount ‘ﬂh“ a Rm
Undefined instruefion | eond[1] |0 1 1[x % X % % % % % ® % % % ¥ % % ¥ ¥ X ¥ %[1[x x x x
Undefined instrucion [4.7] [1 1 1 1[0|x X % X X X % XK X % X X X X X X X X X X X XX X X X X
Leat/siore muliple | eond[1] |1 0 0 F|U|S}H‘L| fn | register is1
Undefnedinstucton[4] [1 1 1 1)1 0 O]x x X % % X X X X X X X X X X X X X X XX X X X X
Branch and beanch with link condi] (1 0 1|L 24-bit oflssl
B change o Thombig (111 110 1[4 248t oflset
Coprocsssar loadisiors and double | cond(s] (1 1 0[P U|N|W‘L Rn chd | eo_um shit ofset
regsier yanslers 6]
Coprocessor dalapeocensing | cond[S] |1 1 1 0 epoodet | CRn cRd | gmum |posdez|n| CRm
Ceprocesser register vansters | cond[5] |1 1 1 0 [opeodet|L| CRn et _rum fopmede2|1| CRm
Sofware interupt | eomd[1] (11 1 1 i rumber
Undefinedinstuction[8] |1 1 1 11 1 1 1[x ¥ % X % % % % % X % % % X ¥ X X X X X X ¥ X X

Figure 3. ARM Instruction Formats

5. Results and Future Works

As tested, the simulator enables the beginner is edit
ARM assembly language source files and simulates the
machine instructions. Further work that can be done to
include syntax-coloring editor and simulation of simple
input/output devices. The simulator can also be extended
into an emulator by connecting to an physical ARM board
through serial or JTAG ports, so that ARM chips can be
programmed directly and the software debugged from the
same software.

References

[1] Stever Furber, ARM System-on-Chip Architecture,
2e, Addison-Wesley, 2000.

[2] ARM Limited, ARM Architecture Reference Manual
(ARM DDI 0100E), 2000.

[3] Standard Widget Toolkit. Available at
http://www.eclipse.org/swt/.

2734

0000 -»MIE2
Elze = DMIR3
Fa52423 2120
1 1000 -»M3R
F25207654
001011-»3TRH
L Elze
24232321
onooan

L25?654
01001 -=RKUL
Elze = AND

I

25TES4

0 1001-=MLA
Elsze - EOR

1 0-»3UEB

1->R3E

oo

Las7654

0 1001 -» ULIULL
Elze = ATD

oo o
—_ OO
—_

il
257654
0 1001 -=UKLAL
Elze = ADC
o1l IZI|
AATESd
0 1001 -=3MULL
Elze - 3BC

1
Las7es54
0 1001 ->SMLAL
Elze = RAC

1 on0a
25207654
00 1001-=35WP

Elze = TET

F313020 2037 2625242322 21
11100001001
M8 27 26 252423322120
ooool1o010

i

Elze -= TEQ

FA5207654

onoto0l = 3WTEB
Fad232221207

to1 101
LElze == CIWP
1 - ChN

0-=CRE

1-= KOV

0-=BIC

1 -=MVH

._.._.._.._.._.
—_———
=N =N

Figure 4: Machine Code Decode Table for Bits 27-26 = 00

01
lED

1]
22

]
I—24 21
00 =3TRET
Else -»3TR

1

Laaat
00 -=STRET
Else -=3TEE

1
|-22

0
l2421
01 -=LDRT
Else -=LDE

b
2421
0 1 -=LDRET
‘Else -» LDEB

22

0 -=3Thi2
22
o == 3T

222115
1 00 ->L0OM2
2215
11 -= LDM3
22
0 -= LD
1
313029 28
1 111->BLX
Elze -= BE

11
Lzs
1]
LED
0 -=3TC
Elze -= LDIC

1
|-24
2
0-=ChDF
ol
20
0 -=MICR

1 -=MRC
1= 3WI

Figure 5: Machine Code Decode Table for Bits 27-26 = 01, 10

and 11

