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ABSTRACT 

 

 

 

Currently integral and continuous concrete box-girder bridges are becoming 
popular system in Malaysia. The problem occurs in such system is the rigidity 
connection of column and deck will lead to potential hinge failure.  In this research, 
nonlinear seismic performance for this type of bridge was studied by applying soil – 
pile interaction and fixed base support system. The study covers numerical and 
experimental approach. The numerical approach has four steps as follows: (1) 
investigating material properties of integral prestressed concrete box-girder bridge; 
(2) modelling integral prestressed concrete boxgirder bridge by considering the 
interaction of structure, substructure and site condition; (3) studying the soil and pile 
interaction by applying bridge finite element modelling. (4) Validating experimental 
modelling with Finite element Modelling. As for the result validation, the four steps 
in the experimental approach involved: (1) scaling the integral concrete box-girder 
bridge by implementing Buckingham PI theorem; (2) setting the shaking table, 
shaker controller, LVDT, strain gauge and accelerometer; (3) analyzing finite 
element modelling of the scaled integral concrete box-girder bridge and (4) 
Validating the results by comparing the acceleration, displacement of structure 
response from instrument and finite element modelling. In this study, it was found 
that the behaviour and response of integral prestressed boxgirder bridge under 
seismic loading do not reach the yield level for low intensity earthquake. However, 
for moderate and high seismic intensity, the bridge response reached the yield level 
but still was under immediate occupancy level. Furthermore, the effect of soil-pile 
interaction for integral prestressed concrete box-girder bridge showed that the total 
displacement at the top of pier is 80% higher than fixed base support under 
longitudinal earthquake direction, while 87% higher under transversal direction. By 
conducting experimental shaking table test for integral concrete boxgirder bridge 
model, the seismic bridge response from finite element modelling (numerical 
approach) presented the approximate behaviour of integral concrete boxgirder bridge 
under earthquake loading. The findings in this research suggest that seismic loading 
effects should be considered in the design of integral prestressed concrete box-girder 
bridge due to higher displacement value compared to the one of the thermal loading.  
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ABSTRAK 

 

 

 

Dewasa ini, jambatan integral dan bersambung gegalang kotak konkrit 
prategang menjadi pilihan di Malaysia. Namun, kegagalan engsel ekoran sambungan 
kaku pada tiang dan lantai jambatan sering terhasil. Dalam kajian ini, perilaku 
seismik tidak linear jambatan integral gegalang kotak konkrit prategang diselidiki 
dengan mengambil kira keadaan tiang bawah tanah and penyokong dasar tegar. 
Kajian ini meliputi pendekatan numerikal dan  eksperimental. Empat langkah yang 
digunakan dalam pendekatan numerikal :(1)  Menyelidik sifat bahan dari jambatan 
integral gegalang kotak konkrit prategang; (2)  Memodelkan jambatan integral 
gegalang kotak konkrit prategang dengan mengambilkira hubungkait antara struktur, 
substruktur dan keadaan tanah; (3) Mengkaji hubungan tanah dan tiang bawah tanah 
dengan melakukan analisis unsur terhingga terhadap model jambatan. (4) 
Mengesahkan model hasil ujikaji dengan model kaedah unsur terhingga. Bagi 
pengesahan hasil kajian, empat langkah telah digunakan: (1) Menjalankan proses 
pengecilan dimensi jambatan integral gegalang kotak konkrit prategang dengan 
menggunakan teori PI Buckingham; (2) Menyelaraskan meja gempa, pengendali 
penggegar, LVDT, meter terikan dan akselerometer; (3) Menganalisis model kaedah 
unsur terhingga  jambatan integral gegalang kotak konkrit yang telah melalui proses 
pengecilan dimensi; (4) Mengesahkan hasil kajian dengan membandingkan perilaku 
kecepatan dan pergerakan struktur dari alat pengesan dan model kaedah unsur 
terhingga. Sifat dan perilaku jambatan jenis ini di bawah beban gempa tidak 
mencapai takat alah bagi gempa berintensiti rendah. Namun, untuk gempa 
berintensiti sederhana dan tinggi, perilaku jambatan telah mencapai takat alah 
meskipun di bawah takat penghunian segera. Daripada kajian ini,  pengaruh 
hubungan tanah dan tiang bawah tanah untuk jambatan ini menunjukkan jumlah 
pergerakan pada atas tiang melebihi jenis penyokong dasar tegar kira-kira 0.8 kali 
untuk arah gempa longitudinal dan 0.87 kali untuk arah gempa transversal. Hasil 
penemuan dalam kajian ini mencadangkan agar pembinaan  jambatan jenis ini 
sebaiknya mengambilkira kesan beban gempa kerana nilai pergerakan yang lebih 
tinggi berbanding dengan nilai pergerakan disebabkan oleh beban termal.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

1.1 General 

 

In Malaysia, structural engineers have begun to consider some seismic design 

considerations ever since tremor effects were felt on local bridge structures. Figure 

1.1 shows the 13.6 km length cable stayed box-girder bridge type in Penang. This 

bridge was the first bridge in Malaysia in which seismic loading was considered 

during the structural design. Chin (1988) in his reports entitled “The Penang Bridge 

Planning, Design and Construction Report “(P.15), recognised that the nearest 

earthquakes source locations to Malaysia were: 

 

1. 4N 99E depth 150km magnitude 6.25; (earthquake occurred on January 20th 

1931) and 

2. 4N 99E depth 200km magnitude 6.5 (earthquake occurred on July 4th, 1936) 

 

 

 

Figure 1.1 First Penang Bridge 
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According to Chin (1988), a great earthquake in Malaysia is very rare. So, it 

is more economical to design the structure to resist the maximum seismic input with 

damage. In other words, the design philosophies should undergo lower level of 

structural strength at lesser cost to pay for the necessary repairs in the unlikely event 

of a maximum credible earthquake occurred.  

 

Therefore, it is more preferable for a country like Malaysia to construct a 

box-girder bridge type compared to the other type of bridge since it has many 

advantages. The advantages are:  

 

1. Box-girder Bridge has no expansion joint. Normally when earthquake 

happens, the expansion joint will be damaged due to the movement of the 

deck and unseating of simple spans will occur (Figure 1.2). 

 

 

 

Figure 1.2 Unseating of the bridge deck of Shoowa Bridge in 1964 Niigata 

earthquake (Moehle and Eberhad, 2000) 

 

2. No bearing for integral bridge type. Normally when earthquake happens, 

the bearing failure always occurs (Figure 1.3). 

 

 

 

Figure 1.3 Nishinomiya-ko Bridge bearing failure in 1995 (Moehle and Eberhad, 

2000) 
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In Malaysia, the concrete box-girder bridge has been constructed in many 

states. There are two types of concrete box-girder bridge namely continuous box 

girder and integral box-girder bridge. Some of the existing continuous box-girder 

bridge types in Malaysia are listed below: 

 

1. Sultan Abdullah Bridge. This is one of the earliest concrete box-girder 

bridges to be constructed in Malaysia. This bridge crosses the Pahang River 

near Jerantut on federal Route 64. It has five spans with a total length of 

486m. The maximum span length is 115m. 

2. Sultan Yussuf Bridge. This bridge which was constructed in1988 is located 

on Federal Route 5 near the town of Teluk Intan. The bridge crosses the 

Perak River and has a total length of 1.3km. It has three spans over water, of 

prestressed concrete box girder design, with a central navigational span of 

160m and two side spans of 95m each.  

3. Sultan Azlan Shah Bridge. The bridge crosses Sungai Perak and is part of the 

North- South Expressway. It is 360m long and comprises five concrete box 

girder bridge spans. 

4. Sultan Mahmud Bridge. Figure 1.4 shows the bridge location at the estuary of 

Sungai Terengganu, connecting the northern and southern sectors of Kuala 

Terengganu municipality. It comprises three separate structures, the longest 

of which is the south bridge, 1195m long, connecting the southern bank to 

Pulau Duyong. The other two structures are the North bridge 1 and 2 which 

are 220m and 320m long respectively. The five central spans of the south 

bridge are of balanced cantilever concrete box-girder construction, 

comprising three 65m long spans and two 40m long spans. The rest of the 

spans are made up of 40m long prestressed T- beams. 

 

 

 

Figure 1.4 Sultan Mahmud Bridge, Terengganu 
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5. Tanjung Lumpur Bridge. This bridge crosses Sungai Kuantan connecting 

Padang Lalang and Tanjung Lumpur which provides a direct crossing to the 

parts of the river from Kuantan Town. The bridge has a total length of 424m 

comprising of three balanced cantilever double box girder central spans 

totalling 186m (50m-86m-50m) and three 40m prestressed concrete beam 

approach spans on each side. 

 

Some of the existing integral box-gider bridges that have been constructed in 

Malaysia are as follow: 

 

1. Santubong Bridge (Figure 1.5). The main spans of this bridge are of 

prestressed concrete balanced cantilever box-girder with a central span of 

146m. The total span length inclusive of the precast I- beam approach span is 

593m. The bridge which is located near Kuching Sarawak was completed 

in1988. 

 

 

 

Figure 1.5 Santubong Bridge, Kuching Sarawak 

 

2. Permas Jaya Bridge. Figure 1.6 shows the bridge location over Sungai Tebrau 

in Johor Bahru which forms the main access to the Permas Jaya New Town. 

It has a total length of 600m with a central and side spans of 186m and 90m 

respectively, employing double cantilever box-girder construction method. 

The symmetrical approach spans on both ends consist of 3spans of 33m and 

one span of 27m prestressed beams. The bridge was opened to traffic in 1994. 
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Figure 1.6 Permas Jaya Bridge, Johor 

 

3. Kampung Sawah Bridge. This bridge is located in Kuala Langat in Selangor 

and is one of the main bridges in Selangor. The bridge is a prestressed box-

girder concrete type still under construction, at the casting of the concrete 

box-girder deck phase. The concrete box-girder bridge is made up of 79m + 

110m + 79m (total 268m) span and concrete beam approach spans on each 

side.  

 

 

 

1.2 Problem Background  

 

In recent years, Malaysians are more aware of and concern for the seismic 

effect on their bridges because the tremors were repeatedly felt over the centuries 

from the earthquake events around Malaysia. For example, the First Penang Bridge 

had experienced some minor damage due to Acheh earthquake on 24 December 

2004. Fortunately, the First Penang Bridge was designed under seismic 

consideration.  

 

The seismic consideration for first Penang Bridge has followed the steps as 

mentioned by Idriss (1985), who identified three presently used methods of obtaining 

the design ground motion parameters: (1) Use of local codes, (2) Conducting quasi-

deterministic seismic hazard evaluation, and (3) Conducting a probabilistic seismic 

hazard evaluation. Based on Mohammad (1986), in Malaysia, only method (2) is 

made available with simplified quasi-deterministic seismic hazard evaluation 

version. 
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Idriss (1985) also describes the current practice of a quasi- deterministic 

seismic hazard evaluation as consisting of the following steps:  

1. Conducting a geologic and seismologic evaluation to define the 

sources (faults) relevant to the site. 

2. Estimating the maximum magnitude, m1, on each source. This is the 

“maximum credible earthquake”. The closest distance from the fault 

zone to the site is then determined. 

3. Deriving recurrence relationships for each source using historical 

seismicity as well as geologic data, and select an earthquake with a 

magnitude m2 < m1 for each source such that the recurrence N (m) for 

m> m2 is the same for all sources; if, for example N (m2) = 0.01 per 

year is used, corresponding to a recurrence interval of 100 years, this 

earthquake is then designated the 100 year earthquake. 

4. Determining parameters for each source (e.g. peak ground 

acceleration), using appropriate attenuation relationships, for the 

maximum earthquake and for the earthquake use the magnitude and 

distance producing the largest ground motion parameter of interest for 

design and analyses. 

 

However, based on Chin (1982), there are some data that are collected based 

on judgmental evaluations probably due to the unavailability or incompleteness of 

data. The seismic hazard evaluation procedure for the first Penang Bridge can be 

regarded as a simplified version of the quasi-deterministic approach, in which steps 

(1) and (2) were followed, but steps (3) and (4) were replaced with judgmental 

evaluations.  

 

This statement is supported by Mohammad (1986). He reported that the 

current practice of seismic hazard evaluation in Malaysia is rather subjective, and is 

limited by the lack of organised data. Research has to be conducted to assemble data 

and obtain reliable relationships required for rational seismic hazard evaluations. 

 

In 2005, Structural Earthquake Engineering Research (SEER) of Universiti 

Teknologi Malaysia has carried out seismic zone mapping for peninsular Malaysia 

and east Malaysia. Azlan et al (2006) has done proper seismic hazard assessment for 
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Penang Bridge using Deterministic Seismic Hazard Analysis (DSHA) and 

Probabilistic Seismic Hazard Analysis (PSHA). 

 

From Figure 1.7, the spectral acceleration for the design of the response 

spectrum of the Penang Bridge carried out by Azlan et al (2006) is two times higher 

compared to Chin (1988) at period 0.5 – 1.0 second and three times at period 2.0 – 

2.5 second. The low values in Chin’s result were due to the limitation of organised 

data in 1980s and the improper deterministic method. Figure 1.7 shows the 

significance of taking into account the seismic effect in bridge design in Malaysia. 

 

  

 

Figure 1.7 Chin (1988) vs Azlan et al (2006) for Design Response spectrum for 

first Penang Bridge  

 

 Seismic performance of existing bridges in Malaysia is very important, 

particularly for the concrete box-girder type. This type of bridge has good 

performance for neglecting the effect of earthquake like bearing failure and unseating 
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simple span. Unfortunately, the other problem of this type of bridge that always 

occurs due to seismic force is plastic hinge failure (secondary stress).  The problem 

occurs into this system after considering the seismic effect where rigid connection of 

column and deck will produce potential hinge failure. Therefore, the performance of 

the integral and continuous prestressed concrete box-girder bridges under nonlinear 

seismic study should be investigated.  

 

Based on Burke (2009), bridge engineers are still willing to relinquish some 

of their control of secondary stresses for integral prestressed concrete box-girder 

bridges. It is because integral prestressed concrete box-girder bridge achieves simpler 

construction, more cost-effective, greater overall integrity, and durability.  

 

Currently integral and continuous concrete box-girder bridges are now 

becoming a popular choice of system in Malaysia, as the benefit of this system 

reduces the cost of bridge maintenances. Figure 1.8 shows the problem occurs in 

such systems when considering the seismic effect where rigid connection of column 

and deck will produce potential hinge failure (secondary stress).  

 

 

 

Figure 1.8 Potential Hinge locations (Patty et al, 2002) 

 

In Malaysia, the design of the foundation for integral concrete box-girder 

bridge abutments have accounted for the expansion and contraction of the bridge due 

to thermal movement. The resulting soil pressures due to thermal expansion and 

restraining effects due to jointless construction of the bridge have been recognised as 

the controlling load for design of integral abutments and piles. Designing and 

detailing of integral abutments to handle these forces is critical for the proper 

performance of integral abutments. Based on Kerokoski and Laaksoneen (2005), the 

passive earth pressure on the integral abutment is estimated to be mobilized after a 

quite small abutment displacement in the range of 0.005 to 0.05 times height of the 
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wall is adequate. While according to a group of German researcher (Kerokoski, 

2006), the displacement equal to 0.025 x H is enough to mobilise half of the passive 

earth pressure, and that is also the recommended maximum displacement. Due to 

Weakley (2005), total movement at abutment of fully integral and semi-integral 

bridge is between 1.5 and 2.25 inch.  

 

Therefore, the seismic performance study of integral concrete box-girder 

bridge is very important. For low and moderate seismicity areas like Malaysia, the 

movement of structure due to earthquake loading may possibly be larger than the 

movement due to thermal loading. In this study, the continuous concrete box-girder 

bridges are considered since many of this bridge type are constructed in Malaysia.  

 

 

 

1.3 Problem Statement  

 

Seismic performance of prestressed concrete box-girder bridge is needed in 

order to know the level of resistance in existing structures due to ground motion and 

also the effect of integral system on the bridge. The research will consider the local 

site response study as part of earthquake loading determination and soil- pile 

interaction. The performance result of the bridge will be useful for future prestressed 

box-girder bridge seismic design considerations. 

 

Furthermore, research for determining the level of resistance toward 

earthquake hazard on the parameters of integral prestressed concrete box-girder 

bridge such as loading, span etc has not been carried out yet. There were no studies 

done on the effects of earthquake on integral bridges in Malaysia that are located 

near high seismic zone countries. Therefore, analysis is required to observe the effect 

and performance of prestressed integral concrete box-girder bridge toward seismic 

hazard.  

 

Generally, the overall problems of this study are: 
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1. Unknown integral prestressed concrete box-girder bridge performance 

under earthquake loading with respect to Malaysia conditions.  

2. Unknown soil-pile interaction effect versus fixed base support effect 

under earthquake loading for integral prestressed concrete box-girder 

bridge.  

3. How correct is the current nonlinear Finite Element Analysis to perform 

the actual bridge performance under earthquake loading. 

 

 

 

1.4 Objectives 

 

The objectives of this research are as follow: 

  

1. To perform 3D modelling for Integral and Non Integral prestressed concrete 

box-girder bridges for determining the nonlinear behaviour of bridge 

component under seismic loading. 

 

2. To perform soil structure interaction effect as a major element in the seismic 

analysis and forces response impact by considering it. 

 

3. To validate the results of numerical approach by conducting shaking table 

dynamic test. 

 
 

 

1.5 Research Finding/ Expected Outcome 

 
There are three expected outcome in this study. First, the performance of 

Integral prestressed concrete box-girder bridge can be decided whether the 

movement due to thermal loading can resist movement due to earthquake loading or 

vice versa. Second is the impact for considering pile in the integral bridge model and 

third is the effectiveness of finite element analysis to represent the actual bridge 

behaviour. 
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1.6 Scope and limitations 

 

There are many parameters that may have effects on the results of analysis. 

Therefore the analysis is limited to the following scope:  

 

1. Data collection and preparation: 

a. Identifying existing continuous and integral prestressed concrete 

box-girder bridge. 

b. Obtaining selected bridge drawing and soil data from Public Work 

department (PWD) and private C&S consultancy companies. 

c. Obtaining material samples from only one Malaysian precast 

concrete factory. 

 

2. Mechanical material properties study. 

a. Conducting the laboratory tests: compressive strength, flexural 

strength, modulus elasticity, Poisson’s ratio and nonlinear stress-

strain curves relationship. 

 

3. Parametric study. 

a. Conducting the nonlinear seismic study for Kampung Sawah 

Bridge and Nordin Bridge  

b. Implementing the nonlinear seismic analyses: nonlinear push-over 

analysis and nonlinear time history analysis by using SAP2000 

V14.2. 

4. Case study. 

a. Conducting the case study for Kampung Sawah Bridge only. 

b. Considering only P-y relationship (lateral soil resistance versus 

deflection relationship) for soil-pile interaction produced by using 

LPILE program. 

c. Analysing soil dynamic properties on Kampung Sawah Bridge 

location. 

d. Analysing one dimensional shearwave propagation analysis on 

Kampung Sawah Bridge Location by using NERA program. 
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e. Generating artificial time histories for Kampung Sawah Bridge 

location for 500 years return period by using EZ-frisk and Simqke. 

f. Implementing the nonlinear seismic analyses: nonlinear pushover 

analysis and nonlinear time history analysis by using SAP2000 

V14.2. 

 

5. Bridge Model Verification of study. 

a. Modelling reinforced concrete box-girder bridge type which in 

this experimental work, the effect of prestressing tendon is 

neglected due to the small size of bridge model. 

b. Measuring the bridge responses by using accelerometer, strain 

gauge and LVDT. 

c. Conducting the tests by using ANCO R51 hydraulic shaking table. 

d. Scaling the bridge becomes 3 meters length. 

e. Conducting the dynamic tests at transversal direction only. 

f. Producing the additional table by using steel plate and stiffener. 

 

 

 

1.7 Methodology 

 

The research design of this thesis is shown in Figures 1.9,  in which, the symbols 

I, O, and P stand for input, output and process of the analysis respectively, while the 

arrows show the flows of input required by the process and the output as a result of 

the analysis. 
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1.7.1 Data Collection 

 

From Figure 1.9, there are some data collection and information required for 

the analysis: the sample of structural bridge material, bridge structural drawing for 

finite element modelling and the soil data for site specific analysis and soil-pile 

interaction analysis. 

 

The modelling parameter of bridge study involved the collection and testing 

of material properties of bridge structure from factories in Malaysia.  The materials 

collected were tested in laboratory to produce mechanical material properties and 

nonlinear stress- strain relationship. The mechanical material properties of 

prestressed concrete box-girder bridge are discussed in detail in Chapter 4. 

 

The structural drawing of integral prestressed concrete box-girder bridges is 

required to model the finite element bridge. The structural drawings are collected 

from Public Works Department of Malaysia (JKR) and C&S consultancy (a private 

Malaysian company). The soil data or NSPT data is required for producing soil 

dynamic parameter and soil-pile interaction parameter using empirical correlations. 

 

In this research, the following activities were performed in order to obtain the 

required data for finite element modelling:  

1. Collecting structural drawings for integral prestressed concrete box-

girder bridge. 

2. Collecting soil data or NSPT value at abutments and piers at the bridge 

location. 

 

The data were used to model the elements of bridge using a computer 

program. This study is described in detail in Chapters 5 and 6. 

 

For result validation purposes, the experimental work is carried out to verify 

the accuracy of finite element modelling under seismic loading. The information 

required to implement this study is as follows: 

1. Material properties of bridge model 

2. Shaking table setting and capability information. 
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1.7.2 Analysis and Experimental Work 

 

Generally, there are seven main processes performed in this experimental 

work as shown in Figure 1.9. Mechanical material properties laboratory test, Soil- 

pile interaction analysis, bridge finite element modelling, nonlinear seismic study, 

capacity of bridge component, shaking table experimental work and numerical study.  

 

 

1.7.2.1 Mechanical Material Properties Laboratory Test 

 

In this study, bridge materials are obtained from a Malaysian precast concrete 

factory. The laboratory tests conducted are compressive strength, flexural strength, 

modulus of elasticity, Poisson’s ratio and stress-strain curve relationship. 

 

The laboratory work was carried out in Structural and Material Laboratory of 

Universiti Teknologi Malaysia. In the investigation, all testing of the specimens was 

performed in accordance to the relevant British Standards, namely BS1881part 102, 

116, 118 and 121. 

 

For dynamic soil properties, the correlations of NSPT soil data were used in 

this study since no laboratory work was carried out for soil parameters. 

 

 

1.7.2.2 Soil – Pile Interaction 

 

The soil-pile interaction analysis requires soil data such as soil stratigraphy, 

ground water level and soil dynamic properties. In this study, empirical relationships 

were used to determine the soil dynamic properties. In the seismic analysis of the 

bridge structures, the foundation stiffness is a major element. Given the interplay 

between superstructure and substructure responses of the bridge, realistic evaluation 

of total bridge response dictates the need for a practical and realistic model for 

assessing the stiffness of the bridge foundations. The foundation stiffness can be 

modelled by a set of springs that represents the stiffness of the foundations. 
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In this research, the following activities were performed in order to obtain 

soil stiffness inputs for soil-pile interaction study:  

1. Collecting the standard soil penetration investigations and seismic tests at 

the bridge location. 

2. Conducting the analysis by using existing soil data to obtain soil stiffness 

(p-y curves at every certain pile depth). 

 

The correlated Nspt soil properties were used in order to determine dynamic 

soil properties in bridge location. The procedure for soil structure interaction is 

described in detail in Chapter 6. 

 

 

1.7.2.3 Bridge Modelling 

 

The non-linear seismic analysis of bridges was done using finite element 

software for its three dimensional modelling. 

1.  Pier, abutment, and pile using 3D beam element. 

2. Box-girder deck using Shell element. 

3. Bearing using Link element. 

4. Pilecap is represented by a stiff constraint with lumped mass in the 

centroid. 

5. Soil-pile interaction using lumped springs along the pile. 

 

 

1.7.2.4 Non-linear Seismic Analysis  

 

Non-linear seismic analysis is performed in order to obtain the performance 

of bridge component under damaging level of earthquake. Nonlinear seismic 

analyses implemented are non-linear push-over analysis and non-linear time history 

analysis.  
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1.7.2.5 Shaking Table Experimental Work 

 

This experimental study is performed in order to validate the result of 

numerical approach. Four steps involved in experimental work are as follows: 

 

1. Scaling integral concrete box-girder bridge by implementing Buckingham 

PI theorem. 

2. Setting the shaking table, shaker controller, strain gauge, Load Varied 

Displacement Transducer (LVDT) and accelerometer. 

3. Analysing finite element modelling of scaled integral concrete box-girder 

bridge 

4. Validating the results by comparing the acceleration, displacement of 

structure response from instrument and finite element modelling. 

 

 

1.7.2.6 Numerical Study of Cast Bridge Model 

 

This study is performed to obtain a good prediction and verify the result of the 

experimental work by using SAP 2000 computer program. 

 

 

 

1.8 Organisation of Theses  

 

The connection between the methodology and each chapter is shown in 

Figure 1.10. The body of this document begins with Chapter 1; Introduction. 

Following this introductory chapter is Chapter 2 which representing a Literature 

Review of the past and present body of knowledge pertaining to integral prestressed 

concrete Box-Girder bridges. Chapter 3 presents the theoretical background of linear 

and nonlinear seismic analysis. Chapter 4 presents the laboratory results and 

discussion of materials used in the experimental test. Chapter 5 presents the 

parametric study for continuous deck and monolithic pier deck system. Chapter 6 

presents the case study for selected bridge in Malaysia. Chapter 7 presents the 
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validation result by conducting experimental method by using shaking table. The 

Conclusions and Recommendations are presented in Chapter 8. 

 

 

 

Figure 1.10 The organisation of thesis 
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The content of each chapter can be described briefly as follows: 

 

� Chapter 1: Introduction.  This chapter describes the background of the 

research, the objectives to be achieved, the research scopes, the 

methodology, and the structure of the thesis. 

� Chapter 2: Literature Review.  This chapter reviews and evaluates the 

topics which are related to earthquake engineering.  This chapter presents 

how the integral prestressed concrete box-girder bridge components are 

modelled using finite element software including the effect of boundary 

condition and soil pile interaction. Literature study regarding nonlinear 

seismic bridge analysis and the bridge response under seismic loading are 

also discussed in this chapter.   

� Chapter 3: Theoretical Background.  This chapter describes the theory 

of seismic analysis for bridge under linear and nonlinear behaviour.  

� Chapter 4: Bridge Material Investigation.  In this chapter, the concrete, 

rebar, and tendon material for box-girder deck are collected from the 

precast concrete factory in Malaysia and tested in the laboratory so as to 

obtain reliable mechanical material properties data for the bridge 

modelling in Chapter 5 and 6  

� Chapter 5: Bridge Seismic Parametric Study.  The two types of integral 

prestressed concrete box-girder bridge modelling is the most critical point 

in seismic risk assessment.  Hence, the bridge nonlinear behaviour is 

implemented in this chapter and requires the detailed understanding to 

model and analysis the bridge.  

� Chapter 6: Bridge Seismic Case Study.  This chapter analyses the 

selected existing integral prestressed concrete box-girder bridge in 

Malaysia under seismic loading. The soil-pile interaction are analysed to 

obtain the soil stiffness which requires for modelling purposes. The 

seismic loadings at bridge location are defined using local site effect 

analyses. The material mechanical properties from the laboratory testing 

in chapter 3 are applied in this seismic risk analyses. 

� Chapter 7: Result Validation.  This chapter describes the application of 

dimensional analysis to model and simplify the bridge. The performance 

of bridge under shaking table test in term of acceleration, displacement 
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and strain is compared with the numerical approach which verifies the 

accuracy of seismic analysis using finite element software.  

� Chapter 8: Conclusions and Recommendations.  This chapter concludes 

and summarises the results on the previous chapters and give 

recommendations for further study. 

 

 




