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ABSTRACT

This study investigates the problem of computing the exact greatest common
divisor of two polynomials relative to an orthogonal basis, defined over the rational
number field. The main objective of the study is to design and implement an effective
and efficient symbolic algorithm for the general class of dense polynomials, given the
rational number defining terms of their basis. From a general algorithm using the
comrade matrix approach, the nonmodular and modular techniques are prescribed.

If the coefficients of the generalized polynomials are multiprecision integers,
multiprecision arithmetic will be required in the construction of the comrade matrix
and the corresponding systems coefficient matrix. In addition, the application of the
nonmodular elimination technique on this coefficient matrix extensively applies
multiprecision rational number operations. The modular technique is employed to
minimize the complexity involved in such computations. A divisor test algorithm that
enables the detection of an unlucky reduction is a crucial device for an effective
implementation of the modular technique. With the bound of the true solution not
known a priori, the test is devised and carefully incorporated into the modular
algorithm.

The results illustrate that the modular algorithm illustrate its best
performance for the class of relatively prime polynomials. The empirical computing
time results show that the modular algorithm is markedly superior to the nonmodular
algorithms in the case of sufficiently dense Legendre basis polynomials with a small
GCD solution. In the case of dense Legendre basis polynomials with a big GCD
solution, the modular algorithm is significantly superior to the nonmodular algorithms
in higher degree polynomials. For more definitive conclusions, the computing time
functions of the algorithms that are presented in this report have been worked out.
Further investigations have also been suggested.
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Assoc. Prof. Dr. Ali Abd Rahman
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ABSTRAK

Kajian ini mengkaji masalah pengiraan tepat pembahagi sepunya terbesar dua
polinomial relatif terhadap suatu asas ortogon yang tertakrif ke atas medan nombor
nisbah. Objektif utama kajian ialah untuk membangunkan dan melaksanakan suatu
alkhwarizmi simbolik untuk kelas umum polinomial tumpat, diketahui sebutan
pentakrif bagi asasnya. Kaedah penyelesaian modulo dan tak modulo diasaskan
kepada suatu alkhwarizmi am. Jika pekali bagi polinomial dalam perwakilan teritlak
merangkumi integer kepersisan berganda, aritmetik kepersisan berganda diperlukan
dalam pembinaan matriks komrad dan matriks pekali sistem berpadanan. Penggunaan
teknik penurunan tak modulo terhadap matriks pekali tersebut banyak melibatkan
aritmetik nombor nisbah dan operasi integer kepersisan berganda.

Teknik modulo di selidiki bagi mengurangkan kerumitan penggunaan operasi
tersebut. Keberkesanan pendekatan modulo bergantung kepada kejayaan mewujudkan
suatu teknik yang dapat menyemak kebenaran penyelesaian pada peringkat-peringkat
penyelesaian secara berpatutan. Dalam keadaan di mana batas jawapan sebenar tidak
dapat ditentukan, suatu pendekatan modulo telah dihasilkan.

Teknik tersebut mempamerkan pencapaian terbaik dalam perlaksanaannya
terhadap kelas polinomial yang perdana relatif. Keputusan ujikaji masa pengiraan
menunjukkan kecekapan alkhwarizmi modulo jauh mengatasi alkhwarizmi tak modulo
dalam kelas polinomial tumpat terhadap asas Legendre yang mempunyai satu
polinomial pembahagi sepunya terbesar bersaiz kecil. Bagi kelas polinomial yang sama
tetapi mempunyai satu penyelesaian bersaiz besar, alkhwarizmi modulo adalah jauh
lebih cekap untuk polinomial berdarjah besar. Keputusan masa pengiraan untuk
polinomial nombor nisbah yang diwakili oleh polinomial terhadap asas Legendre
mempamerkan kecekapan alkhwarizmi yang menggabungkan pendekatan modulo dan
tak modulo pada beberapa bahagian tertentu daripada keseluruhan kaedah
penyelesaian. Untuk keputusan secara teori dan berpenentuan, fungsi masa pengiraan
bagi alkhwarizmi yang dibina telah diusahakan. Penyelidikan lanjut juga dicadangkan.
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CHAPTER I

INTRODUCTION

1.1 Preface

Fundamental problems in computational algebra that require symbolic
computations or manipulations are the computation of greatest common divisors
(GCDs) of integers or polynomials, polynomial factorization and finding the exact
solutions of systems of algebraic equations. Other problems include symbolic
differentiation and integration, determination of solutions of differential equations and
the manipulation of polynomials and rational functions within its broad spectrum of
applications. In the last decade, tremendous success has been achieved in this area. At
the same time, the invention of powerful SAC systems has been motivated to assisting
the scientific community in doing algebraic manipulation as well as providing means of
designing and implementing new algorithms. Useful as research tools in many
scientific areas, notable symbolic and algebraic computation (SAC) systems presently
used worldwide include REDUCE, MACSYMA, MAPLE, MATHEMATICA, SACLIB
and most recently MUPAD. Among these systems, SACLIB and MUPAD are open
source LINUX or UNIX systems which are meant for academic purposes that
contribute to further research in the symbolic algorithms and systems development.

The problem of finding the greatest common divisor (GCD) of the integers is
one of the most ancient problems in the history of mathematics [35]. As early as 300
B.C., Euclid discovered an algorithm that still bears his name to solve this problem.
Today, the concept of divisibility plays a central role in symbolic computations. In this
mode, the computation of GCD is not only applied to reducing rational numbers
(quotient of integers) to its lowest terms but also to reducing quotients of elements
from any integral domain to its simplest form. For example, the computation of GCD
of two polynomials reduces a rational function (quotients of polynomials) to its lowest
term. In finding the roots of a polynomial with repeated factors, it is often desirable
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to divide the polynomial with the GCD of itself and its derivative to obtain the
product of only linear factors.

An application in the integration of algebraic functions reported that 95% of
the total time was being spent in GCD computation [40]. As such, GCD operations
become the bottleneck of many basic applications of exact computations. In addition,
problems involving polynomials, such as polynomial GCD computation and
polynomial factorization, play an important role in many areas of contemporary
applied mathematics, including linear control systems, electrical networks, signal
processing and coding theory. In the theory of linear multivariable control systems,
GCD determination arises in the computation of the Smith form of a polynomial
matrix, and associated problems, such as minimal realization of a transfer function
matrix. There are also applications in network theory and in finding solution of
systems of linear diophantine equations and integer linear programming.

1.2 Motivation

The theory on polynomials in forms other than the power form has been the
results of several works of Barnett and Maroulas, such as in [5], [6], [7] and [8]. The
application of polynomials in the generalized form arises in the computation of the
Smith form of a polynomial matrix and problems associated with the minimal
realization of a transfer function matrix. The zeros and extrema of the Chebyshev
polynomials play an important role in the theory of polynomial interpolation [52].
Barnett [9], describes the theory and applications of such polynomials in linear control
systems.

Let a(x) = a0 + a1x + a2x
2 + ... + anxn be a polynomial in a variable x over

the field F . If an 6= 0 then degree of a(x) is denoted deg(a). The zero polynomial has
ai = 0 for all i and when an = 1, a(x) is termed monic. In this form, a(x) is univariate
in the standard form or power series form; that is, a polynomial expressed as a linear
combination of the monomial basis {1, x, , x2, ..., xn−1, xn}.

Let a(x) be monic and F be the field of real numbers R. A companion matrix
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associated with a(x) is the n× n matrix
(

0 In−1

−a0 −a1 . . . −an−1

)
,

where In denotes the n× n unit or identity matrix. Given a set of orthogonal
polynomials {pi(x)}, Barnett [4] shows that associated with a polynomial
a(x) =

∑
aipi(x), where ai ∈ R, there exists a matrix A which possesses several of the

properties of the companion matrix. The term comrade matrix is an analogue of the
companion matrix. The companion matrix is associated with a polynomial expressed
in the standard or power series form. The comrade matrix is a generalization of the
companion matrix and is associated with a polynomial expressed as a linear
combination of an arbitrary orthogonal basis. The term colleague matrix is associated
with a polynomial expressed as a linear combination of the Chebyshev polynomials, a
special subclass of the orthogonal basis. Further generalization of the companion
matrix corresponds to the confederate matrix. In the latter, a polynomial a(x) is
expressed in its so called generalized form, such that a(x) =

∑n
i=0 aipi(x), in which

case, {pi(x)}n
i=0 corresponds to a general basis. In [9], the term congenial matrices

which include the colleagues, comrades and confederate matrices is mentioned.
However useful these matrices are, Barnett [4] and [5] does not get around to
converting the theories and analytical results that have been discovered into its
practical use. The theories and analytical results of [4] and [5] have to be converted
into a procedure so that the routines that extend their applications can be
implemented effectively and efficiently using the computer.

Apart from that, it is natural to speculate whether theorems for polynomials in
the standard form carry over to polynomials in the generalized form. Grant and
Rahman [27] consider ways in which an algorithm for finding the zeroes of standard
form polynomials can be modified to find the zeroes of polynomials in other basis.
According to Barnett [9], few results have been reported in this area. For example, the
Routh Tabular Scheme (RTS) [5] can be applied to the problem of locating the roots
of generalized polynomial in the left and right halves of the complex plane. A result
that requires determination of odd and even parts of the polynomial is obtained.
Similar attempts to generalize the theorems of Hurwitz, Hermite and Schur-Cohn
(section 3.2 of [9]) have also proved unsuccessful in obtaining a criterion which can be
applied directly to the coefficients of the generalized form. This means that the
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polynomials have to be converted to the standard form for the calculations to be
carried out and the solutions in the standard form have to be converted back to the
original generalized form. This extra work can be avoided by extending or utilizing the
properties of the polynomials given in their respective generalized form.

The RTS calculates the rows of the upper triangular form of the Sylvester’s
matrix. The last nonzero row of the upper triangular form of the Sylvester’s matrix
gives the coefficients of the GCD of the associated polynomials. Alternate rows
obtained from the RTS give a polynomial remainder sequence. In [5], the relation
between the polynomial remainder sequence obtained from the rows of the Sylvester’s
matrix and the Euclidean polynomial remainder sequence is given. The extension of
the RTS to the generalized polynomials, examining its application in the computation
of the GCD when the degrees of the polynomials are equal is discussed. In a way, the
method shows that the division of polynomials in the generalized form cannot be
carried out directly unless the degrees of the polynomials are equal. Analytically, the
Routh Tabular Scheme has only been applied for computing the GCD of the
polynomials in the orthogonal basis when the degrees of the input polynomials are
equal.

These observations lead us to further investigate polynomials in the
generalized form. Rather then converting the polynomials to power series form, we
aim at obtaining some criteria so that the coefficients of the generalized polynomials
can be applied directly when performing certain operations such as multiplication,
division and computing the GCD. Adhering to the given form of polynomials can
avoid unnecessary work of basis transformation. Furthermore the properties of
polynomials in its original form can be fully utilized and further investigated.

A.A. Rahman [1] presents an investigation into GCD algorithms in a floating
point environment and uses the results in numerical experiments to solve polynomial
exhibiting repeated roots. Although the method developed shows potential, as
expected, the build up of round off errors is so enormous as to render the results for
high degree polynomials questionable.

In order to compute the GCD of generalized polynomials, the comrade matrix
analogue of the companion matrix requires multiplication and division of the defining
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terms of the corresponding basis. The entries of the last row of the comrade matrix
involve the operations of the basis defining terms with the coefficients of the input
polynomial. Considering the results in [1] and the more complex nature of the
comrade matrix, in comparison to the simple form exhibited by the companion matrix,
the method of working in the floating point environment to compute the GCD of
polynomials in its generalized form using the ideas developed by Barnett [5], may only
be able to achieve a varying and limited degree of success depending on the conditions
imposed by the input polynomials.

However, the effects of the resulting rounding errors and truncation errors may
be over come by working in the symbolic computation mode. In this mode, the
computations are confined to the rational numbers or integers. In many problems that
involve integer polynomial and matrix computations, the symbolic methods of
palliating the exponential growth of integers in intermediate steps (known as
intermediate expression swell) have been a great success. The development of these
methods and their significant contributions, particularly the methods that apply
modular techniques in computing the GCD of polynomials and solving the solution to
linear systems are mentioned in the literature review of Chapter 2.

On the other hand, in the floating point environment, a major setback is the
critical task to identify a nonzero number from a zero number that arises from the
accumulation of errors. For example, there exists some limitations of numerical
computation techniques in the computation of rank and solutions to nonsingular
systems. As a consequence, the applications of numerical techniques in the floating
point environment should be able to overcome this task in order to produce an
effective implementation of the techniques.

Furthermore, let x and y be real numbers such that x < y. Then there exists a
rational number z such that x < z < y (refer to [51], page 21). Thus, by the fact that
the rational numbers are order dense, we may use a rational number to represent a
real number that is sufficiently close to it, without losing accuracy from an effective
implementation of the exact computational method.

In an effort to further proceed on implementing the ideas that have been
established in [4] and [5], we will apply the comrade matrix approach to design and
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implement an effective and efficient symbolic algorithm for computing the GCD of two
polynomials represented relative to a general basis. A detail description of the
problem is explained in the following section.

1.3 Preliminary Definitions and Concepts

Let the set of real polynomials p0(x), p1(x), ..., pn(x), each with its degree
deg(pi) = i, constitutes an arbitrary basis. The main thrust of the theoretical
developments that have been established in [4] and [5] concentrate on the case where
the basis consists of a set {pi(x)}, which is mutually orthogonal with respect to some
interval and weighting function. We proceed by first stating some definitions and basic
concepts.

Definition 1.1. A sequence {pi(x)} is orthogonal with respect to a certain function
w(x) if there exists an interval [c, d] such that:

∫ d

c
w(x)d(x) > 0,

and ∫ d

c
pi(x)pj(x)w(x)dx =

{
0 if i 6= j,

c 6= 0 if i = j.
(1.1)

Definition 1.2. A polynomial relative to an orthogonal basis is written in the form:

a(x) =
n∑

i=0

aipi(x),

such that

pi(x) =
i∑

j=0

pijx
j . (1.2)

with the set {pi(x)} known as an orthogonal basis.

Let {pi(x)} be a set of orthogonal polynomials. Then {pi(x)} satisfies the three-term
recurrence relation:

p0(x) = 1,

p1(x) = α0x + β0,

pi+1(x) = (αix + βi)pi(x)− γipi−1(x), (1.3)
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where i = 1, 2, .., n− 1 with αi > 0, γi, βi ≥ 0. From this three-term recurrence
relation, which is also known as the defining relations of the basis {pi(x)}, we may
easily obtain the defining terms αi > 0, γi, βi ≥ 0. In this thesis, we consider
polynomials represented in the generalized form, that is, polynomials expressed in
terms of a general basis, such that the basis polynomials should be generated by the
equation (1.3). This definition is based on [27], which determines the zeros of a linear
combination of generalized polynomials. The orthogonal basis is a special case, where
the basis polynomials will form a family of polynomials {pi(x)} generated by equation
(1.3). With pi(x) a polynomial of degree i in x, {pi(x)} for i = 0, ..., n form a linearly
independent set and hence provide a basis for the representation of any polynomial of
degree n. Examples of basis generated in this way are given in [27]. Our
implementations concentrate on the case when the defining terms are rational numbers
and when βi = 0, as in the case of the Legendre polynomial basis.

Any given nth degree univariate polynomial in x can be expressed uniquely as
a linear combination of the set of basis {p0(x), p1(x), ..., pn(x)}. Any two arbitrary
polynomials in power series form ã(x) = ã0 + ã1x + ... + ãn−1x

n−1 + xn and
b̃(x) = b̃0 + b̃1x + ... + b̃mxm with coefficients over a field can be written in the form:

a(x) = a0p0(x) + a1p1(x) + ... + anpn(x),

and

b(x) = b0p0(x) + b1p1(x) + ... + bmpm(x). (1.4)

such that a(x) and b(x) are the generalized form of ã(x) and b̃(x) respectively. Note
that, in power series form, ã(x) can be written as

ã(x) = a(x)/α0α1...αn−1,

= ã0 + ã1x + ... + ãn−1x
n−1 + xn. (1.5)

Example 1.1. Let ã(x) = 7072x7 + 1120x5 + 221x3 + 663x2 + 35x + 105. In the
generalized form, ã(x) is represented relative to the Legendre basis as

a(x) = p7(x) +
308
51

p5(x) +
887639
65280

p3(x) +
429
256

p2(x) +
247907
21760

p1(x) +
5379
4352

p0(x).
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In the above example, we apply the method of basis transformation given in [9] (refer
to page 371-372). The OpGcd package [45] designed in MAPLE are used to do the
transformation.

For any field F , let a(x) and b(x) be polynomials in F [x]. Then b(x) is a multiple of
a(x) if b(x) = a(x)r(x) for some r(x) in F [x]. This also implies that a(x) divides b(x)
which is denoted as a(x)|b(x). A polynomial d(x) is called a greatest common divisor
(GCD) of a(x) and b(x) if d(x) divides a(x) and b(x) and d(x) is a multiple of any
other common divisor of a(x) and b(x).

1.4 Problem Statement

Suppose a(x) and b(x) are in the form (1.4) such that the defining equation
(1.3) for its basis are given. The aim of the research is to apply appropriate symbolic
computation techniques to the comrade matrix approach proposed by Barnett [4] and
[5] in the design and implementation of an effective and efficient algorithm for
computing the exact GCD of a(x) and b(x) in the generalized form; that is, without
converting to power series form polynomials. Rather than obtaining asymptotically
fast algorithms, our main goal is to establish state-of-the-art GCD algorithms for
generalized polynomial. Besides producing an efficient algorithm to be useful in
practice, we will be exploring the state of the art vis-a-vis the problem at hand by
investigations into the theoretical contributions that have been established but not yet
implemented, tested or analyzed.

1.5 Research Objectives

This section briefly describes our research objectives as follows:

1. Construct a general algorithm to compute the GCD of polynomials expressed in
the general basis, in particular the orthogonal basis, which satisfies equation
(1.3).

2. Construct the algorithm for computing the comrade matrix and the algorithm
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for computing the corresponding systems coefficient matrix (step 2 of the general
procedure). In symbolic computation, the auxiliary algorithms for rational
number matrix operations need to be constructed and added to the existing
SACLIB’s library functions. Incorporate these algorithms into the general
algorithm.

3. Construct the exact division or fraction free Gauss elimination algorithms.
Construct the modular Gauss elimination algorithm.

4. Incorporate the nonmodular Gauss elimination algorithms into the general
algorithm to construct nonmodular OPBGCD algorithms(Orthogonal
Polynomial Basis GCD).Incorporate the modular Gauss elimination algorithm to
construct a modular OPBGCD algorithm.

5. Determine a termination criterion for the modular OPBGCD algorithm, that is,
devise a divisor test algorithm to check on the effectiveness of the modular
technique. Determine the set of primes required to produce efficient modular
algorithms.

6. Conduct the empirical and theoretical computing time analysis of the
algorithms.In the empirical observations the best performing nonmodular
algorithm serves as a benchmark to measure the efficiency of the modular
algorithms.

1.6 Scope of Work

The procedure developed are based on the theories that have been
established in Barnett [4] and[5]. Thus, the comrade matrix approach will be
investigated and implemented into the algorithms for computing the exact
greatest common divisor of polynomials whose basis are particularly the
orthogonal polynomials with rational coefficients.
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CHAPTER II

LITERATURE REVIEW

2.1 Introduction

In this chapter major historical developments in exact polynomial GCD
computations of power series polynomials over the integral domain Z are discussed.
The developments discussed in this respect are commonly described in a number of
literature including the thesis on Computing the GCD of Two Polynomials over an
Algebraic Number Field [31] and on Parallel Integral Multivariate Polynomial Greatest
Common Divisor Computation [40] respectively. We do not intend to omit this report,
as a prerequisite knowledge to further developments along the lines of the computation
of integral or rational number polynomial greatest common divisors.

The representation of polynomials relative to a general basis is another form of
representation of polynomials over the integers or rational numbers with respect to a
certain basis, particularly the orthogonal basis. Recent developments on polynomial
GCD computations involved the work on polynomials over any field, including the
finite field of integer modulo a prime and the number field Q(α). Kaltofen and
Monagan [34] investigate Brown’s dense modular algorithm to other coefficient rings,
such as GF[p] for small enough prime p, and Z[i], by a generic Maple code. Much of
these work involve some modifications and generalizations of the modular GCD
algorithms such as the small prime, prime power and Hensel lifting methods or other
nonmodular methods such as the heuristic GCDHEU, to univariate and bivariate
polynomials over the algebraic number field. For a detail study refer to the work of
Encarnacion’s improved modular algorithm [25], the heuristic method of Smedley [47],
Monagan and Margot [41], and most recently Monagan and Wittkopt in [42]. We shall
not describe the work in this respect, focussing only on the major developments in the
GCD computations of integral polynomials.
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2.2 Polynomial GCDs over Z

The first algorithms for polynomial GCD computations are commonly known
as the polynomial remainder sequence (PRS) methods which are generalizations and
modifications of Euclid’s algorithm originally stated for the integers. Polynomials over
fields have a unique factorization property. Thus the GCD of two polynomials over a
field exists and is unique up to nonzero field elements. The GCD of two polynomials
over a field can be computed by this version of Euclid’s algorithm adapted for
polynomials and was first used by Steven (Refer to [35], page 405).

Let g be a univariate polynomial of degree n with rational coefficients. We can

transform g so that g(x) =
f(x)

c
such that c ∈ Z and f is an integral polynomial.

Gauss’s lemma states that the factorization of f over the rational numbers and the
factorization of f over the integers are essentially the same. Thus, without lost of
generality we may assume that the polynomials are integral and compute the GCDs
over the integers. The GCD of two polynomials over Z can then be worked over its
quotient field Q.

However, the PRS method is impractical on polynomials over the integers due
to the complexity of rational number arithmetic of the quotient field elements or the
exponential growth of the integer coefficients at each pseudo division step in the
integral domain. To overcome this coefficient growth, the primitive PRS algorithm is
developed by taking the content out of pseudo remainder at each step. However, this
process has been regarded as being very expensive, especially when dealing with dense
polynomials. Brown [12] and Collins [16] independently introduce the reduced PRS
algorithm and the subresultant PRS algorithm. These two methods control the growth
of coefficient at each step by dividing out a quantity that is a factor in the coefficients
of the remainder in the pseudo division step. The improved subresultant PRS
algorithm is the best nonmodular algorithm. Applying the theory of PRS, a modular
algorithm for polynomials over the integers is introduced by Brown [11]. The
algorithm known as dense modular GCD algorithm computes the GCD of dense
multivariate polynomials over Z[x1, x2, ..., xn], which is better than the subresultant
PRS for dense polynomials. Moses and Yun [53] apply the modular homomorphic
image scheme and the Hensel p-adic lifting algorithm in the EZ-GCD algorithm of
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computing the GCD of two sparse multivariate integer polynomials. Further
improvement have been suggested by Zippel [54], who introduces a probabilistic
algorithm that preserves sparseness in Brown’s interpolation scheme. In his EEZ-GCD
algorithm Wang [49] avoids computing with the zero coefficients, which takes the
advantage of polynomial sparseness. At the other end, a heuristic method that is
based upon the integer GCD computation known as the GCDHEU algorithm is
introduced by Char et.al [22], with further improvements suggested by Davenport and
Padget [23].

We include only the most outstanding methods which are most often described
in the literatures. It is observed that the modular techniques are of pertinence to the
general class of polynomials; that is, the set of dense univariate or multivariate
polynomials. In this case, a polynomial is said to be dense if most of its coefficients up
to maximal degree are nonzero, and is sparse, otherwise. For special subclass of
problems, faster algorithms can still be derived. As an example, the methods derived
by Yun [53] for computing the GCD of two sparse multivariate polynomials are faster
than the modular technique described by Brown [11].

2.3 Generalized Polynomial GCDs

Several applications of matrices to GCD computations of univariate
polynomial GCDs over the reals such as the companion matrix approach for two and
more polynomials are described in [9]. The relationship between Sylvester’s resultant
matrix approach to GCD computation and the Routh tabular array scheme which is
also a Euclidean type scheme; an iterative scheme involving the computation of the
determinant of a 2 by 2 matrix has been established. On the other hand, his
investigation on polynomials with respect to a general basis leads to the design of the
comrade matrix, when the basis are orthogonal and the colleague matrix, when the
basis are Chebyshev. Both types of matrices are analogues to the companion matrices
[6]. Barnett [5] shows how previous results from the companion matrix approach for
polynomials in power series form can be extended to the case of generalized
polynomials associated with its comrade matrix.
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2.4 The Exact Elimination Methods

A number of methods for finding the exact solution of systems of linear
equations with integer coefficients have been established since the early development
of systems for symbolic mathematical computation in 1960’s. Developments prior to
this period involved the nonmodular methods, which control the growth of
intermediate results, but introduce many more computations involving small
multiprecision numbers. The fraction free Gauss elimination method, which is also
known as the integer preserving Gauss elimination method is essentially that of Gauss
elimination except that at each stage of the elimination, a common factor is
systematically removed from the transformed matrix by a predetermined exact
division. This approach is an analog of the reduced PRS-GCD algorithm. Bareiss [2]
describes a variant of the method in which, by eliminating two variables at a time
rather than one, improves the efficiency of the elimination considerably. In his thesis,
Mazukelli [36] compares the number of arithmetic operations involved in the one and
two step algorithms, concentrating on multiplications and divisions which require a
higher magnitude in computing time than additions and subtractions and assuming
classical arithmetic algorithms. From the results it is observed that if a division is
counted as two multiplications then the ratio of the number of multiplications and
divisions in the one and two steps method is 8:6 which is about 1.6. In general the two
step algorithm is about fifty percent more efficient than the one step algorithm [36].

In his Ph.D. thesis, McClellan [37] presents algorithms for computing the exact
solution of systems of linear equations with integral polynomial coefficients. According
to McClellan [38], the application of modular techniques to the solutions of linear
equations and related problems have produced superior algorithms. McClellan [39]
works on an extensive empirical study in comparing three most important algorithms
for computing the exact solution of systems of linear equations with integral
polynomial coefficients, which are the rational Gauss elimination algorithm, exact
division elimination algorithm and modular algorithm. Various theoretical analysis
and empirical studies of the computing times of these algorithms, much of which
involved dense systems have been done earlier but the empirical results were
incomplete and inconclusive. McClellan’s work [39] presents a unified theoretical and
empirical comparisons. The extensive empirical studies illustrate the superiority of the
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modular algorithm for completely dense problems, in agreement with the analytical
results. When the polynomials are sparse, however, a faster different technique via
minor expansion has been developed.

2.5 Concluding Remarks

From the above discussion the modular method seems to be a very important
and useful exact method that is applied to the general class or dense problems.
However, according to [41], the design of the modular method is a challenging task
since it is difficult to implement the method properly to meet the desired complexity
time as well as to minimize storage allocation. In CA systems like MAPLE or
AXIOM, the modular arithmetic is done using the hardware integer arithmetic
instructions, which is written in the systems implementation language, that is in C or
Lisp or assembler. The package modp1 implemented in MAPLE provides a new data
structure for polynomial arithmetic in Zn[x], including routines for multiplication,
quotient and remainder, GCD and resultant, evaluation and interpolation. Using this
package, Monagan codes the modular GCD method and find that the modular method
is almost always better than the GCDHEU method that it is now the default method
replacing the heuristic method in MAPLE.

Likewise, SACLIB library functions have provided efficient modular arithmetic
functions for the applications of many successful modular algorithms such as Brown’s
modular integral polynomial GCD algorithm and Encarnacion’s improved modular
polynomial GCD algorithm for univariate polynomials over algebraic number fields.
With these achievements the difficulty in the implementation of the modular
arithmetic has been overcome. However, this challenge may lead to the design of many
different techniques that differ in performance, depending on the classes of problems
that the techniques apply (refer to [29] and [15]). The main task remains to carefully
design and implement a number of different possible modular techniques which is the
best of its type, to suit a particular class of problems. The timing results from the
implementation of these techniques can then be compared to select the most
competitive technique for the class of problems.
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CHAPTER III

THE COMRADE MATRIX AND POLYNOMIAL GCD
COMPUTATIONS

3.1 Introduction

This chapter reviews the theoretical background that have been established by
Barnett in [4] and [5] regarding the application of the comrade matrix in the
computation of the GCD of two polynomials relative to an orthogonal basis. Section
3.2 defines the relation that exists between the orthogonal basis and the comrade
matrix. More theoretical results are investigated in Section 3.3 which includes the
practical aspects of its implementation. A general algorithm for computing the GCD
of polynomials using the comrade matrix approach is given in Section 3.4, with
elaborations on algorithms for constructing the comrade matrix and the corresponding
systems coefficient matrix. The algorithms apply rational number and multiprecision
operations of SACLIB’s library functions. The theoretical computing time analysis for
these algorithms are investigated and included.

3.2 Orthogonal Basis and Congenial Matrices

Consider the set of orthogonal polynomials over the rational numbers given by

pi(x) =
i∑

j=0

pijx
j , (3.1)

with the set {pi(x)} known as an orthogonal basis satisfying the relationships (1.3)

p0(x) = 1,

p1(x) = α0x + β0,

pi+1(x) = (αix + βi)pi(x)− γipi−1(x),
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for i = 1, 2, .., n− 1 with αi > 0, γi, βi ≥ 0.

Any given nth degree integral polynomial a(x) can be expressed uniquely as

a(x) = a0p0(x) + a1p1(x) + ... + anpn(x),

Assume without loss of generality that an = 1 and for subsequent convenience define
the monic polynomial [4]

ã(x) = a(x)/α0α1...αn−1,

= ã0 + ã1x + ... + xn. (3.2)

We can assume without loss of generality that if m = n then b(x) can be replaced by
[5]

(b0 − a0bn

an
)p0(x) + ... + (bn−1 − an−1bn

an
)pn−1(x)

The comrade matrix associated with a(x) [5] is given by



−β0

α0

1
α0

. . . 0 . . . . . . . . . 0
γ1

α1

−β1

α1

1
α1

0 . . . . . . . . . 0
0 γ2

α2

−β2

α2

1
α2

. . . . . . . . . 0
...

...
...

... . . . . . . . . .
...

0 0 0 0 . . . . . . . . . 1
αn−2

−a0
anαn−1

. . . . . . . . . . . . −an−3

anαn−1

−an−2+anγn−1

anαn−1

−an−1−anβn−1

anαn−1




, (3.3)

has a(x) of the form (3.2) as its characteristic polynomial. The comrade matrix
generalizes the results for the special case of Chebyshev polynomials when
αi = 1, βi = 0, γi = 1 where the term colleague matrix for a(x) is associated as
analogue with the usual companion matrix

C =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−ã0 −ã1 −ã2 . . . −ãn−1




, (3.4)

in which case αi = 1, βi = 0, γi = 0 for all i, Further generalization of the companion
matrix corresponds to the confederate matrix, in which case the basis pi(x) are the
more general real polynomials. The term congenial matrices which includes the
colleague, comrade and confederate matrices is again introduced in [9].
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3.3 GCD of Polynomials Relative to an Orthogonal Basis

Let

d̃(x) = d̃0 + d̃1x + ...xk,

= d0p0(x) + d1p1(x) + ... + pk(x), (3.5)

be the monic GCD of a(x) and b(x) as in (1.4). If A is the comrade matrix given by
(3.3), define

b(A) = b0I + b1p1(A) + ... + bmpm(A), (3.6)

then it is known that k = n− rank(b(A)) and the rows of b(A) are given as

r0 = [b0, ..., bn−1] (3.7)

r1 = r0p1(A) (3.8)
... (3.9)

rn−1 = r0pn−1(A) (3.10)

Using the defining relation (1.3), we obtain the rows in terms of the comrade matrix
and the recurrence relation

r0 = (b0, ..., bn−1),

r1 = r0(α0A),

ri = ri−1(αi−1A + βi−1I)− γi−1ri−2. for i = 2, ..., n− 1 (3.11)

Theorem 3.1. For i = 1, 2, ..., n let ci be the ith column of b(A). The columns
ck+1, ..., cn are linearly independent and the coefficients d0, ..., dk−1 in (3.5) are given
by

ci = di−1ck+1 +
n∑

k+2

xijcj i = 1, 2, ..., k for some xij . (3.12)

The k-systems of equations in (3.12) is described by the augmented matrix(
ck+1

... ck+2
... . . .

... cn ‖ c1
... . . .

... ck

)
, (3.13)

which is 


c1,k+1 c1,k+2 . . . c1,n

c2,k+1 c2,k+2 . . . c2,n

...
... . . .

...
cn,k+1 cn,k+2 . . . cn,n







xi,k+1

xi,k+2

...
xin




=




c1i

c2i

...
cni




, (3.14)
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for each i = 1, 2, ..., k and xi,k+1 = di−1.

3.3.1 On The Construction of Systems of Equations

It is observed from (3.13) and (3.14) that the computation of the rank of b(A)
and the solution d = (d0, ..., dk−1), to (3.12) can be computed simultaneously.
Rearrange the columns of matrix b(A) so that the jth column of b(A) is the
n− (j − 1)th column of a new matrix L(0),

l0n−(j−1) = cj for j = 1, 2, ..., n. (3.15)

Reducing L(0) to upper row echelon form by s steps gives the matrix

L(s) =




l
(s)
11 l

(s)
12 . . . l

(s)
1r

... l
(s)
1,r+1 . . . l

(s)
1,r+k

...
... . . .

...
...

... . . .
...

0 0 . . . l
(s)
rr

... l
(s)
r,r+1 . . . l

(s)
r,r+k

0 0 . . . 0
... 0 . . . 0

...
... . . .

...
...

... . . .
...

0 0 . . . 0
... 0 . . . 0




, (3.16)

such that r = rank(L(0)). Let inv, be the inverse function. If k = n− r, the solution to
the coefficients of d(x) is given by

dk−i = l
(s)
r,r+iinv(l(s)rr ), (3.17)

dk = 1, (3.18)

for each i = 1, 2, ..., k. If r = n then degree of d(x)=0, which implies that GCD is a
unit element.

3.4 A General Algorithm

Let a(x) and b(x) be polynomials in the generalized form as in (1.4). The main
algorithm that applies the comrade matrix approach consists of the following
procedure:
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1. constructing the comrade matrix (3.3) associated with a(x).

2. applying the recursive equation (3.11) to construct the system of linear equation
described in 3.3.1.

3. reducing the coefficient matrix obtained from step 2 to upper echelon form and
finding the desired solution.

In constructing the nonmodular algorithms, the application of rational number
arithmetic is assumed. The modular approach can be applied at step 3 alone or from
an earlier step. In this section we therefore present the algorithms composing steps 1
and 2, considering the application of rational number arithmetic that will commonly
be used in the modular and nonmodular algorithms developed in later chapters.

3.4.1 On the Construction of the Comrade Matrix

The parameter lists for the algorithm CDEMOFP are alph, bet, gamm, a which
is of variable type Word (in list representation) and h which is a beta digit integer.
The arguments passed to these parameters have the following values:
alph = (α0, ..., αn−1) so, alph(i) = αi−1 for 1 ≤ i ≤ n, is the ith element of list alph.
Likewise is the declaration for the arguments bet and gamm respectively.
a = (a0, ..., an−1, 1) such that each ai is the coefficient of a(x) in the form (1.4) and
a(i + 1) = ai for i = 0 to n− 1 and a(n + 1) = 1.
Let A ∈ M(n, n, Q) be a matrix in array representation such that if aij = r/s ∈ Q then
Ai−1,j−1,0 = A[i− 1][j − 1][0] = r and Ai−1,j−1,1 = A[i− 1][j − 1][1] = s.
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Algorithm CDEMOFP

/*The algorithm construct the comrade matrix (3.3)*/

begin
Step 1: set aij = 0 for each i = 1, ..., n and j = 1, ..., n.

for i = 0 to n− 1 and j = 0 to n− 1, do set Ai,j,0 = 0 and Ai,j,1 = 1
Step 2: assign the diagonal entries for rows 1 to n− 1

for i = 0 to n− 2 do
t ← RNQ(−bet(i + 1), alph(i + 1))
if t = 0 then continue; else Ai,i,0 ← t(1) and Ai,i,1 ← t(2)

Step 3: assign the entries for ai,i−1 for rows 2 to n− 1.
for i = 1 to n− 2 do

t ← RNQ(gamm(i + 1), alph(i + 1))
if t = 0 then continue; else Ai,i−1,0 ← t(1) and Ai,i−1,1 ← t(2)

Step 4: assign the entries for ai,i+1 for rows 1 to n− 1.
for i = 0 to n− 2 do

if alph(i + 1) = 0 then continue
else Ai,i+1,0 ← alph2(i + 1) and Ai,i+1,1 ← alph1(i + 1)

Step 5: assign the entries for row n in columns j = 1 to n− 2
for j = 0 to n− 3 do

t ← RNQ(−a(j + 1), alph(n))
if t = 0 then continue; else An−1,j,0 ← t(1) and An−1,j,1 ← t(2)

Step 6: assign the entries an,n−1 and an,n.

for j = n− 2 to n− 1 do
if j = n− 2 then t ← RNQ(RNSUM(−a(j + 1), gamm(n)), alph(n))
if j = n− 1 then t ← RNQ(RNSUM(−a(j + 1),−bet(n)), alph(n))
if t = 0 then continue; else An−1,j,0 ← t(1) and An−1,j,1 ← t(2)

Step 7: convert array form to list form: A convert to comL

Step 8: output(comL)
end

In addition to the properties of the length of the integers given in [18] we derive the
following property that will be applied in the succeeding computing time analysis.

Proposition 3.1. Let x, y ∈ Z such that L(x) ∼ L(y) ∼ 1. Let ai be the coefficient of
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a in the input set P(u, v, n, (pi)n
i=0) described in Chapter 1 such that (pi) is the set of

Legendre basis. Then L(ai ± x

y
) ¹ L(

u

v
+ 1).

Proof:

L(ai ± x

y
) ≤ L(

u

v
+

x

y
)

= L(
yu + vx

vy
)

¹ L(u) + L(v) ∼ L(
u + v

v
)

Theorem 3.2. For the polynomials a and b in P(u, v, n, (pi)n
i=0) such that (pi) is the

set of Legendre basis, t+CDEMOFP(u, v, n) ¹ n2 + nL(u) + L(u)L(L(u)) + L(v).

Proof: The cost of each step consists of the total costs of the operations involved and
the cost of copying the digits of the integers involved.

1. Step 1 involves copying n2 entries. Each entry comprises of two components
which are 0 and 1. Therefore t1 ∼ n2.

2. Since t = 0 in step 2, t2 ∼ n.

3. tRNQ(γi, αi) ∼ 1.
∑n−2

i=1 tRNQ(γi, αi) ¹ n. For each 1 ≤ i ≤ n− 2,
γi

αi
=

i

2i + 1
.

The total cost of copying the numerators and denominators of the entries of the
comrade matrix A(i, i− 1) for 1 ≤ i ≤ n− 2 is denominated by L(2n + 1) L(n).
t3 ¹ n + L(n) ∼ n.

4. For 0 ≤ i ≤ n− 2,
1
αi

=
i + 1
2i + 1

. The cost of copying the numerators and

denominators equals
∑n−2

i=0 L(i + 1) +
∑n−2

i=0 L(2i + 1) ∼ L(2n− 1) ∼ 1Therefore,
t4 ∼ 1.

5. For 0 ≤ j ≤ n− 3, the step computes the values A(n− 1, j) =
−aj

αn−1
.

L(num(−aj)) ≤ L(u) and L(den(−aj)) ≤ L(v). αn−1 =
2n− 1

n
. Let

d = L(gcd(u, 2n− 1)). d ≤ L(2n− 1) ∼ 1. Let e = L(gcd(v, n)). e ≤ L(n) ∼ 1.
Therefore k = min(d, e) = 1. m = max(L(−aj), L(αn−1)) = L(u) and
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n = min(L(−aj),L(αn−1)) = 1. From Theorem ??, tRNQ(−aj , αn−1) ¹ L(u). For
each 0 ≤ j ≤ n− 3, the cost of copying the numerators and denominators of
A(n− 1, j) is dominated by L(u). The total cost of all these operations repeated
n− 3 times gives t ¹ nL(u).

6. Let x = −an−2 + γn−1, y = −an−1 − βn−1. We know that tRNNEG(an−2) ¹ L(u)
and tRNSUM(−an−2, γn−1) ¹ L(u)L(L(u)). Since both of the numerator and
denominator of γn−1 is of L(1) and L(num(−an−2)) ≤ L(u),
L(den(−an−2)) ≤ L(v), from Proposition 3.1, L(x) ¹ L(u) + L(v). From
L(αn−1) = 1, this gives tRNQ(x, αn−1) ¹ L(u) + L(v). The total cost in
computing

x

αn−1
is thus dominated by L(u)L(L(u)) + L(v). Similarly we obtain

tRNNEG(an−1) ¹ L(u). Since βi = 0 for all i, tRNSUM(−an−1,−βn−1) ∼ L(u).
From L(−an−1 − βn−1) ≤ L(u) + L(v), we obtain tRNQ(y, αn−1) ¹ L(u) + L(v).
So, the total cost of computing the values of

y

αn−1
is dominated by L(u). Now

let a =
u

v
+

n− 1
n

. L(x) ≤ L(a).
a

αn−1
=

nu + v(n− 1)
v(2n− 1)

≤ u + v

v
. Therefore, the

cost of copying their numerator and denominator of
x

αn−1
is dominated by

L(u) + L(v). The cost of copying the numerator and denominator of
y

αn−1
is

dominated by L(u). This gives t6 ¹ L(u)L(L(u)) + L(v).

7. For 0 ≤ i ≤ n− 2 and 0 ≤ j ≤ n− 2, L(A(i, j)) ∼ 1. For 0 ≤ j ≤ n− 3,
L(A(n− 1, j)) ≤ L(

u

v
) = L(u). From step 6,

L(A(n− 1, n− 2)) ≤ L(
u + v

v
) ¹ L(u) + L(v). Also

L(A(n− 2, n− 1)) ≤ L(
u

v
) = L(u). Thus,

t7 ¹ (n− 1)2 + nL(u) + L(v) ∼ n2 + nL(u) + L(v).
From steps 1 to 7, tCDEMOFP(u, v, n) ¹ n2 + nL(u) + L(u)L(L(u)) + L(v), from
which Theorem 3.2 is immediate.

3.4.2 The Coefficient Matrix for a System of Equations

The algorithm applies the recurrence relation (3.11) to construct the coefficient
matrix described in Theorem 3.12 and the new coefficient matrix (3.15). The
parameter lists for the algorithm CSFCDEM are alph, bet, gamm, b which is of variable
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type Word (in list representation) and h which is a beta digit integer. The arguments
passed to these parameters have the following values:
alph = (α0, ..., αn−1) so that alph(i) = αi−1 for 1 ≤ i ≤ n is the ith element of list
alph. The declaration for bet and gamm is similar.
b = (b0, ..., bm, ..., bn−1) such that each bi is the coefficient of b(x) in the form (1.4). So
b is the list representing an n× 1 vector. CMDE is the comrade matrix obtained from
Algorithm CDEMOFP.

Algorithm CSFCDEM

/*To construct the coefficient matrix in the form (3.15) via (3.11)*/

begin
Step 1: obtain the first row of coefficient matrix from b.

CS ← COMP(b, NIL)
Step 2: initializing and obtaining the second row of CS.

R01×n ← CS

R11×n ← MRNPROD(R01×n,MRNSPR(alph(1), CMDEn×n))
CS ← COMP(FIRST(R11×n), CS)

Step 3: apply recurrence equation for remaining rows of CS.
Step3a: composing ith row
for i = 3 to n do

Sn×n ← MRNSPR(alph(i− 1), CMDEn×n)
Tn×n ← MRNSPR(bet(i− 1), In×n)
U1×n ← MRNSPR(−gamm(i− 1), R01×n)
R1×n ← MRNSUM(MRNPROD(R11×n,MRNSUM(Sn×n, Tn×n)), U)
CS ← COMP(FIRST(R1×n), CS)
Step3b: initialization: to set R0 = R1
R0 ← NIL and R1 ← FIRST(R11×n) /*R1 in vector representation*/
for j = 1 to n do

R0 ← COMP(R1(j), R0) /*R0 is in vector representation*/
R0 ← INV(R0) and R01×n ← COMP(R0, NIL)
Step3c: to set R1 = R

(similar steps to Step 3b)
CS ← INV(CS)

Step4: integerize CS
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Step5: sorting columns of CS to obtain CSNEW as in (3.15)
Step6: output(CSNEW )
end

Referring to algorithm CSFCDEM, the matrix R01×n comprising a single row is
represented as a list comprising of a single list such as ((r1, ..., rn)). On the other hand
R0 is in vector form and is therefore represented as a single list of objects, that is
(r1, ..., rn). With this representation, R01×n can be obtained by applying the function
COMP(R0, NIL) where NIL is the empty list (). The conversion from vector form to
matrix form is required in the application of MRNSPR, MRNSUM or MRNPROD
which are the matrix rational number scalar product, matrix rational number product
and matrix rational number sum algorithm respectively. These auxiliary rational
number matrix operation algorithms are not presently available in SACLIB’s library
and are constructed for its application in the algorithms CDEMOFP and CSFCDEM.

The construction of algorithm CSFCDEM is based upon the recursive
equations [45],

R0 = (b0, ..., bm, bm+1 + .. + bn−1), (3.19)

R1 = R0(α0A), (3.20)

Ri = Ri−1(αi−1A)− γi−1Ri−2, (3.21)

for 2 ≤ i ≤ n− 1. In (3.19), bj = 0 for m < j ≤ n− 1 if m < n− 1. In (3.21), we
assume that βi = 0 for all i and is omitted from the equation. We begin by first
computing the length of Ri for each 0 ≤ i ≤ n− 1.

Lemma 3.1. Let the polynomials a and b be in P(u, v, n, (pi)n
i=0) such that (pi) is the

set of Legendre basis. Let A be the comrade matrix associated with a. Referring to

(3.19) - (3.21), L(Ri(j)) ≤ L(
f(u, v)
g(v)

) ¹ L(u) + L(v), for 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ n

where f and g are polynomials in the variables u or v with single precision coefficients
and with degree bound i + 1.

Proof: For 1 ≤ i, j ≤ n, let cij be the entries of the comrade matrix obtained from
algorithm CDEMOFP. But referring to steps 6 and 7 in the proof of Theorem 3.2,
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L(cij) ≤ L(z) such that z =
u + v

v
. Considering the values of the numerators and

denominators that will contribute to the greatest possible length and replacing an
element of single precision with 1, we have for 1 ≤ j ≤ n, L(R0(j)) ≤ L(

u

v
) and

L(R1(j)) ≤ L(
u

v
∗ z). For a fixed j, the function whose length dominates L(R0(j)) and

L(R1(j)) is a quotient of polynomials in u and v whose coefficients of length 1 and has
degree bounds 1 and 2 respectively. This gives L(R2) ≤ L(y) such that y =

u

v
∗ z2 +

u

v
,

a quotient of polynomials in u and v with coefficient of length 1 and degree bound
equals to 3. Proceeding by induction, suppose that for 1 ≤ j ≤ n, L(Rl−1(j)) ≤ L(x1)
and L(Rl−2(j)) ≤ L(x2) such that

x1 =
fl−1(u, v)
gl−1(v)

,

x2 =
fl−2(u, v)
gl−2(v)

,

such that fl−k, gl−k, k = 1, 2, has single precision coefficients and degree bounds equal
to l and l− 1 respectively. Then L(Rl)(j) ≤ L(y) such that y = x1 ∗ z + x2. Hence, y is

of the form
f(u, v)
g(v)

, where the coefficients of f and g are single precision integers with

degree bound equals to l + 1. Applying the properties of the length of the nonzero
integers, that is L(a± b) ¹ L(a) + L(b), L(ab) ∼ L(a) + L(b) and L(ab) ∼ bL(a), a ≥ 2
in the later, we then have for 0 ≤ i ≤ n− 1, and 1 ≤ j ≤ n, L(Ri(j)) ¹ L(u) + L(v)

Theorem 3.3. Let a, b ∈ P(u, v, n, (pi)n
i=0) with (pi) the Legendre basis. Then

t+CSFCDEM(u, v, n) ¹ n3L2(u)(L(q) + L(r)) such that q = max(r, nL(v)) and
r = L(u) + L(v).

Proof: Let t(V ) be the computing time to compute the components of the vector V

and let the jth component of the vector V be denoted V (j). Let A = (aij) be comrade
matrix obtained from Algorithm CDEMOFP.

1. From L(bi) ≤ L(u), 0 ≤ i ≤ m, t1 ¹ mL(u).

2. t(R0) ¹ mL(u). To compute

t(R1) = tMRNSPR(α0, A) + tMRNPROD(R0, α0A),
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(a) tMRNSPR(α0, A) =
∑n−1

i=1

∑n
j=1 tRNPROD(α0, aij) +

∑n
j=1 tRNPROD(α0, anj)

where L(aij) ∼ 1 for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n and L(anj) ¹ L(u) + L(v)
for 1 ≤ j ≤ n. Thus, tMRNSPR(α0A) ¹ n2 + n(L(u) + L(v))L(L(u) + L(v)).

(b) Let 1 ≤ j ≤ n. The jth column of R1 is given by
∑n

i=1 R0(i)α0aij . The
cost of computing R1(j) is given by

n∑

i=1

tRNPROD(R0(i), α0aij) +
n−1∑

i=1

tRNSUM(R0(i)α0aij , R0(i + 1)α0ai+1,j).

For each 1 ≤ i ≤ n, tRNPROD(R0(i), α0aij) ¹
(L(u) + L(v))L(u)L(L(u) + L(v)) ¹ L2(u)L(L(u) + L(v)). For each j, the
total cost of computing these products is dominated by
nL2(u)L(L(u) + L(v)). Taking L(R0(i)α0aij) ¹ L(u) + L(v) for each i and
j, tRNSUM(R0(i)α0aij , R0(i + 1)α0ai+1,j) ¹ (L(u) + L(v))2L(L(u) + L(v)) ¹
{L2(u) + L2(v)}L(L(u) + L(v)). The cost of the n− 1 sums is dominated by
n{L2(u) + L2(v)}L(L(u) + L(v)). Summing the cost for all 1 ≤ j ≤ n, the
total cost of computing the vector R1 is such that
t(R1) ¹ n2{L2(u) + L2(v)}L(L(u) + L(v)).

3. For 1 ≤ i, j ≤ n, the respective length of Ri−1(j) and αi−1cij is dominated by
L(u) + L(v). For 2 ≤ i ≤ n− 1, we compute the cost of computing row i + 1
given by the equation

Ri = Ri−1αi−1A− γi−1Ri−2.

For a fix value of i, the jth component of Ri is given by

Ri(j) =
n∑

k=1

Ri−1(k)αi−1akj − γi−1Ri−2(j)

The cost of computing
∑n

k=1 Ri−1(k)αi−1akj is dominated by
n(L(u) + L(v))2L(L(u) + L(v)).
L(

∑n
k=1 Ri−1(k)αi−1akj) ∼

∑n
k=1 L(Ri−1(k)αi−1akj) ¹ n(L(u) + L(v)).

L(γi−1Ri−2(j)) ¹ L(u) + L(v). Therefore,

tRNSUM(
n∑

k=1

Ri−1(k)αi−1akj ,−γi−1Ri−2(j)) ¹ n(L(u) + L(v))2L(L(u) + L(v)).
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For each 2 ≤ j ≤ n− 1, the total cost of computing Ri(j) is dominated by
n2(L(u) + L(v))2L(L(u) + L(v)). It follows that the cost of computing the vector
Ri for 2 ≤ i ≤ n− 1 is dominated by n3(L(u) + L(v))2L(L(u) + L(v)) = t′3

4. The integerization of CS in step 4 of algorithm CSFCDEM transforms the
rational number matrix CS to its row equivalent integer matrix CSNEW . For
each row i = 1 to n,

(a) find the integer least common multiple (Saclib ILCM) of the n denominators
of the n column elements. From Lemma 3.1, the denominators of Ri(j) for
0 ≤ i ≤ n− 1 and 1 ≤ j ≤ n, that will constitute the maximum length of
the elements of the comrade matrix is a polynomial g(v) with single
precision coefficients and degree, that is, dominated by L(v). Suppose that
at the first k − 2 iterations, we have computed the LCM of the integers
x1x2...xk−2 and xk−1 where xi constitute the denominators of a certain row
of A and suppose that the LCM is of the maximum possible length, which
is equal to x1x2...xk−1. At the end of the k − 1 iteration we compute the
least common multiple, that is lcm(x1x2...xk−1, xk) =

x1x2...xk−1xk

gcd(x1x2...xk−1, xk)
,

(refer to Theorem 1.4.8 in [46]). Applying the Euclidean algorithm to
compute the GCD and applying the results of Theorem 3 in [18], we have

tM(x1x2...xk−1, xk) ∼ L(x1x2...xk−1)L(xk)

∼ kL2(v) (3.22)

and

tE(x1x2...xk−1, xk) ¹ L(xk){L(x1...xk−1)− L(y) + 1}
¹ L(xk){L(x1) + ... + L(xk−1)− L(y) + 1}
¹ kL2(v) (3.23)

where y = gcd(x1x2...xk−1, xk) and L(xi), L(y) ¹ L(v). Likewise, it can be
calculated from the results for the computing time of the classical division
algorithm [18], which gives tD(x1x2...xk, y) ¹ kL2(v). Thus, the computing
time for the n− 1 iterations in computing the LCM of a row is dominated
by nL2(v). The computing time for n rows is then dominated by n2L2(v).
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(b) multiply the LCM of the denominators of row i with each of the elements in
row i to integerize the row. Suppose that the LCM of a row is x1x2...xn

whose length is therefore dominated by nL(v). The length of each
numerator of A is dominated by L(u) + L(v). For each 1 ≤ i, j ≤ n,

tRNPROD(y, aij) ¹ n(L(u) + L(v))L(v)L(max(L(u) + L(v), nL(v)))

which gives a total cost of n3(L(u) + L(v))L(v)L(max(L(u) + L(v), nL(v))).

The analysis implies that t4 is dominated by n3{L(u)L(v) + L2(v)}L(q) such that
q = max(L(u) + L(v), nL(v)).

tCSFCDEM(x) ¹ n3(L2(u) + L2(v))L(q) + n3(L2(u) + L2(v) + L(u)L(v))L(r). Thus the
computing time for CSFCDEM is cubic, that is

tCSFCDEM(x) ¹ n3L2(u)(L(q) + L(r)) (3.24)

such that q = max(r, nL(v)) and r = L(u) + L(v).

3.5 Concluding Remark

In the computing time analysis, we let P of the the set generalized polynomials
relative to an orthogonal basis (pi(x))n

i=0 and decompose P into

P(u, v, n, (pi)n
i=0) = {a =

k∑

i=0

aipi(x) ∈ P : |num(ai)| ≤ u, 0 < den(ai) ≤ v,

3 gcd(u, v) = gcd(num(ai), den(ai)) = 1 and k ≤ n}.
where num and den is the numerator and denominator of ai respectively. For high
degree polynomials the coefficients of a will involve multiprecision integers or rational
numbers. However, the defining terms always remain single precision, which reduce
the complexity of the computations involved in constructing the comrade matrix and
the corresponding systems matrix. If the input polynomials belong to
P(u, v, n, (pi)n

i=0), the computing time analysis shows that the cost of the algorithm for
constructing the comrade matrix is dominated by n2. The cost of the algorithm for
constructing the systems matrix is given by tCSFCDEM(x) ¹ n3L2(u)(L(q) + L(r)) such
that q = max(r, nL(v)) and r = L(u) + L(v). If L(q) > L(r) and q = nL(v), then
tCSFCDEM(x) ¹ n4L2(u)L(v).
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CHAPTER IV

THE NONMODULAR GENERALIZED POLYNOMIAL GCD
COMPUTATIONS

4.1 Introduction

Referring to the general algorithm described in 3.4, steps 1 and 2 involve the
application of algorithm CDEMOFP and algorithm CSFCDEM in the construction of
the comrade matrix and the formulation of the coefficient of the corresponding
systems of equations (3.12). These basic algorithms directly apply the rational number
or multiprecision integer arithmetic which are based on the theories that contribute to
its derivation. As a consequence, a natural approach to developing a nonmodular
algorithm for the generalized polynomial GCD computation using the comrade matrix
approach depends on the nonmodular approach to solving step 3 of the general
algorithm, which reduces the matrix coefficient of the systems obtained from step 2 to
its upper echelon form. The desired coefficients are then obtained in Q by a direct
rational number computation in an equation involving entries of the last nonzero row
of the echelon form described in the form (3.17) and (3.18) in 3.3.1.

At the beginning of this chapter we elaborate on the techniques involved in the
exact computation of the row echelon form applied in step 3 of 3.4. At the end of this
chapter the corresponding nonmodular algorithms for the computation of the GCD of
generalized polynomials in an orthogonal basis are described.

4.2 The Computation of Row Echelon Form of a Matrix

In this section, we present the one and two step Gauss elimination method,
which we referred to as the single or double step Gauss elimination method
respectively.
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4.2.1 Single Step Gauss Elimination

Let A ∈ M(m,n,Z) and

A(0) = [a(0)
ij ],

a−1
00 = 1,

a
(k)
ij = a

(k−1)
kk a

(k−1)
ij − a

(k−1)
kj a

(k−1)
ik /a

(k−2)
k−1,k−1, (4.1)

k + 1 ≤ i ≤ m, k + 1 ≤ j ≤ n.

for k = 1, 2, ...,m− 1, with the convention that the elements a
(k)
lk , such that

k + 1 ≤ l ≤ m is assumed to be zero at the end of step k. Using standard terminology,
at step k, the element a

(k−1)
kk is called the pivot element and row k is called the pivot

row, (refer to [26]). In the following matrix reduction algorithms to its RE form, let
Ai,j be the abbreviation for the array A[i][j]. We then have for 1 ≤ i ≤ m, 1 ≤ j ≤ n,
aij = Ai−1,j−1.

Algorithm SSGSE

/*The algorithm reduces the matrix A to upper echelon form via (4.1).*/
Input:
A : array representation of an integral matrix of size m× n.
Output:
Upper Echelon form of A

begin
Step1: ( initialization )

divisor ← 1
Step2: ( reduction step )

for k = 0 to m− 2 do
/*step 2a: find a nonzero pivot*/
p ← k

while Ap,k = 0 and p < m− 1 do
p ← p + 1

if p ≤ m− 1 and Ap,k 6= 0 then
if p > k then interchange rows p and k
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/*step 2b: reduce so that the elements under pivot row in pivot column is zero*/
for i = k + 1 to m− 1

for j = k + 1 to n− 1 do
Ai,j ← Ak,kAi,j −Ai,kAk,j/divisor

Ai,k ← 0
divisor ← Ak,k

/*since p > m− 1, find pivot element in the next column*/
end

4.2.2 Double Step Gauss Elimination

The two step fraction free scheme [26] is described.

a−1
00 = 1, (4.2)

a
(0)
ij = A(0), (4.3)

c
(k−2)
0 = a

(k−2)
k−1,k−1a

(k−2)
kk − a

(k−2)
k−1,ka

(k−2)
k,k−1/a

(k−3)
k−2,k−2, (4.4)

c
(k−2)
i1 = a

(k−2)
k−1,ka

(k−2)
i,k−1 − a

(k−2)
k−1,k−1a

(k−2)
ik /a

(k−3)
k−2,k−2, (4.5)

c
(k−2)
i2 = a

(k−2)
k,k−1a

(k−2)
ik − a

(i,k−1)
kk a

(k−2)
k−2 /a

(k−3)
k−2,k−2, (4.6)

ak
ij = c

(k−2)
0 a

(k−2)
ij + c

(k−2)
i1 a

(k−2)
kj + c

(k−2)
i2 a

(k−2)
k−1,j/a

(k−3)
k−2,k−2, (4.7)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n;

a
(k−1)
kk = c

(k−2)
0 , (4.8)

a
(k−1)
kl = a

(k)
kl

= a
(k−2)
k−1,k−1a

(k−2)
kl − a

(k−2)
k−1,l a

(k−2)
k,k−1/a

(k−3)
k−2,k−2, (4.9)

for k + 1 ≤ l ≤ n,

which is applied for k = 2, 4, ..., 2 ∗ floor(
m− 1

2
). When n is even, the last elimination

is performed by the single step method.

For the input matrix A = (aij) ∈ M(m,n,P(d)), let the vector valued function
row be define such that row(i) = (ai+1,1, ..., ai+1,n) for each integer 0 ≤ i ≤ m− 1. The
algorithm DSGSE is given as:
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Algorithm DSGSE

/*The algorithm reduces the matrix A to upper echelon form via (4.7) and (4.9).*/
Input: A: array representation of an integral matrix of size m× n.
Output: Upper Echelon form of A

begin
Step 1: divisor ← 1
Step 2: (pivoting and reducing)

for (k = 1, k ≤ 2 ∗ floor(
m− 1

2
)− 1; k+ = 2)

Step 2a: (find a nonzero pivot) set q = 1
Step 2b: set p = k

while p ≤ m− 1 do
c0 ← Ak−1,k−1Ap,k −Ak−1,kAp,k−1/divisor

if c0 6= 0 then break(i.e goto Step 2c)
else p ← p + 1

Step 2c:
if p > m− 1 and k + q ≤ m− 1 then

interchange row k − 1 with row k + q

q ← q + 1
goto Step 2b

Step 2d :
if k + q > m− 1 then apply Algorithm SSGSE so that row k − 1 is the pivot row
Step 2e: (elements in columns k-1 and k below respective pivot row set to 0 )
if c0 6= 0 and p ≤ m− 1 then

if p > k then interchange row k with row p

for i = k + 1 to i = m− 1 do (work on row k+1 to row m-1 )
c1i ← Ak−1,kAi,k−1 −Ak−1,k−1Ai,k/divisor

c2i ← Ak,k−1Ai,k −Ak,kAi,k−1/divisor

for j = k + 1 to n− 1 do
Ai,j ← c0Ai,j + c1iAk,j + c2iAk−1,j/divisor

for j = k − 1 to k do
set Ai,j = 0

for l = k + 1 to n− 1 do (work on row k)
Ak,l ← Ak−1,k−1Ak,l −Ak−1,lAk,k−1/divisor

Ak,k−1 ← 0
Ak,k ← c0; divisor ← Ak,k

end
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4.2.3 The Rational Number Gauss Elimination

The Gauss elimination approach in the preceding section reduces an integral
matrix to its row echelon form by applying integer addition and multiplication and
exact integer quotient, in order to preserve the integer entries of the echelon form
matrix. It is also possible to reduce a matrix over the rational number without first
transforming the matrix to a row equivalent integer matrix but the complexity of
rational number arithmetic has to be applied. This approach shall not be omitted as it
can be regarded as a basis of comparison with the less complex algorithms involving
exact integer and modular arithmetic. The scheme for the rational number Gauss
elimination takes a naive approach in reducing the elements underneath the pivot
element to zero. Let A ∈ M(m,n, Z) be such that

A(0) = [a(0)
ij ],

a
(k)
ij = a

(k−1)
kk a

(k−1)
ij − a

(k−1)
kj a

(k−1)
ik , (4.10)

k + 1 ≤ i ≤ m, k + 1 ≤ j ≤ n.

for k = 1, 2, ...,m− 1, with the convention that the elements a
(k)
lk such that

k + 1 ≤ l ≤ m is assumed to be zero at the end of step k as adopted by the single step
Gauss elimination scheme whereby at step k, the element a

(k−1)
kk is called the pivot

element and row k is called the pivot row.

Algorithm RNGSE

/*The algorithm reduces the matrix A to upper echelon form via (4.1).*/
Input:
A : array representation of an integral matrix of size m× n.
Output:
Upper Echelon form of A

begin
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for k = 0 to m− 2 do
/*step 1a: find a nonzero pivot*/
p ← k

while Ap,k = 0 and p < m− 1 do
p ← p + 1

if p ≤ m− 1 and Ap,k 6= 0 then
if p > k then interchange rows p and k

/*step 1b: reduce so that the elements under pivot row in pivot column is zero*/
for i = k + 1 to m− 1 do

for j = k + 1 to n− 1 do
Ai,j ← Ak,kAi,j −Ai,kAk,j

Ai,k ← 0
/*since p > m− 1, find pivot element in the next column*/

end

4.3 On the Nonmodular OPBGCD Algorithms

From the general algorithm of 3.4, a general nonmodular algorithm for the
exact computation of the GCD of two polynomials relative to an orthogonal basis is
described.

Algorithm OPBGCD (Orthogonal-Basis Polynomial GCD)

Input:
α = (α0, ..., αn−1), β = (β0, ..., βn−1) and γ = (γ0, ..., γn−1).
The polynomials, a = (a0, a1, ..., an−1, 1), b = (b0, b1, ..., bm, ..., bn−1).
h = n− 1.
Output:
The monic generalized polynomial c = gcd(a, b) of degree k.

begin
Step1: ( Calculation of the comrade matrix )

CMR ← CDEMOFP(α, β, γ, a, b, n− 1)

Step2: ( Calculation of the systems coefficient matrix )
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CSY S ← CSFCDEM(α, β, γ, b, CMR, n− 1)

Step3: ( Find RE form of CSY S and solution to GCD of a and b )

Step4: output(solution)
end

Algorithm OPBGCD can be modified by the application of a different
technique in reducing the array representation of the matrix CSY S obtained from
step 2, to its row echelon form. This leads to the construction of 3 different
nonmodular algorithms, namely the OPBGCD-SSGSE, OPBGCD-DSGSE and the
classical OPBGCD-RNGSE algorithms. The algorithms derived its name from the
three different matrix reduction techniques described in 4.2. In the following
discussion, we describe the subalgorithm SSGSE-SOLN, which is the subalgorithm
called in step 3 of OPBGCD-SSGSE algorithm. The other two algorithms, namely the
OPBGCD-DSGSE and OPBGCD-RNGSE calls the DSGSE-SOLN algorithm and
RNGSE-SOLN algorithm respectively, which are extensions of the DSGSE and
RNGSE algorithms respectively. The reduction algorithms are extended in order to
compute the coefficients of the GCD from the RE form of the reduced matrix.

Algorithm SSGSE-SOLN

/*The algorithm reduces the matrix A to upper echelon form via (4.1)
and computes gcd(a, b)*/
Input:
A : array representation of an integral matrix of size m× n.
Output:
c = gcd(a, b) such that ci ∈ Q.

begin
Step1: ( initialization )

divisor ← 1
Step2: ( reduction step )

for k = 0 to m− 2 do
/*step 2a: find a nonzero pivot*/
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p ← k

while Ap,k = 0 and p < m− 1 do
p ← p + 1

if p ≤ m− 1 and Ap,k 6= 0 then
if p > k then interchange rows p and k

/*step 2b: reduce so that the elements under pivot row in pivot column is zero*/
for i = k + 1 to m− 1 do

for j = k + 1 to n− 1 do
Ai,j ← Ak,kAi,j −Ai,kAk,j/divisor

Ai,k ← 0
divisor ← Ak,k

/*since p > m− 1, find pivot element in the next column*/
Step3: ( Calculate the solution )

degd ← n− r

for i = 1 to degd do
d(degd− i) ← RNQ(Ar−1,r−1+i, (Ar−1,r−1))

d(degd) ← 1
isoln ← (d(0), ..., d(degd), 1)

Step4: output(isoln)
end

4.4 Empirical Computing Time Analysis

In all the empirical tests for the nonmodular and modular techniques, the
algorithms are coded in SACLIB version 2.1, Suse Linux 7.0 run on an i386 machine,
that is, an intel based Pentium III, 800 Mhz PC. SACLIB [20] is a library of C
programs for computer algebra derived from the Fortran version SAC2. The
polynomials for the test problems are generated by converting power series polynomials
with random integer roots less than 20, which are of variable multiplicity. The
empirical computing time for the nonmodular and modular algorithms are observed
for input polynomials of degree up to 100, with multiprecision integer coefficients up
to 153 decimal digits. Three classes of problems for the Legendre polynomial basis are
examined; that is the small GCD and big GCD solutions and the relatively prime
polynomials. For the small GCD solutions, the degree of the GCD is slightly less then
half the degree of the input polynomials. Observing the class of dense polynomials and
systems, the degree of b is taken to be one less than the degree of a. Let c = gcd(a, b).
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4.4.1 Computing Time for OPBGCD-SSGSE and OPBGCD-DSGSE

The timing results (in seconds) for the OPBGCD-SSGSE and
OPBGCD-DSGSE for the three classes of problems are tabulated below:

Table 4.1: Timing Results (in secs) for the Legendre Polynomial Basis: Small GCD Case

deg(a) deg(c) OPBGCD-DSGSE OPBGCD-SSGSE

20 3 0.23 0.29

40 15 10.44 14.22 (+N2000000)

60 25 133.96 (+N2000000) 197.68 (+N2000000)

80 38 599.48 (+N4000000) 975.20 (+N4000000)

100 38 3859.00 (+N8000000) -

Table 4.2: Timing Results (in secs) for the Legendre Polynomial Basis: Big GCD Case

deg(a) deg(c) OPBGCD-DSGSE OPBGCD-SSGSE

20 16 0.06 0.06

40 33 1.11 1.11

60 54 3.13 3.89

80 72 13.93 19.81

100 85 134.00 (+N4000000) 170.61 (+N4000000)

Remark: In the above results, +N2000000 allocates an additional two million words
of memory to list storage. If no memory allocation is written, +N1000000 words of
memory to list storage have been used, which is the allocation by default.

From the empirical results in Table 4.1, the ratio of the average computing time for
OPBGCD-SSGSE to OPBGCD-DSGSE is approximately equals to 1.6. The ratio of
the average computing time of OPBGCD-SSGSE to OPBGCD-DSGSE for the big
GCD case is reduced to about 1.3. The performance of OPBGCD-DSGSE for the
three different class of problems is shown in Table 4.4.
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Table 4.3: Timing Results (in secs) for the Legendre Polynomial Basis: Relatively Prime Case

deg(a) OPBGCD-DSGSE OPBGCD-SSGSE

20 0.34 0.43

40 46.4 (+N2000000) 67.80 (+N2000000)

60 197.5 (+N2000000) 300.78 (+N2000000)

80 1884.00 (+N4000000) -

Table 4.4: OPBGCD-DSGSE Timing Results (in secs) for the Legendre Polynomial Basis

deg(a) small GCD big GCD relatively prime

20 0.23 0.06 1.00

40 10.44 1.11 46.4

60 133.96 3.13 197.5

80 599.48 13.93 1884.00

100 3859.00 134.00 -

4.5 Discussions

The empirical results emphasize the superiority of OPBGCD-DSGSE over
OPBGCD-SSGSE. The results correspond to the superiority of the double step Gauss
elimination algorithm which is about twice the efficiency of the single step Gauss
elimination algorithm. As a comparison in the performance of OPBGCD-DSGSE
algorithm between the three different class of problems, the results show that for a
fixed degree of the polynomial inputs a, the algorithm takes the shortest time in the
big GCD case, when the rank of the corresponding systems coefficient matrix is small
in size. In other words, for same degree inputs, the execution time for the relatively
prime case (rank=n = deg(a)) is greater than the small GCD case (big rank but
smaller than n) which is in fact also greater than the big GCD case (small rank).
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CHAPTER V

A MODULAR GENERALIZED POLYNOMIAL GCD COMPUTATION

5.1 An Introduction to the Modular Approach

The following discussion is based on the theories that have been established in
Barnett [5] and [9]. Consider the situation when the polynomials a(x) and b(x) are in
the generalized form (1.4), such that the degree of a is greater than or equal to degree
of b. We refer to the general algorithm described in 3.4 involving the comrade matrix
approach which comprises of:

1. constructing the comrade matrix (3.3) associated with a(x).

2. applying the recursive equation (3.11) to construct the systems of linear
equations described in 3.3.1.

3. reducing the coefficient matrix in step 2 to upper echelon form and finding the
desired solution.

From the procedure described above, it is observed that the incorporation of
the modular technique is possible at 3 different stages, that is either from the stage of
the construction of the comrade matrix at step 1 onwards, or from the application of
the recursive equation at step 2 onwards, or solely from step 3 which reduces the
matrix obtained from step 2 (which may include multiprecision integer entries) to its
row echelon form followed by the computation of the coefficients of the GCD. The
application of the modular approach computes the solution to the GCD in several
finite fields which eventually converges to the true solution when the bound for the
solution has been exceeded. The method involves the application of 2-congruence
Chinese remainder algorithm (CRA) followed by the rational number reconstruction
algorithm (RNRA), since the true solution is in the form of a monic generalized
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polynomial with rational number coefficients. In this Chapter, we present a modular
technique that applies modular arithmetic only at step 3, that is, in the Gauss
elimination procedure on a matrix A (mod pi) followed by the computation of the
solution gcd (mod pi), for i = 1, ..., n for some n.

The algorithm MOPBGCD in [?] suggests a termination test that can
eliminate the application of unlucky primes. The algorithm [?] has not been tested for
polynomials with multiprecision coefficients. A complete form of the application of the
modular approach is presented in the following algorithm.
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5.2 Algorithm MOPBGCD

Input:
The defining terms αi, βi and γi for 0 ≤ i ≤ n− 1.
The generalized polynomial, a = (a0, a1, ..., an−1, 1).
The generalized polynomial b = (b0, b1, ..., bm, ..., bn−1), m ≤ n.
Output:
The monic generalized GCD c such that c = gcd(a, b) is of degree k.

begin
Step1: ( Calculation of the comrade matrix )

CMR ← CDEMOFP(α, β, γ, a, b, n− 1)

Step2: ( Calculation of the systems coefficient matrix )
CSY S ← CSFCDEM(α, β, γ, b, CMR, n− 1)

Step3: ( Initialization )
set k = 1 and set n = 1

Step4: ( Chinese remainder algorithm )
find a prime p0 and the matrix CSY S (mod p0)
find the reduced matrix and the solution C0 in Zp0

if deg(C0) = 0 then output(1)
set pnew = p0 and set Cnew = C0

Step5:
Step 5a:
set k = k + 1
find a prime p0 and the matrix CSY S (mod p0)
find the reduced matrix and the solution C0 in Zp0

if deg(C0) > deg(Cnew) then(p0 is unlucky. Find another prime)
set k = k − 1; goto Step5

else if deg(C0) < deg(Cnew) then(all previous primes unlucky)
set k = 1; n = 1; goto step4

Step 5b:
Solve for the 2-congruence CRA :

C1
∼= C0 (mod p0) and C1

∼= Cnew (mod pnew)
set Cnew = C1 and set pnew = p0 ∗ pnew

if k ≤ 2n then goto step5

Step6: ( rational number reconstruction )
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Step7: ( if rational reconstruction fails )
set n = n + 1; goto step5

Step8: ( divisor test and preparing output )
if test true then output( solution )
else

if there is still enough primes then
set n = n + 1 and goto Step 5

else (the primes are exhausted)
output( all primes were unlucky )

end

In short, CSFCDEM applies a recursive equation involving the defining terms
and the comrade matrix resulting as the matrix coefficient of a certain systems of
equations. This rational number matrix coefficient obtained from the recursive
equations is transformed into an equivalent integral matrix CSY S, which is returned
by CSFCDEM. In this approach, steps 1 and 2 applies rational number and
multiprecision integer arithmetic operations.

5.2.1 The Selection of Primes

The MOPBGCD requires a list of distinct odd single precision primes. The list
can be generated by the application of SACLIB’s function DPGEN(m, k) so that the
prime pi in the list is such that m ≤ pi < m + 2k. SACLIB2.1 also provides such a list
called LPRIME. The list LPRIME is used in the MOPBGCD algorithm and is such
that LPRIME = {536830337, ..., 536870909}. There are 2055 elements in this list
where each prime pi is nearly as large as the maximum single precision integer.
MOPBGCD calls for the subroutine FDPRIME which calls for LPRIME(i), the ith
element of LPRIME. For each row 1 ≤ i ≤ n of the matrix A obtained from the
subroutine CSFCDEM, the element aij of each column 1 ≤ j ≤ n is converted to aij

(mod pi) ∈ GF(pi) by applying SACLIB’s function MDHOM. If there exists a single
row such that all the column elements (mod pi) are equal to 0, the process of taking
the homomorphic images is terminated and a new prime is selected. The whole
procedure is then repeated until there is no single row whose column elements are all
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divisible by the selected prime. A (mod pi) is thus obtained and applied to the
subroutine MGSEGCD. By this technique we are able to simultaneously check that
the homomorphic images of the elements of A does not alter the rank of the matrix A.

5.2.2 Finding the Row Echelon Form and Solution in GF(p)

The algorithm reduces the matrix A (mod p) to upper echelon form in GF(p)
and computes the coefficients of the GCD in GF(p).

Algorithm MGSEGCD

Input:
A : array representation of an m× n matrix in GF(p).
Output:
isoln = (d(0), ..., d(deg(d)), 1), the coefficients of gcd(a, b) (mod p).

begin
Step 1: ( reduction step )

for k = 0 to m− 2 do
/*step 1a: find a nonzero pivot*/
p ← k

while Ap,k = 0 and p < m− 1 do
p ← p + 1

if p ≤ m− 1 and Ap,k 6= 0 then
if p > k then interchange rows p and k

/*step 1b: reduce so that the elements under pivot row in pivot column is zero*/
for i = k + 1 to m− 1 do

for j = k + 1 to n− 1 do
Ai,j ← (Ak,k ∗Ai,j −Ai,k ∗Ak,j) (mod p)

Ai,k ← 0
/*since p > m− 1, find pivot element in the next column*/

Step2: calculate the rank r of A
Step3: ( calculate the solution (mod p))

degd ← n− r

for i = 1 to degd do
d(degd− i) ← Ar−1,r−1+i ∗ INV(Ar−1,r−1) (mod p)

d(degd) ← 1
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isoln ← (d(0), ..., d(degd), 1)
Step4: output(isoln) end

The computation of Ai,j (mod p) ← (Ak,k ∗Ai,j −Ai,k ∗Ak,j) (mod p) at step 1b
applies SACLIB’s function MDSUM, MDNEG and MDPROD which computes the
sum, negative and product of elements in GF(p) for single precision prime p. Let A be
the RE form of the matrix obtained from step 1. The rank of A can be calculated by
checking if aij is 0, for each i from m to 1 and for each column 1 ≤ j ≤ n. If ars for
some s, is the first nonzero element encountered, then rank of A is r. Obviously, since
all the computations in GF(p) is of order 1, the computing time of step 1 is dominated
by m2n. The computation of the rank is dominated by mn and the computation of
the solution is dominated by degd ¹ n. If m = n then tMGSEGCD ¹ n3.

5.2.3 The Application of CRA to MOPBGCD Algorithm

Step 5 of algorithm MOPBGCD dominates the cost of applying the Chinese
remainder algorithm. Let γ be the number of good primes used. Assuming that all the
primes are of good reduction, we compute the cost of the (k − 1)st iteration of the
CRA as follows:

1. if |CSY S|∞ then the cost of computing CSY S (mod pk) is dominated by
n2L(C).

2. The cost of finding the solution ck (mod pk) where

ck (mod pk) = (dk,0 (mod pk), dk,1 (mod pk), ..., dk,δ (mod pk))

is the cost of applying algorithm MGSEGCD which is dominated by n3 + δ.

3. Let Ck be the solution to the (k − 1)st iteration of the CRA. The cost of
computations in step 5b is the cost of solving the 2-congruence CRA given by

c ∼= ck (mod pk),

c ∼= Ck−1 (mod Pk−1),
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such that Ck−1 is the solution modulo Pk−1 = p1p2...pk−1 obtained from the
(k − 2)st iteration. Ck is obtained by solving

xk−1 = INV(Pk−1 (mod pk), pk)(ck − Ck−1 (mod pk)) (mod pk),

Ck = Ck−1 + xk−1Pk−1. (5.1)

The cost of computing xk−1 is dominated by L(Pk−1). Now,

Ck−1 = x0 + p1x1 + ... + p1p2...pk−2xk−2

≤ p1 − 1 + p1(p2 − 1) + ... + p1p2...(pk−1 − 1)

= Pk−1,

which implies that the computing time for computing Ck for the (k − 1)st
iteration of the CRA is dominated by L(Pk−1). Since each xk−1 and Ck of (5.1)
has δ terms, the cost of computing these terms is dominated by δL(Pk−1)

Therefore the cost of computing step 5, if γ primes are used is such that
t5 ¹ γ(n2L(C) + n3 + δL(p1p2...pγ)).

Let a and b be in the generalized form such that gcd(a, b) = d and
|num(di)| < D, 0 < den(di) < D. Let n1 be number of primes of good reduction used.

Then, D <
√

M
2 such that M = p1...pn1 . From M > 2D2 and taking the least possible

prime, i.e pi = 2, we have 2n1 > 2D2 ⇔ n1 > 1 + 2log2(D). So, if p > 2 then
n1 ≤ 2 log2(D) + 2 ∼ log2(D). The total cost of applying the CRA is dominated by
log2(D)(n2L(C) + n3 + δL(M)) such that M = p1p2...plog2(D), that is when taking
γ = log2(D).

5.2.4 The Rational Number Reconstruction Algorithm

Given u ∈ GF(M) such that M is the product of several primes, the algorithm
finds the integers a and b that satisfies a ∼= ub (mod M) and outputs a solution if it
exists or outputs NIL if the solution does not exist. MOPBGCD applies SACLIB’s
function RNFMR to reconstruct rational numbers from the coefficients of the GCD
which is an output of MILLCRA obtained in GF(M). If the number of primes
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composing M is not sufficient, we abort the attempt to find the rest of the coefficients
of the GCD. It can be shown that shown that the computing time for the classical
rational number reconstruction algorithm, given that u ∈ GF(M) is dominated by
L(u)L(M) + L2(M). If the degree of GCD d is δ then the total cost for each execution
is dominated by δL2(M).

If k is the number of times that the rational number reconstruction algorithm is
attempted, that is for every 2k + 1, we therefore have k ¹ log2(log2(D)). The total
cost of applying the RNRA to obtain a correct solution if all the n1 primes are lucky is
dominated by δ log2(log2(D))L2(M). In this case, the computing time for the
application of CRA and RNRA algorithms is dominated by

log2(D)(n2L(C) + n3 + δL(M)) + δ log2(log2(D))L2(M)

¹ L(D)(n2L(C) + nL2(M) + n3)

¹ n3L(D)(L(C) + L2(M))

such that M = p1p2...pL(D). Note that log2(D) ≤ log2(D) + 1 ∼ L(D).

5.2.5 The Termination Criterion

Once the function RNFMR returns a polynomial with all of its coefficients
having a solution, MOPBGCD applies a divisor test to check if the candidate solution
divides each of the input polynomial. Let gcd(a, b) = d such that deg(d) = δ. The
OPDIV algorithm described in the preceding chapter generates the generalized
polynomial remainder sequence (a = r0, r1, ..., rk+1), in which ri+1 is the remainder
when ri is divided by xdeg(ri)−δ ∗ d and r0 = a. Assuming classical matrix
multiplication, the cost of obtaining the deg(ri) + 2 components of xdeg(ri)−δ ∗ d,
comprising the coefficients of the remainder is dominated by deg(ri)3 ¹ n3. Summing
up the cost for 1 ≤ i ≤ n− δ gives a total cost that is dominated by n3. We therefore
claim in ?? that OPDIV is quartic in n, where n is the degree bound of the input
polynomials. However, further work will be required for finding the computing time
bound in terms of the parameters of its input variables.
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5.3 Computing Time Results for Algorithm MOPBGCD

In this section we examine the theoretical and empirical computing time analysis of
the modular algorithm MOPBGCD.

5.3.1 Theoretical Computing Time Analysis

We tabulate the computing time results that have been obtained for the
respective subalgorithms. For the analytical results in Table 5.1, the input

Table 5.1: Computing Time Analysis for the Legendre Basis Case

Algorithm Dominating Function

CDEMOFP n2 + nL(u) + L(u)L(L(u)) = t′1
CSFCDEM n3L2(u){L(max(L(r), nL(u))) + L(L(u) + L(v))} = t′2
CRA & RNRA n3L(D)(L(C) + L2(M)) = t′3

polynomials represented relative to the generalized basis are of the form
a, b ∈ P(u, v, n, (pi)n

i=0) where (pi) is the set of Legendre basis. Suppose c = gcd(a, b)
such that deg(c) = δ and |num(ci)| < D, 0 < den(ci) < D. We let M = p1p2...pn1 be
primes of good reduction, so that n1 ¹ log2(D). Comparing t′1 + t′2 and t′3, we have

t′1 + t′2
t′3

=
L2(u)(L(q) + L(r))

L(D)(L(C) + L2(M))
. (5.2)

where q = max(L(r), nL(u)) and r = L(u) + L(v). The result (5.2) depicts the
efficiency of the modular technique applied in the Gauss elimination procedure and
calculating the solution to the problem, in comparison with the rational number
computations applied in obtaining the comrade and systems coefficient matrix.

5.3.2 Empirical Computing Time Analysis

The timing results (in seconds) of algorithm MOPBGCD for the three classes
of problems are given in the following tables.
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Table 5.2: MOPBGCD for the Legendre Polynomial Basis: Small GCD Case

deg(a) deg(c) maxdigit{ai, bi} execution time (secs) no. of primes memory
MOPBGCD

20 3 30 0.07 3 default

40 15 59 0.68 5 default

60 25 88 3.09 9 default

80 38 113 9.07 17 default

100 38 153 17.7 17 +N2000000

Table 5.3: MOPBGCD for the Legendre Polynomial Basis: Big GCD Case

deg(a) deg(c) execution time (secs) no. of primes memory
MOPBGCD

20 16 0.06 5 default

40 33 0.86 17 default

60 54 3.68 33 default

80 72 8.74 33 default

100 85 19.77 33 +N2000000

As in 4.4.1, +N2000000 allocates an additional two million words of memory to
list storage. The default allocation is 1000000 words. As expected, the big GCD case
requires more primes and execution time compared to the small GCD case. For a fixed
degree of the polynomials tested, although the number of primes required for the big
GCD case is about twice that of the small GCD case, the differences in computing
time or space required in the two cases is not so significant. For the relatively prime
case, the program terminates upon encountering a solution c such that deg(c) = 0,
since the degree of the actual solution cannot be any smaller. Unless a bad prime is
encountered before this actual solution is obtained, in which case, the rank of the
systems coefficient matrix is less than n, the number of primes used will be equal to 2.
Therefore, the relatively prime case may be expected to consume the shortest time,
assuming that the first encounter is a good prime. The theoretical computing time
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Table 5.4: MOPBGCD for the Legendre Polynomial Basis: Relatively Prime Case

deg(a) execution time (secs)
MOPBGCD

20 0.07

40 1.06

60 1.83

80 6.49

Table 5.5: MOPBGCD Timing Results in secs for the Legendre Polynomial Basis

deg(a) small GCD big GCD relatively prime

20 0.07 0.06 0.07

40 0.68 0.86 1.06

60 3.09 3.68 1.83

80 9.07 8.74 6.49

100 17.77 19.74 -

results of the preceding section, compares the computing time required by the rational
number algorithms (in steps 1 and 2 of 3.4), to the modular algorithm which applies
the CRA and RNRA algorithms prior to the application of the divisor test OPDIV
algorithm. The empirical results of the test problems were obtained so that empirical
comparisons can be made with respect to this application.

5.4 Discussions

Table 5.2, 5.3 and 5.4 respectively, presents the total execution time of
MOPBGCD with respect to 3 classes of problems described in 4.4. For a fixed degree
input of the test problems, the sum of the execution time of the subalgorithms of
MOPBGCD in columns 3 and 4 of Table 5.6 and 5.7, respectively, is subtracted from
the total execution time for the problem to obtain the respective execution time for
OPDIV. The efficiency of OPDIV with respect to MOPBGCD is clearly indicated
from the timing results of the last columns of Tables 5.6 and 5.7. Moreover, Table 5.6
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Table 5.6: Execution time in secs : MOPBGCD sub-algorithms for Small GCD Legendre Basis
Inputs

deg(a) deg(c) Rational Arithmetic Modular arithmetic OPDIV

20 3 0.04 0.01 0.01

40 15 0.4 0.13 0.15

60 25 1.62 0.84 0.63

80 38 3.87 3.81 1.39

100 38 7.52 7.40 2.78

Table 5.7: Execution time in secs : MOPBGCD sub-algorithms for Big GCD Legendre Basis
Inputs

deg(a) deg(c) Rational Arithmetic Modular arithmetic OPDIV

20 16 0.04 0.01 0.01

40 33 0.42 0.31 0.13

60 54 1.52 2.00 0.16

80 72 3.74 4.68 0.32

100 85 8.09 10.70 0.98

shows that the execution time for the application of rational number arithmetic in
steps 1 and 2 of 3.4 exceeds the execution time for the application of modular
arithmetic of the succeeding steps, only when the size of the GCD is sufficiently small.
When the size of the GCD is sufficiently big, the modular approach of reducing the
systems coefficient matrix to its RE form and computing the rational number solution
is as time consuming as the application of the rational number arithmetic of the
preceding steps. A hybrid of these two approaches can be of advantage to the
algorithm, whereby the rational number functions were already made available.
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CHAPTER VI

SUMMARY, CONCLUSIONS AND FURTHER RESEARCH

6.1 Introduction

We now reflect on what have been the results of this research, summarizing our
findings and suggesting areas for further investigations. The main goal of this study is
to produce a useful tool for computing the GCD of polynomials in the generalized
form such that the general basis satisfies the three term recurrence relation. In the
empirical comparisons, we study the performance of the algorithms on polynomials
represented relative to an orthogonal basis, which are a special class of the
polynomials in the general basis.

6.2 Significant Findings and Conclusions

The initial task of the work is to construct and implement the nonmodular
algorithms from a general OPBGCD algorithm. This is achieved by the construction
of the algorithms for constructing the comrade matrix of a polynomial (Algorithm
CDEMOFP) and the coefficient systems for the comrade matrix (Algorithm
CSFCDEM). This algorithms apply SACLIB’s rational number or multiprecision
integer arithmetics. Auxiliary algorithms for matrix computations have also been
constructed and included in the appendix. The auxiliary algorithms are called by the
comrade matrix and coefficient systems algorithms.

The modular techniques have been known for its competitiveness in dense class
of problems related to the GCD and matrix related problems such as finding the
determinants or solutions to linear equations. Therefore, it is our objective to
emphasize the superiority of the implementation of the modular techniques in our
algorithms, focusing only at the class of dense polynomials with multiprecision
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coefficients in our empirical inputs.

According to [41], the small GCD class of power series polynomials is known to
be the worst case for the Euclidean algorithm but is usually the best case for the
modular algorithms. In the case of computing the GCD of polynomials in the
generalized form, the modular techniques that have been developed are especially
appreciated for being markedly superior then the nonmodular techniques for the class
of dense rational number polynomials with small GCD solutions. The empirical
computing time results show that the modular algorithms are markedly superior to
the nonmodular algorithms when the polynomials are sufficiently dense with degree at
most 100, the numerators of the coefficients at most 153 digits and the magnitude or
degree of the GCD is about less than half the degree of the input polynomials (small
GCD case). In this case, the modular algorithms are on the average about 60 times
faster than the nonmodular algorithms.

The empirical time results also suggest that a hybrid application of the
modular approach and multiprecision arithmetic can be regarded as efficient for both
the small and big GCD solutions such that the bound of the true GCD solution are
not predetermined, provided also that a correct solution can be acquired from the
technique.

The efficiency of the modular approach requires efficient integration and
implementation of the devisor test and rational number reconstruction algorithms.
The divisor test acts as a termination criterion that can also determines the
effectiveness of the method. A bad prime p is encountered if p divides the leading
coefficient of the input polynomials or p divides the entries of the last row of the RE
form of the equivalent integral systems coefficient matrix. Thus, the divisor test is an
essential device that determines the correctness of the final solution and eliminates the
use of a bad reduction.

Given two polynomials in its generalized form, the polynomials can be
converted to its power series form for the GCD computations and converted back to
its generalized form. The transformation from a polynomial in the generalized form to
a polynomial in the power series form requires multiplication of an (n + 1)× (n + 1)
matrix with and n + 1 column vector and is therefore of magnitude O(n2). The
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transformation of a polynomial in the power series representation to a polynomial in
the general basis representation requires finding the unique solution to an n× n

systems of equations, which is roughly O(n3). The application of the Gauss
elimination algorithm is basically O(n3) with the coefficient of n3 determined by the
length of multiprecision integers involved in the computation. The contribution of the
research into constructing and implementing an effective and efficient OPBGCD
algorithms is not a trivial one. With the results of this research, the applications of
the exact Gauss elimination methods (modular or nonmodular) have also been
extended to the exact computations of the GCD of generalized polynomials.

6.3 Future Research

The empirical computing time results in the preceding chapter also illustrate
the efficiency of the modular technique in computing the GCD of 2 polynomials
relative to the Legendre basis. The computing time takes only seconds when the
degree bound for the input polynomial is 100 and the coefficient bound 153 decimal
digits. With the value of the defining terms dependent on the degree bound, so that
these values remain single precision, we are able to construct an efficient algorithm for
calculating the comrade and systems coefficient matrix using classical rational number
arithmetic and devote the application of the modular technique to the Gauss
elimination procedure, which is then followed by the computations of the integer
solution to the problem in simpler domains and finding the rational number solution
in the original domain. We will work on the extension of the application of the
modular technique to further reduce the number of multiprecision computations and
the rational number arithmetic involved in steps 1 and 2 of the general algorithm in
3.4. However, further properties of the homomorphic image scheme have to be
carefully investigated to enable the application of the modular technique in the
construction of the comrade and the systems coefficient matrices.
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