11

MALAYSIAN SATELLITE SYSTEM

Fatimah Mohamad Hanin Dhiya Bin Senin

11.1 INTRODUCTION

Satellite defined according to the Oxford English Dictionary [1]. A satellite is any object, man-made or natural, that orbits the Earth. In the context of spaceflight, a satellite is an object which has been placed into orbit by human endeavor. Such objects are sometimes called artificial satellites to distinguish them from natural satellites such as the Moon. System defined according to the Oxford English Dictionary [1]. A set of connected things or parts that form a whole or work together

11.2 MALAYSIA EAST ASIA SATELLITE PROJECT (MEASAT)

MEASAT (Malaysia East Asia Satellite) is the name of a line of Malaysian communications satellites owned and operated by MEASAT Satellite Systems Sdn. Bhd. (formerly Binariang Satellite Systems Sdn. Bhd.). In 2006, the MEASAT satellite network consists of three geostationary satellites designed and built by Boeing Satellite Development Center (formerly Boeing Satellite Systems). MEASAT-1 and MEASAT-2 were launched in 1996 and MEASAT-3 in 2006[2].

The MEASAT-1 and 2 satellites were designed to provide 12 years of both direct to user television service in Malaysia and general communications services in the region from Malaysia to the Philippines and from Beijing to Indonesia. With the launch of MEASAT-3, the coverage extends to 70% of the world's population [2].

With the two high-powered Boeing 376HP communications satellites provided regional C-Band coverage and pioneered the use of K_u -Band in the high rain fall South East Asia region. The communication satellite used consist of several applications which is telephony, satellite television and radio, mobile satellite technology, amateur radio, satellite broadband and also military communications. Another function is satellite broadband. It has been used to connect to the Internet via broadband data connections in Malaysia[2].

11.3 MALAYSIAN SATELLITE

11.3.1 MEASAT-1

Designation	23765/96002B
Launch date	12 Jan 1996
Country of origin	Malaysia
Mission	Telecommunications
Geostationary orbit	91.5°E
Launch vehicle	Ariane V82

Location

Begin	End	Position
L: 12 Jan 1996	Nov 2007	91.5°E
		Moving West

Specifications

Prime contractor	Hughes
Platform	HS-376HP

Mass at launch	1450 kg
Mass in orbit	650 kg or 886 kg?
Diameter	2.16 m
Height	3.3 m (7.82 m
	deployed)
Solar array	Gallium arsenide
Stabilization	Spin stabilized
DC power	BOL : 1705 W
	EOL : 800 W
Design lifetime	12 years

The satellite uses gallium arsenide solar cells instead of silicon. It also features a specially contoured surface that eliminates the need for multiple feed horns. Also its has bipropellant propulsion system for stationkeeping and attitude control[9].

C-BAND

Main	12
transponders	
Backup	3
transponders	
Power	12 W (SSPA)
Bandwidth	36 MHz
Coverage	Malaysia, Philippines &
	South-India
EIRP max	39 dBW
G/T max	+3 dB/K
Polarization	Linear
Frequencies	Uplink : 5.925 – 6.425
	GHz
	Downlink : 3.700 – 4200
	GHz

Figure 11.1: MEASAT 1 C-Band Downlink Beam

K_u-Band

Main transponders	5
Backup	1
transponders	
Power	112 W (TWTA)
Bandwidth	54 MHz
Coverage	Narrow spots :Malaysia,
_	Philippines & South-
	India
EIRP max	57 dBW
G/T max	+11 dB/K
Polarization	Linear
Frequencies	Uplink : 14.000 – 14.250
	GHz

Downlink : 10.950 -
11.200 GHz to 11.45 -
11.7 or 12.2 – 12.75 GHz

K_u-band transponder frequency chart (GHz)

Vertical	Transponde	Horizonta	Beam
Downlin	r	l Uplink	
k			
10.982	1	14.032	Malaysia
			+
			Philippine
			S
11.044	2	14.094	Malaysia
			+
			Philippine
			S
11.106	3	14.156	Malaysia
11.167	4	14.218	Malaysia
12.284	5	13.784	South-
			India
12.346	6	13.846	South-
			India

Figure 11.2: MEASAT 1 K_U-Band Uplink Beam

Effective Isotropic Radiated Power (EIRP) Contours 53, 52, 51, 50, 49, 48, 47, 46, 45, 44 dBW

Figure 11.3: MEASAT 1 K_U-Band Downlink Beam

11.3.2 MEASAT-2

Designation	24653/96063B
Launch date	13 Nov 1996
Country of origin	Malaysia
Mission	Telecommunications
Geostationary orbit	148°E
Launch vehicle	Ariane V92

Prime contractor	Hughes
Platform	HS-376HP
Mass at launch	1520 kg
Mass in orbit	650 kg or 886 kg?
Diameter	2.16 m
Height	3.3 m (7.82 m
	deployed)
Solar array	Gallium arsenide
Stabilization	Spin stabilized
DC power	1705 W
Design lifetime	11 years

Specifications

The satellite uses gallium arsenide solar cells instead of silicon. It also features a specially contoured surface that eliminates the need for multiple feed horns. Also it has bipropellant propulsion system for station keeping and attitude control [10].

C-BAND

Main	6
transponders	
Backup	
transponders	
Power	12 W (SSPA)
Bandwidth	72 MHz
Coverage	South-East Asia, East
	Australia and Hawaii
EIRP max	39 dBW
Polarization	Linear
Frequencies	Uplink : 5.925 – 6.425
	GHz
	Downlink : 3.700 – 4200
	GHz

K_u-Band

N (¹	11
Main	11
transponders	
Backup	
transponders	
Power	8 x 95 W
	3 X 62 W
Bandwidth	48 MHz
Coverage	Switchable (by transponder) to :
	Malaysia,
	Queensland,/Australia,
	Philippines, India or Vietnam +
	Taiwan spot
EIRP max	57 dBW
Polarization	Linear
Frequencies	Uplink : 14.000 – 14.250 GHz
	Downlink : 10.950 – 11.200
	GHz, switchable to 11.45 -
	11.7 or 12.2 – 12.75 GHz

 K_u -band transponder frequency chart (GHz)

Vertical	Transponder	Vertical	Beam
10.082	1	14.022	
10.982	1	14.032	
11.044	2	14.094	
11.106	3	14.156	
11.168	4	14.218	
	Further specs.		
	lacking		

11.3.3 MEASAT-3

MEASAT-3 was located at 91.5 degrees East longitude and will provide expansion capacity for MEASAT to meet the increasing market demand for satellite services within the region. Boeing is also providing an upgrade to the MEASAT Teleport and Broadcast Center facilities by assisting in the relocation of MEASAT's control station to Cyberjaya, Malaysia near Kuala Lumpur [4].

Designation	24648/00057A	
Launch date	26 Sep 2000 at 10:05	
	UT	
Country of origin	Malaysia	
Mission	Remote Sensing	
Geostationary	64.7°	
orbit		
Launch vehicle	Dnepr #2	

Specifications

PAYLOAD	
C-Band	24 active transponders
	65-watt TWTAs
K _u -Band	24 active transponders
	120-watt TWTAs
POWER	
Solar	10.8 kW
Beginning of life	9.8 k W
End of life	2 wings, each with 4 panels
Panels	of tripel-junction gallium
	arsenide solar cells
Batteries	32 cell NiH2
PROPULSION	

Liquid apogee motor	445 N (100 lbf)		
Stationkeeping	12-10N (2 lbf)		
thrusters			
(bipropellant)			
DIMENSIONS			
In orbit	L, solar arrays: 26.2 m		
	(86.0 ft)		
	W, antennas: 7.7 m(25.1ft)		
Stowed	Diameter : 3.8 m (12.5 ft)		
	Height : 7.4 m (24.4 ft)		
MASS			
Launch	4,900 kg (10,800 lb)		
	separated mass		
In orbit	3,220 kg (7,100 lb)		
	beginning of life		

11.3.4 RazakSat

FIGURE 11.4: RazakSAT Satellite

Malaysian agencies requiring satellite image currently rely upon image data and information provided by satellites manufactured and operated by foreign international companies. Due to the orbit in which such satellites are located, the images provided are neither timely enough nor does it cater to Malaysia's specific use and need. A Medium Aperture Camera Satellite (RazakSAT), Malaysia's own small satellite will be able to provide specific and timely data for its users in Malaysia as well as being able to cater to the needs of countries located on the equatorial belt [5].

The RazakSAT spacecraft is a small LEO satellite. It carries an electro-optical payload, a Medium-sized Aperture Camera (MAC) a pushbroom camera with 5 linear detectors (1 panchromatic, 4 multi-spectral). The RazakSAT satellite will be operated through its ground segment in Malaysia, consisting of a Mission Control Station (MCS) and Image Receiving and Processing Station (IRPS). ATSBTM's engineers are operators at the MCS and they will execute RazakSAT's mission plan, command generation and telemetry receiving, archiving and analysis. The IRPS will receive and archive images for post processing and distribution to the users. The development of the RazakSAT system is a collaborative programme between ATSBTM and Satrec Initiative Co. Ltd, Republic of Korea [5].

Subsystem	Specifications	
Altitude	600 – 800 km	
Inclination	$7^{\circ} \sim 9^{\circ}$	
Payload (MAC)	GSD : 2.5 m (PAN), 5 m (MS)	
	Swathwidth : 20 km @ 685 km	
Attitude Determination &	Three-axis stabilization based	
Control Subsystem (ADCS)	on four (reactin wheels)	
	Pointing Accuracy : 0.2°	
	Pointing Knowledge : 1 arcmin	

SPECIFICATIONS

	<
Electrical Power Subsystem	GaAs/Ge solar cells on
(EPS)	honeycomb substrate NiCd
	batteries (18 Ahr)
	Peak Power Tracking (PPT) &
	constant current control
	Solar Power : >300 W @ EOL
Command & Data Handling	Two on-board computers
Subsystem (C&DH)	Telemetry and command
	interface modules
	Analog Telemetry channels :
	up to 90
	Digital Telemetry channels : up
	to 120
Telecommunication Subsystem	9600 bps/1200 bps S-brand
(TS)	TT&C uplink
	38.4 kbs/9600 bps/1200 bps S-
	brand TT&C downlink
Payload Data Management	32 Gbits On-board solid-state
	memory
	30 Mbps X-brand payload data
	downlink
Structure & Thermal	Ø1200 x 1200 mm
	Hexagonalshape
	Mass : < 200 kg
	Modular structure
	Passive & Active thermal
	control
Mission Lifetime	>3 years

Spectral Brands	1	510-730 nm
	panchromantic	450 - 890 nm
	Band	
	4 Multispectral	
	Bands	
Ground Sampling	PAN : 2.5 m	at 685 km
Distance (GSD)	MS : 5.0 m	
Swath Width	20 km	at 685 km
Signal to Noise	> 70	
Ratio		
Quantization	> 8 bits	For all bands
Signal Gain	Programmable	
Mass Storage	32 Gbits	(approximately
		500 km image
		strip)
Mission Lifetime	> 3 years	

PAYLOAD SPECIFICATION

11.4 CONCLUSION

According to research and data gained from the trusted sources, we can concluded that Malaysia have 4 types of satellite which are MEASAT-1. MEASAT-2, MEASAT-3(TIUNGSAT) and RazakSAT which were used for several function such as satellite television and radio, mobile telephony, satellite technology, amateur radio, satellite broadband, satellite image and military communications. With the launch of the country's first two satellites in 1996, Malaysia having anchored itself in the satellite communication services industry. With the satellite system indirectly, it will help to boost our economy, knowledge sharing and it will bring Malaysian update with the latest technology.

REFERENCES

- [1] Oxford English Dictionary second edition 1989.
- [2] http://www.measat.com.my/.
- [3] http://en.wikipedia.org/wiki/Communications_satellite.
- [4] http://www.measat.com.my/satellite_91e_measat3.html.
- [5] http://razaksat.com/razaksat.asp
- [6] http://www.measat.com/satellite_91e_measat3.html
- [7] http://www.mlesat.com/Measat.html
- [8] http://www.astronautix.com/project/measat.htm
- [9] http://www.tbs-satellite.com/tse/online/sat_measat_1.html
- [10] http://www.tbs-satellite.com/tse/online/sat measat 2.html
- [11] . http://www.measat.com.my/satellite_91e_measat3.html