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ABSTRACT 
 
 
 
 

Multiple inputs multiple outputs (MIMO) realized through employing 

multiple antennas at both transmitter and receiver provides low bit error rate and high 

transmission rate as required by future digital wireless communication systems.  

Space time coding and spatial multiplexing are the two approaches in exploiting 

MIMO channel.  This project proposes a new multiple inputs multiple output-

orthogonal frequency division multiplexing (MIMO-OFDM) system employing 

single parity check multidimensional turbo product codes (MDTPC) that will provide 

high bit rate transmission with low bit error rate over correlated frequency selective 

fading channels.  The initial work is developing the dimensional-based reading order 

(DBRO) algorithm for generating the MDTPC codeword sequences.  The MDTPC 

codeword sequence is then applied to MIMO-OFDM system that exploits space, 

time, and frequency diversity and provides full-rate transmission.  The system 

provides diversity gain of 2.5 dB in signal to noise ratio (SNR) and coding gain of 3 

dB. Spatial multiplexing space-time coded MDTPC-MIMO-OFDM system with 

antennas grouping (AG-SMST-SPC-MDTPC-MIMO-OFDM) is then developed to 

increase the transmission rate. The result shows that the system provides a high 

transmission rate of 8 bps/Hz at SNR of 10 dB using two groups of four transmit 

antennas. The final task is designing the accurate channel estimation for the AG-

SMST-MDTPC-MIMO-OFDM system employing pilot symbol assistance and least 

square estimation using mean-square error criterion. The channel estimator achieves 

mean-square error of 7x10-4 which is highly accurate. The proposed system provides 

high transmission bit rate of 120 Mbps with bit error rate of 10-5 at SNR of 18 dB for 

two groups of four transmit antennas. It can be implemented in wireless local area 

network (WLAN) and can also be deployed in any broadband wireless system. 
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ABSTRAK 

 
 
 
 

Masukan berganda keluaran berganda (MIMO) wujud dengan penggunaan 

antena berganda pada kedua-dua pemancar dan penerima bagi menyediakan kadar 

ralat bit rendah dan kadar penghantaran tinggi sebagaimana yang diperlukan oleh 

sistem-sistem perhubungan digital wayarles masa hadapan.  Pengekodan ruang masa 

dan gandaan mengikut ruang adalah dua pendekatan penggunaan saluran MIMO.  

Projek ini mencadangkan sebuah sistem masukan berganda keluaran berganda-

pemultiplek pembahagi frekuensi ortogonal (MIMO-OFDM) yang baru bagi 

menjalankan pemeriksaan persamaan tunggal pengekodan sejajar turbo dimensi 

rantaian (MDTPC) yang akan menyediakan kadar penghantaran bit tinggi dengan 

kadar ralat bit rendah sepanjang saluran berpudar berkaitan frekuensi terpilih.  Kerja 

awal adalah membangunkan algoritma berdasar dimensi pembacaan urutan (DBRO) 

untuk menjana urutan-urutan kod MDTPC.  Urutan-urutan kod MDTPC kemudian 

digunakan kepada sistem MIMO-OFDM yang mengeksploitasikan kepelbagian 

ruang, masa, dan frekuensi dan menyediakan kadar penghantaran penuh.  Sistem ini 

menyediakan kepelbagian gandaan 2.5 dB dalam nisbah isyarat hingar (SNR) dan 

pengekodan gandaan 3 dB.  Gandaan ruang bagi ruang-masa berkod sistem MDTPC-

MIMO-OFDM dengan antena berkumpul (AG-SMST-MDTPC-MIMO-OFDM) 

kemudian dibangunkan untuk meningkatkan kelajuan penghantaran.  Hasil kerja 

menunjukkan bahawa sistem menyediakan kadar penghantaran yang tinggi iaitu 8 

bps/Hz pada SNR 10 dB dengan menggunakan dua kumpulan yang terdiri daripada 

empat antena.  Kerja terakhir adalah merekabentuk pengiraan saluran bagi sistem 

AG-SMST-MDTPC-MIMO-OFDM dengan menggunakan pembantu simbol 

berpandu dan penganggaran ganda dua terkecil menggunakan kriteria purata ralat 

ganda dua.  Penganggar saluran memperolehi purata ralat ganda dua 7x10-4 yang 

mana adalah ketepatan yang tinggi.  Sistem yang dicadangkan mencapai kadar 

penghantaran 120 Mbps dengan kadar ralat bit 10-5 pada SNR 18 dB untuk dua group 

dari empat antena penghantar.  Ianya boleh digunakan dalam aplikasi rangkaian 

kawasan tempatan wayarles (WLAN) dan boleh juga digunakan dalam mana-mana 

sistem jalur lebar wayarles. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 
1.1  Introduction 

 
 

Orthogonal frequency division multiplexing (OFDM) has become a popular 

technique for transmission of signal over wireless channel.  OFDM converts a 

frequency-selective channel into a parallel collection of frequency flat channels.  The 

sub-carriers have the minimum frequency separation required to maintain 

orthogonality of their corresponding time domain waveforms, yet the signal spectra 

corresponding to different sub-carriers overlap in frequency.  Based on these 

advantage, OFDM has been adopted in several wireless standards such as digital 

audio broadcasting (DAB), digital video broadcasting (DVB-T), the IEEE802.11a 

(IEEE, 1999) local area network (LAN) standard and the IEEE 802.16a (IEEE, 2003) 

metropolitan area network (MAN) standard.  OFDM is also being pursued for 

dedicated short-range communications (DSRC) for road side to vehicle 

communications and as potential candidate for fourth-generation (4G) mobile 

wireless systems. 

 
 
The IEEE 802.11a LAN standard operates at raw data rates up to 54 Mbps 

(channel condition permitting) with a 20 MHz channel spacing, thus yielding a 

bandwidth efficiency of 2.7 bps/Hz (IEEE, 1999).  The actual throughput is highly 

dependent on the medium access control (MAC) protocol.  Likewise, IEEE802.16a 

operates in many modes depending on channel conditions with a data rate ranging 

from 4.20 to 22.91 Mbps in typical bandwidth of 6 MHz, translating into bandwidth 



 2

efficiency of 0.7 to 3.82 bps/Hz (IEEE, 2003).  Recent development of OFDM 

combined with multiple input multiple output (MIMO) techniques promise a 

significant performance boost.  Broadband MIMO-OFDM systems with bandwidth 

efficiency of the order of 10 bps/Hz are feasible for LAN/MAN environments 

(Stubber et al., 2004).  

 
 
MIMO system is an arrangement of multiple antennas that can be used at 

transmitter and receiver.  A MIMO system takes advantage of the spatial diversity 

that is obtained by spatially separated antennas in a dense multi-path scattering 

environment.  MIMO systems may be implemented in a number of different ways to 

provide a diversity gain and combat signal fading in order to obtain a capacity gain.  

Generally, there are three different ways in exploiting MIMO system.  The first 

reason is to improve the power efficiency by maximizing spatial diversity. This 

approaches provides low bit error rate at low signal to noise ratio (SNR).  Such 

techniques include delay diversity (Wittneben, 1993), space–time block codes 

(STBC) (Alamouti, 1998; Tarokh et al., 1999) and space–time trellis codes (STTC) 

(Tarokh et al., 1998).  The second method uses a layered approach (spatial 

multiplexing) to increase capacity.  One popular example of such a system is V-

BLAST suggested by (Wolniansky et al. 1998) where full spatial diversity is usually 

not achieved.  Finally, the third type exploits the knowledge of channel at the 

transmitter to maximize the link level capacity relate to capacity gain.  It decomposes 

the channel coefficient matrix using singular value decomposition (SVD) and uses 

these decomposed unitary matrices as pre- and post-filters at the transmitter and the 

receiver to achieve near capacity (Ha et al., 2002).  This approach requires a 

feedback channel from receiver to transmitter to send the channel parameters 

experienced by the transmitted signals. 

 
 
Spatial diversity improves the MIMO system in term of link reliability and 

error-rate performance of the system (Bliss et al., 2004; Ajib and Haccoun, 2005).  

STTC give high transmission rate with low error-rate at the cost of receiver 

complexity that increased exponentially as the number of antenna increase.  STBC 

require linear decoding thus it is less complex. However, STBC does not provide 

coding gain.  Another disadvantage of STBC is that these code decrease the 
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transmission rate when the number of transmit antenna are more than two.  Both 

STTC and STBC are designed for flat fading channel and are not suitable for fast and 

selective fading channel (Alamouti, 1998; Tarokh et al., 1998).  On the other hand, 

layered MIMO techniques are addressed to provide high transmission rate but 

sacrifice the error rate performance.  Since the distinct symbol streams are 

transmitted from multiple transmit antennas, they will interfere each other that 

introduce errors during transmission. To improve the error rate performance of the 

layered MIMO, powerful coding techniques have to be used, such as turbo codes 

(Jameel and Yu, 2003) and turbo product code (TPC) (Du and Chan, 2004).  Turbo 

code has high error correction capability among the error correcting codes. The 

encoder and decoder of turbo codes are very complex since they work based on the 

trellis diagram (trellis-based codes). TPC warrants less competent error correction 

capability compared to turbo code with less complex encoder and decoder processing. 

The existing decoder of TPC experiences the local minima in the convergence region 

and converges gradually at slow rate. 

 
 
 
 
1.2  Problem Statement 

 
 

The existing space-time codes enhance the error rate performance of the 

wireless transmission system over MIMO channels at the cost of decreasing the 

transmission rate.  Both STBC and STTC that employ several transmit antennas 

produce maximum rate of only 3/4 symbol/s/Hz. The encoding and decoding of 

STBC is simple, but STBC does not grant coding gain. On the other hand, STTC 

provides coding gain but its encoding and decoding is complex. Furthermore, the 

performance of these codes will degrade greatly when the fading is changing rapidly 

within one transmitted symbol duration since the codes were designed for slow time 

varying fading channel. 

 
 

The performance of spatial multiplexing MIMO system can be enhanced 

through the use of robust error correcting codes (Kothandaraman, 2002; Li et al., 

2003; Lee et al., 2003; Gidlund and Ahag, 2003; Du and Chan, 2005).  The 
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performance enhancement can also be obtained by applying space-time codes onto 

spatial multiplexing MIMO system (Mao and Motani, 2005; Wu et al., 2002).  Other 

means include developing accurate symbol detection at the receiver (Artes et al., 

2003), improving the signal shaping at the transmitter (Clerckx et al., 2004), and 

grouping the transmitter antennas combined with space-time coding (Chen and 

Haimovich, 2004; Xia et al., 2005).  These approaches usually decrease the overall 

transmission rate of the system.  The usage of OFDM on spatial multiplexing MIMO 

system will not only mitigate the effect of frequency-selectivity of the faded channels 

but also enhance the spectrum efficiency of the channel. The OFDM signal will 

divide the frequency-selective channel bandwidth into narrower flat channel 

bandwidth since OFDM employs several narrowband subcarriers. 

 
 

The performance of the MIMO-OFDM system is highly dependent on the 

accuracy of the channel estimation schemes.  The task on this issue is how to design 

accurate channel estimation with low complexity and low symbol overhead on the 

transmission.  The most accurate channel estimation is pilot-symbol assisted (PSA) 

channel estimation where the known symbol sequences at receiver are distributed 

along the transmitted frame.  This technique introduces high overhead when applied 

to MIMO system since the pilot symbols are inserted at every transmitted frame.  

Finding the optimal pilot training sequences for MIMO system is another issue that 

should be explored.  The optimization criteria are in terms of overhead and energy 

consumption. 

 
 
 
 
1.3  Objective of the Research 

 
 

In order to increase the transmission rate and to improve the error rate 

performance of MIMO-OFDM over wireless correlated frequency-selective fast 

fading channels, the challenge is how to design the coding techniques that exploit the 

space, time, and frequency diversity whilst providing full transmission rate (1 

symbol/s/Hz).  Another challenge is how to increase the channel capacity of the 

MIMO OFDM system over time varying and frequency-selective fading channel.  In 
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real system, the receiver of MIMO OFDM system requires the channel information 

to perform detection and decoding, therefore the channel estimation of the full-rate 

space-time coded MIMO OFDM system is another issue that should be investigated. 

 
 

The objective of the research is to develop a MIMO-OFDM system design 

that consist of channel coding, interleaving, space-time-frequency coding, spatial 

multiplexer, and channel estimation.  The design should fulfill the following features. 

 
(i) Powerful channel code with high code rate and simple encoding and decoding 

processes 

(ii) Exploit space, time, and frequency diversity that will provide full rate 

transmission 

(iii) Employ spatial multiplexing to provide high transmission rate 

(iv) Deploy low complexity MIMO detector with accurate channel estimation and 

low overhead  

 
The MIMO-OFDM system should achieve low bit error rate at low power 

transmission (SNR). 

 
 
 
 
1.4 Scope of the Research 

 
 

The research will develop the MIMO-OFDM system that will function well 

in correlated multipath frequency selective fast fading wireless channel.  High rate 

multidimensional turbo product code (MDTPC) will be used as error correcting code 

and also for granting space, time, and frequency diversity in the system.  Amplitude 

modulator is used to convert the coded bit to the modulated symbols and then 

transform to sub-carriers in OFDM block using inverse fast Fourier transformation.  

These OFDM symbols will be transmitted trough multiple transmit antenna.  

 
 

Multiple antennas are also employed at the receiver with OFDM demodulator 

at each branch.  Fast Fourier transformation (FFT) is used to convert the OFDM 

symbols (time domain) to modulated symbols (frequency domain).  These modulated 
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symbols composed of transmitted symbols from all transmit antennas and MIMO 

detector will be used to separate them again.  After computing the soft detected 

coded bits, soft iterative decoding will be performed using parallel MDTPC decoder.  

The recovery information bits will be obtained by applying hard decision.  These bits 

will be used for investigating the behavior and performance of the system  

 
 

The development of the above system consists of several phases.  The first 

phase is designing high rate MDTPC.  Single parity check code (SPC) has been 

selected to be used as component code of MDTPC to provide high code rate.  The 

possible codewords are generated from MDTPC and the mapping functions are 

derived.  The performance of MDTPC has been improved by developing parallel 

iterative MDTPC decoder with weighting feedback.  Mathematical analysis and 

computer simulation using MATLAB has been developed to study the performance 

of MDTPC over additive white Gaussian noise channel (AWGN) and Rayleigh 

fading channel. 

 
 

The second phase is to provide the space, time, and frequency diversity in 

MIMO OFDM system by employing the possible codeword sequences of MDTPC.  

Space and time diversity has been exploited by transmitting the possible codeword 

sequences through different transmit antennas.  Frequency diversity is obtained by 

employing OFDM modulator at the transmitter.  These space-time codes ST-MDTPC 

provides full transmission rate (1 symbol/s/Hz).  In order to increase the transmission 

rate, the spatial multiplexing with antenna grouping defined as AG-SMST-MDTPC-

MIMO-OFDM has been developed.  Optimum MIMO detector has been developed 

using maximum likelihood (ML) decision criteria, while, sub optimum detector was 

designed using zero forcing (ZF) detection.  Mathematical models and computer 

simulation has been expanded to investigate the system performance in frequency 

selective multipath fading channel.  The channel response samples are assumed to be 

perfectly estimated and available at the receiver. 

 
 

The final phase of the work is developing the channel estimation for AG-

SMST-MDTPC-MIMO-OFDM system employing pilot symbol sequences.  The 

search of optimum pilot sequences for least square (LS) adaptation algorithm with 
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regard to mean square error (MSE) criteria has been performed.  A recursive LS 

(RLS) algorithm is used to enhance the performance of the overall system.  

Mathematical model and simulation using MATLAB is extended to investigate the 

channel estimation performance and the system performance.  The channel is 

assumed to be frequency selective fast fading channel and the response samples of 

these channels are correlated and Rayleigh distributed random variables. 

 
 
 
 
1.5  Significance of the Work 

 
 

The proposed AG-SMST-MTDC-MIMO-OFDM system is a baseband 

processing part of a transmission (and receiver) system that can be applied to any 

existing standard such as the IEEE 802.11a WLAN Standard. The significant works 

in this research is developing that can be stated as follows: 

 
• Generating possible codeword sequences of the MDTPC codes and 

developing the corresponding mapping functions. 

• Developing the full rate space-time code using the possible codeword 

sequences of MDTPC for any number of transmit antennas.  When 

combining with OFDM transmission, the frequency diversity will be 

available at the system. 

• Developing the spatial multiplexing with antennas grouping while providing 

space, time, and frequency diversity. 

• Developing the channel estimation by employing pilot symbol assisted 

sequences for AG-SMST-MDTPC-MIMO-OFDM system in correlated and 

frequency selective fading channel.  Optimum pilot sequences criteria are 

derived in terms of overhead and energy consumption.  Recursive adaptation 

algorithm is developed. 

 
The proposed system will generate wireless transmission system with high 

transmission rate at multiple the numbers of antenna groups. Furthermore, the system 

will endure low bit error rate and require low power transmission at high 
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transmission rate. The system can be easily extended to be applicable to any wireless 

communication system standards such as WLAN, DAB, DVB, and DSRC. 

 
 
 
 
1.6 Thesis Outline 

 
 

The thesis is organized and distributed into seven chapters.  CHAPTER 1 

introduces to the general idea of the research and provides an overview of the thesis 

that includes the background, problem, objective, and scope of the research.  

CHAPTER 2 studies and reviews the previous works related to this research.  The 

study covers state of the art of the developing system and also the recent related 

works in references.  Some important findings are presented and analyzed. 

 
 

CHAPTER 3 describes the proposed MDTPC and its parallel decoder.  In 

this chapter, the possible codeword sequences of MDTPC are generated based on the 

dimension-based reading order.  The mapping functions for generating the possible 

codeword from MDTPC codeword sequences are derived.  Parallel MDTPC decoder 

with weighting extrinsic information feedback is proposed.  The performance of the 

single parity check MDTPC with parallel decoder is studied through mathematical 

analysis and computer simulation using MATLAB. 

 
 

CHAPTER 4 designs a new space-time multidimensional product coded 

(ST-MDTPC) system employing the possible codeword of MDTPC.  The MIMO 

receiver using ML detector and ZF detector are developed and analyzed.  The 

analytical link channel capacity is derived.  Application of the ST-MDTPC in OFDM 

system is investigated in frequency selective fading channel. 

 
 

CHAPTER 5 presents the spatial multiplexing ST-MDTPC-MIMO scheme 

which is an extension of the ST-MDTPC schemes (chapter three) with multiple 

groups of transmit antennas (AG-SMST-MDTPC-MIMO).  The analytical channel 

capacity is derived.  Application over OFDM channel is performed and investigated. 
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CHAPTER 6 presents the channel estimation of the AG-SMST-MDTPC-

OFDM system using adaptive LS algorithm based on MSE criteria.  The optimum 

pilot training criteria are derived for distinct pilot symbols types.  Channel estimation 

enhancement is developed using recursive LS and frequency domain analysis is 

presented. 

 
 

CHAPTER 7 concludes the thesis report and suggests the potential and 

possible future works. 
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