TREATMENT OF PALM OIL MILL SECONDARY EFFLUENT (POMSE) USING FENTON OXIDATION SYSTEM

OOI BOON SIEW

UNIVERSITI TEKNOLOGI MALAYSIA

2006

ABSTRACT

The feasibility of Fenton oxidation system to treat palm oil mill secondary effluent (POMSE) was investigated in this study. This study also evaluated the effect of UV lamp and solar light on the efficiency of Fenton oxidation in term of COD, colour and organic content removal within the experimental design. The Fenton oxidation processes were optimized by applying Central Composite Rotatable Design (CCRD). While the results depend on the concentration of reagents used in the study, in general, COD (82.4%) and UV absorbance (86.1%) were best removed using Solar-Fenton reagent. Colour (95.5%) was best removed using Photo-Fenton reagent. The best overall removal in term of COD (82.4%), colour (92.1%) and UV absorbance (83.3%) was achieved using Solar-Fenton reagent with 348.7 mg/L Fe²⁺ and 1397.5 mg/L H₂O₂. Using factorial analysis, *p*-value in Fenton reagent indicated the significance of iron dosage and significance of interaction effect between two variables (Fe^{2+} and H_2O_2) on COD and colour removal. It was found that only iron dosage gave significant effect to the COD, colour and UV removal in Photo-Fenton study. In Solar-Fenton study, iron dosage, H₂O₂ dosage and interaction effect between the two variables (Fe^{2+} and H_2O_2) were significant on COD removal. However, only iron dosage gave significant effect on colour and UV removal in Solar-Fenton study. Statistical relationship between COD and UV absorbance removal with Fe^{2+} , H_2O_2 dosage was also developed in this study.

ABSTRAK

Kajian keberkesanan pengoksidaan sistem Fenton dalam rawatan air sisa sekunder kelapa sawit telah dijalankan. Kajian ini juga mengkaji kesan penggunaan lampu UV dan cahaya matahari terhadap pengoksidaan Fenton. Keberkesanan pengoksidaan Fenton ditinjau dari segi COD, warna dan kandungan organik. Pengoksidaan Fenton dioptimumkan dengan aplikasi Central Composite Rotatable Design (CCRD). Walaupun kebanyakan keputusan ini bergantung kepada penggunaan kepekatan reagen, secara umumnya, pengurangan COD (82.4%) dan penyerapan UV (86.1%) yang terbanyak dicapai dengan menggunakan Fenton-suria. Pengurangan warna (95.5%) yang terbanyak dicapai dengan menggunakan Fentonfoto. Secara menyeruluh, pengurangan COD (82.4%), warna (92.1%) dan penyerapan UV (83.3%) yang terbaik dicapai dengan menggunakan Fenton-suria dengan dos Fe²⁺ dan H₂O₂ sebanyak 348.7 mg/L dan 1397.5 mg/L masing-masing. Dengan menggunakan analisis faktorial, nilai-*p* dalam Fenton reagen menunjukkan kuantiti dos Fe^{2+} dan interaksi kedua-dua dos Fe^{2+} dan H₂O₂ merupakan faktor-faktor yang penting dalam pengurangan COD dan warna. Dalam Fenton-foto, hanya dos Fe²⁺ memberikan kesan penting kepada pengurangan COD, warna dan penyerapan UV. Dalam Fenton-suria, dos Fe^{2+} , H_2O_2 dan interaksi kedua-dua dos Fe^{2+} dan H_2O_2 memainkan peranan penting dalam pengurangan COD. Hanya dos Fe²⁺ sahaja memberi kesan yang ketara terhadap pengurangan warna dan penyerapan UV dalam Fenton-suria. Hubungan statistik antara pengurangan COD dan penyerapan UV dengan dos Fe^{2+} dan H_2O_2 telah dibentuk dalam kajian ini.

CONTENT

CHAPTER TITLE

PAGE

TITLE	i
SUPERVISOR'S CERTIFICATION	ii
DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENT	V
ABSTRACT	vi
ABSTRAK	vii
CONTENT	viii
LIST OF ABBREVIATIONS/	xi
SYMBOLS/ TERMS	
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF APPENDIXES	xvi

I INTRODUCTION

1.1	Introduction	1
1.2	Objectives of Study	2
1.3	Scope of Study	3

II LITERATURE REVIEW

2.1	Introduction		
2.2	Characteristics of Palm Oil Mill Effluent		
2.3	Palm Oil Mill Effluent Technology	6	
	2.3.1 Aerobic and Anaerobic Digestion	6	
	2.3.2 Membrane Treatment	7	
2.4	Fenton's Reagent System	8	
	2.4.1 Introduction	8	
	2.4.2 Theory and Application Principles	8	
	2.4.3 Current Development on Photo-Fent	on 11	
	and Solar-Fenton Reagent		
	2.4.4 Overview of Fenton Reagent	12	
	System Study		
2.5	Factors Affecting Fenton System	15	
2.6	Summary	16	

III RESEARCH METHODOLOGY

3.1	Materials and Equipments	18
3.2	Analytical Method	19
	3.2.1 BOD	19
	3.2.2 UV absorbance	20
	3.2.3 Colour	21
	3.2.4 COD	21
	3.2.5 Total Iron	21
	3.2.6 Suspended Solids	22
3.3	Sample Preparation	22
3.4	Experimental Procedure	22
	3.4.1 Fenton Reagent Study	23
	3.4.2 Photo-Fenton Reagent Study	24
	3.4.3 Solar-Fenton Reagent Study	24
3.5	Data Analysis	25

IV RESULTS AND DISSCUSION

4.1	Introduction	26
4.2	Wastewater Characteristics	26
4.3	Fenton Reagent	27
	4.3.1 General Overview	27
	4.3.2 Factorial Analysis	28
	4.3.3 Response Surface Analysis	30
4.4	Photo-Fenton Reagent	34
	4.4.1 General Overview	34
	4.4.2 Factorial Analysis	35
	4.4.3 Response Surface Analysis	39
4.5	Solar-Fenton Reagent	40
	4.5.1 General Overview	40
	4.5.2 Factorial Analysis	41
	4.5.3 Response Surface Analysis	45
4.6	Comparative Analysis	46

V CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	50
5.2	Recommendations	51
REFE	CRENCES	52
APPE	NDIXES	57

LIST OF ABBREVIATIONS/ SYMBOLS/ TERMS

% R	-	Percentage of removal
A_0	-	Initial UV absorbance
ALK	-	Alkalinity
AOP	-	Advanced oxidation process
A _t	-	UV absorbance at t time
BOD	-	Biological oxygen demand
BOD_0	-	Initial BOD
$\operatorname{BOD}_{\operatorname{F}}$	-	Final BOD
CCRD	-	Central composite rotatable design
COD	-	Chemical oxygen demand
COD_0	-	Initial COD
COD_{F}	-	Final COD
CODt	-	COD at t time
Colour ₀	-	Initial colour
Colour ₀ Colour _t	-	Initial colour Colour at t time
Colour ₀ Colour _t CTC	-	Initial colour Colour at t time Charge transfer conduction bands
Colour ₀ Colour _t CTC EFB	-	Initial colour Colour at t time Charge transfer conduction bands Empty fruit brunch
Colour ₀ Colour _t CTC EFB Fe(II)	- - -	Initial colour Colour at t time Charge transfer conduction bands Empty fruit brunch Ion ferum(II)
Colour ₀ Colour _t CTC EFB Fe(II) Fe(III)	-	Initial colour Colour at t time Charge transfer conduction bands Empty fruit brunch Ion ferum(II) Ion ferum(III)
Colour ₀ Colour _t CTC EFB Fe(II) Fe(III) FR		Initial colourColour at t timeCharge transfer conduction bandsEmpty fruit brunchIon ferum(II)Ion ferum(III)Fenton reagent
Colour ₀ Colour _t CTC EFB Fe(II) Fe(III) FR H ₂ O ₂	-	Initial colourColour at t timeCharge transfer conduction bandsEmpty fruit brunchIon ferum(II)Ion ferum(III)Fenton reagentHydrogen peroxide
Colour $_0$ Colour $_t$ CTC EFB Fe(II) Fe(III) FR H $_2O_2$ H $_2SO_4$	-	Initial colourColour at t timeCharge transfer conduction bandsEmpty fruit brunchIon ferum(II)Ion ferum(III)Fenton reagentHydrogen peroxideSulphuric acid
Colour $_0$ Colour $_t$ CTC EFB Fe(II) Fe(III) FR H $_2O_2$ H $_2SO_4$ HO'	-	Initial colourColour at t timeCharge transfer conduction bandsEmpty fruit brunchIon ferum(II)Ion ferum(III)Fenton reagentHydrogen peroxideSulphuric acidHydroxyl radical
Colour $_0$ Colour $_t$ CTC EFB Fe(II) Fe(III) FR H $_2O_2$ H $_2SO_4$ HO' HRT	-	Initial colourColour at t timeCharge transfer conduction bandsEmpty fruit brunchIon ferum(II)Ion ferum(III)Fenton reagentHydrogen peroxideSulphuric acidHydroxyl radicalHydraulic retention time
Colour $_0$ Colour $_t$ CTC EFB Fe(II) Fe(III) FR H $_2O_2$ H $_2SO_4$ HO' HRT MF	-	Initial colourColour at t timeCharge transfer conduction bandsEmpty fruit brunchIon ferum(II)Ion ferum(III)Fenton reagentHydrogen peroxideSulphuric acidHydroxyl radicalHydraulic retention timeMicrofiltration

OLR	-	Organic loading rate
PF	-	Photo-Fenton
POME	-	Palm oil mill effluent
POMSE	-	Palm oil mill secondary effluent
RBC	-	Rotating biological contractor
SBR	-	Sequence batch reactor
SF	-	Solar-Fenton
t	-	Time
TDS	-	Total dissolved solid
TSS	-	Total suspended solid
Turbidity ₀	-	Initial turbidity
Turbidity _F	-	Final turbidity
UASFF	-	Up-flow anaerobic sludge fixed film
UF	-	Ultrafiltration
UV	-	Ultraviolet
UV-Vis	-	Ultraviolet visible
VFA	-	Volatile fatty acids

LIST OF TABLES

TABI	LE TITLE	PAGE
1.1	Characteristics of POME, POMSE and its respective	2
	standard discharge limit by the Department of the	
	Environment in Malaysia	
2.1	Efficiency comparison between POME treatment technologies	9
2.2	Selected review of Fenton Reagent system with related	13-14
	pollutants	
3.1	Typical range of BOD and required volume	20
3.2	Experimental design used in the Fenton oxidation study	24
4.1	The percentage removal of COD, colour and UV absorbance	27
	for Fenton reagent	
4.2	ANOVA for COD, colour and UV absorbance removal	28
4.3	<i>p</i> -value for each factor	31
4.4	The percentage removal of COD, colour and UV absorbance	34
	for Photo-Fenton reagent	
4.5	ANOVA for COD, colour and UV absorbance removal	35
4.6	<i>p</i> -value for each factor	39
4.7	The percentage removal of COD, colour and UV absorbance	40
	for Solar-Fenton reagent	
4.8	ANOVA for COD, colour and UV absorbance removal	41
4.9	<i>p</i> -value for each factor	45
4.10	Comparative study within system on the best removal of	46
	COD, colour and UV absorbance with the optimum dosage used	
4.11	Comparative study among systems on the results	47

LIST OF FIGURES

FIGURE TITLE PAGE

3.1	Photo of the instruments used (a) DR 4000U	19
	Spectrophotometer (b) UV-Visible Spectrophotometer	
	(Shimadzu UV 2450)	
3.2	Photo of the reactor used in the (a)Fenton reagent study	23
	(b) Photo-Fenton study	
4.1	Pareto chart for Fenton Reagent on (a) COD removal	29
	(b) colour removal and (c) UV absorbance removal	
4.2	Main effects plot for Fenton Reagent on (a) COD removal	32
	(b) colour removal and (c) UV absorbance removal	
4.3	Interaction plot for Fenton Reagent on (a) COD removal	33
	(b) colour removal and (c) UV absorbance removal	
4.4	Pareto chart for Photo-Fenton Reagent on (a) COD removal	36
	(b) colour removal and (c) UV absorbance removal	
4.5	Main effects plot for Photo-Fenton Reagent on (a) COD	37
	removal (b) colour removal and (c) UV absorbance removal	
4.6	Interaction plot for Photo-Fenton Reagent on (a) COD	38
	removal (b) colour removal and (c) UV absorbance removal	
4.7	Pareto chart for Solar-Fenton Reagent on (a) COD removal	42
	(b) colour removal and (c) UV absorbance removal	
4.8	Main effects plot for Solar-Fenton Reagent on (a) COD	43
	removal (b) colour removal and (c) UV absorbance removal	
4.9	Interaction plot for Solar-Fenton Reagent on (a) COD removal	44
	(b) colour removal and (c) UV absorbance removal	

4.10 Colour removal by using Fenton oxidation (a) before oxidation 48(b) after oxidation and settled 30 minutes (c) after oxidation and filtration

LIST OF APPENDIXES

APPENDIX TITLE

A.	Factorial Metholody & Response Surface	57
	Methodology	
B.	Stock Solution Calculation	61
C.	Results of Fractional Factorial Analysis &	64
	Response Surface Analysis	

PAGE

CHAPTER I

INTRODUCTION

1.1 Introduction

Malaysia is currently one of the largest producer and exporter of palm oil in the world. In 2003, Malaysia contributed to 13.4 million tons or 49% of world production and 12.2 million tons or 58% of total world exports. However, this important economic activity generates an enormous amount of effluent which could pollute the environment if not properly treated. It is estimated that for every ton of crude palm oil produced, about 2.5-3.5 ton of palm oil mill effluent (POME) is generated (Ahmad *et.al.*, 2005). In palm oil mills, liquid effluent is mainly generated from sterilization and clarification processes in which large amounts of steam and/or hot water are used. The mixed effluent is commonly known as POME. Fresh POME is thick brownish slurry. It is hot around 80 to 90°C, acidic with pH 3.8 to 4.5 and contains very high concentration of organic matter (COD = 40, 000 to 50, 000 mg/L, BOD = 20, 000 to 30, 000 mg/L). The effluent is non-toxic as no chemical was added in the oil extraction process (Zinatizadeh *et.al.*, 2005). A typical characteristic of POME and palm oil mill secondary effluent (POMSE) (i.e. after biological process) are given in Table 1.1.

In Malaysia, the Department of Environment enforced the regulation for the discharge of effluent from the crude palm oil industry under the Environmental Quality (Prescribed Premises) (Crude Palm Oil) Order and Regulations 1977. While biological treatment processes are widely applied to treat POME, their applications are normally incapable in complying with the standard requirements set by the

regulator. In addition, the effluent is also coloured and contained high concentration of non-biodegradable organics (based on high COD/BOD ratio) and thus requires further treatment. These biological treatments of anaerobic and aerobic systems need proper maintenance, close monitoring, long retention time, skilled personnel and commitment from management (Ahmad *et.al.*, 2005). Thus, an efficient treatment system is highly desirable in all palm oil mills in order to control the discharge of effluents to any bodies of water.

Table 1.1: Characteristics of POME, POMSE and its respective standard dischargelimit by the Department of the Environment in Malaysia (Ahmad *et.al.*,2005)

Parameter	POME	POMSE	Standard Limit
pH	4.5	8.1	5.0-9.0
Biochemical oxygen demand (BOD ₅)	30000 mg/L	160 mg/L	100 mg/L
Chemical oxygen demand (COD)	50000 mg/L	1854 mg/L	-
Suspended solids	59350 mg/L	1138 mg/L	400

1.2 Objectives of Study

The objectives of the study were:

- To evaluate the feasibility of three types of Fenton oxidation system, i.e. Fenton reagent, Photo-Fenton and Solar-Fenton in treating POMSE in term of COD, colour and organic content.
- 2. To identify the optimum dosage used in these Fenton reagent systems.
- 3. To explore the effect of UV lamp and solar light on the efficiency of Fenton oxidation.

1.3 Scope of Study

This study comprised of experimental work at laboratory scale. Actual POMSE from a palm oil mill was used throughout the study. Three types of Fenton oxidation system, i.e. Fenton reagent, Photo-Fenton and solar-Fenton were evaluated. Batch reactor system was used and the experiments were designed using Response Surface Method. Parameters to assess the performance of Fenton oxidation system include colour, COD and UV absorbance at 286.5nm.

REFERENCES

- Ahmad, A.L., Ismail, S. and Bhatia, S. (2005). "Membrane Treatment for Palm Oil Mill Effluent: Effect of Transmembrane Pressure and Crossflow Velocity". J. Desalination. 179. 245-255.
- Ahmad, A.L., Sumathi, S. and Hameed, B.H. (2005). "Adsorption of Residue Oil from Palm Oil Mill Effluent using Powder and Flake Chitosan: Equilibrium and Kinetic Studies". J. Water Research. 39. 2483-2494.
- Ahmad, A.L., Ismail, S. and Bhatia, S. (2003). "Water Recycling from Palm Oil Mill Effluent (POME) Using Membrane Technology". J. Desalination. 157. 87-95.
- Aris, A. (2004). "Fenton's Reaction System for the Treatment of Textile Dyeing Wastewater". Thesis of Doctor of Philosophy. University of Manchester Institute of Science and Technology.
- Benatti, C.T., Tavares, C.R.G. and Guedes, T.A. (2006). "Optimization of Fenton's Oxidation of Chemical Laboratory Wastewaters Using the Response Surface Methodology". J. Environmental Management. 80. 66-74.
- Chacon, J.M., Leal, M.T., Sanchez, M. and Bandala, E.R. (2006). "Solar Photocatalytic Degradation of Azo-dyes by Photo-Fenton Process". J. Dyes and Pigments. 69. 144-150.

- Emilio, C.A., Jardim, W.F., Litter, M.I. and Mansilla, H.D. (2002). "EDTA Destruction Using the Solar Ferrioxalate Advanced Oxidation Technology (AOT) Comparison With Solar Photo-Fenton Treatment". *J. Photochemistry*. 151. 121-127.
- Estrada, L.A.P., Maldonado, M.I., Gernjak, W., Aguera, A., Alba, Fernandez, A.R., Ballesteros, M.M. and Malato, S. (2005). "Decomposition of Diclofenac by solar Driven Photocatalysis at Pilot Scale". *Catalysis Today*. 101. 219-226.
- Hideyuki, K., Satoshi, K., Tohru, S., Kiyohisa, O. and Yoshihiro, Y. (2005).
 "Photo-Fenton Degradation of Alachlor in the Presence of Citrate Solution".
 J. Photochemistry and Photobiology A: Chemistry. Articles in Press. 1-8.
- Hu, Eric., Li, Y.C. and Zou, Linda. (2003). "Solar Powered Colour Removal of Dyes Using Ferrioxalate/ H₂O₂". School of Engineering and Technology, Deakin University Geelong, Australia.
- Kavitha, V. and Palanivelu, K. (2005). "Degradation of Nitrophenols by Fenton and Photo-Fenton Processes". *J. Photochemistry and Photobiology A: Chemistry*. **170**. 83-95.
- Krutzler, T., Fallmann, H., Bauer, R., Malato, S. and Blanco, J. (1999).
 "Applicability of the Photo-Fenton Method for Treating Water Containing Pesticides". J. Catalysis Today. 54. 309-319.
- Kusic, H., Bozic, A.L. and Koprivanac, N. (2006). "Fenton Type Processes for Minimization of Organic Content in Coloured Wastewaters: Part I: Process Optimization". J. Dyes and Pigments. Articles in Press. 1-8.
- 14. Lu, M.C., Lin, C.J., Liao, C.H., Huang, R.Y. and Wang, P.T. (2003).
 "Dewatering of Activated Sludge by Fenton's Reagent". J. Advances in Environmental Research. 7. 667-670.

- Malato, S., Blanco, J., Vidal, A. and Richter, C. (2002). "Photocatalysis with Solar Energy at A Pilot-Plant Scale:An Overview. *J.Application Catalysis.B:Environ.* 37. 1-15.
- Mameri, N., Halet, F., Drouiche, M., Grib, H., Launici, H., Pauss, A., Piron, D. and Belhocine, D. (2000). "Treatment of Olive Mill Washing Water by Ultrafiltration". J. Chem. Eng. 78. 590-595.
- Mariana, N., Ayfer, Y., Ilie, S. and Antonius, K. (2003). "Oxidation of Commercial Reactive Azo Dye Aqueous Solutions by the Photo-Fenton and Fenton-Like Processes". *J. Photochemistry and Photobiology A: Chemistry*. 161. 87-93.
- Martinez, N.S.S., Fernandez, J.F., Segura, X.F. and Ferrer, A.S. (2003). "Preoxidation of An Extremely Polluted Industrial Wastewater by the Fenton's Reagent". J. Hazardous Materials. B101. 315-322.
- Miguel, R., Sixto, M., Cesar, P., Sandra, C., David, C., Jaime, G. and Santiago, E. (2005). "Optimizing the Solar Photo-Fenton Process in the Treatment of Contaminated Water. Determination of Intrinsic Kinetic Constants for Scale-up". (2005). J. Solar Energy. 79. 360-368.
- Najafpour, G., Hii, A.Y., Younesi, H. and Zinatizadeh, A. (2005). "Effect of Organic Loading on Performance of Rotating Biological Contractors using Palm Oil Mill Effluents". *J. Process Biochemistry*. 40. 2879-2884.
- Nogueira, R.F.P., Silva, M.R.A. and Trovo, A.G. (2005). "Influence of the iron Source on the Solar Photo-Fenton Degradation of Different Classes of Organic Compounds". J. Solar Energy. 79. 384-392.
- Nogueira, R.F.P., Trovo, A.G. and Mode, P.F. (2002). "Solar Photodegradation of Dichlorometic Acid and 2,4-dichlorophenol Using An Enhanced Photo-Fenton Process". *Chemosphere*. 48. 385-391.

- Oswal, N., Sarma, P.M., Zinjarde, S.S. and Pant, A. (2002). "Palm Oil Mill Effluent Treatment by A Tropical Marine Yeast". *J. Bioresource Technology*. 85. 35-37.
- 24. Perez, Montserat., Torrades, Francesc., Domenech, Xavier. and Peral, Jose. (2002). "Fenton & Photo-Fenton Oxidation of Textile Effluent". J. Water Research. 36. 2703-2710.
- 25. Rodriguez, M., Malato, S., Pulgarin, C., Contreras, S., Curco, D., Gimenez, J. and Esplugas, S. (2005). "Optimizing the Solar Photo-Fenton Process in the Treatment of Contaminated Water. Determination of Intrinsic Kinetic Constants for Scale-Up". *Solar Energy*. **79.** 360-368.
- 26. Rodriguez, M., Tmokhin, V., Michl, F., Contretas, S., Gimenez, J. and Esplugas, S. (2002). "The Influence of Different Irradiation Sources On the Treatment of Nitrobenzene". *Catalysis Today.* **76.** 291-300.
- 27. Salvadori, P., Cuzzola, a and Bemini, M. (2002). "A Preliminary Study on Iron Species as Heterogenous Catalysts for the Degradation of Linear Alkylbenzene Sulphonic Acids by H₂O₂. *Applied Catalysis B: Environmental*. 36. 231-237.
- Selvam, K., Muruganandham, M. and Swaminathan, M. (2005). "Enhanced Heterogenous Ferrioxalate Photo-Fenton Degradation of Reactive Orange-4 by Solar Light". *Solar Energy Materials and Solar Cells.* 89. 61-74.
- 29. Solozhenko, E.G., Soboleva, N.M. and Goncharuk, V.V. (1995).
 "Decolourization of Azodye Solutions by Fenton's Oxidation". *Water Res.* 29. 2206-2210.
- Sridhar, S., Kale, A. and Khan, A.A. (2002). "Reverse Osmosis of Edible Vegetable Oil Industry Effluent". J. Membrane Sci. 205. 83-90.

- Torrades, F., Garcia-Montano, J., Garcia-Hortal, J.A., Domenech, X. and Peral, J. (2004). "Decolorization and Mineralization of Commercial Reactive Dyes Under Solar Light Assisted Photo-Fenton Conditions". *J. Solar Energy*. 77. 573-581.
- 32. Torrades, F., Perez, M., Mansilla, H.D., Peral, J. (2003). "Experimental Design of Fenton and Photo-Fenton Reactions for the Treatment of Cellulose Bleaching Effluents". *Chemosphere*. 53. 1211-1220.
- Wong, P.W., Sulaiman, N.M., Nachiappan, M. and Varadaraj, B. (2002).
 "Pre-treatment and Membrane Ultrafiltration using Treated Palm Oil Mill Effluent (POME)". J. Sci. Technol. 24. 891-898.
- 34. Yacob, S., Hassan, M.A., Shirai, Y., Wakisaka, M. and Subash, S. (2005).
 "Baseline Study of Methane Emission from Anaerobic Ponds of Palm Oil Mill Eflluent Treatment". J. Science of the Total Environment. Articles In Press.
- 35. Yacob, S., Shirai, Y., Hassan, M.A., Wakisaka, M. and Subash, S. (2005). "Start-Up Operation of Semi-Commercial Closed Anaerobic Digester for Palm Oil Mill Effluent Treatment". J. Process Biochemistry. Articles In Press.
- 36. Zinatizadeh, A.A.L., Mohamed, A.R., Najafpour, G.D., Hasnain, M. and Nasrollahzadeh, H. (2005). "Kinetic Evaluation of Palm Oil Mill Effluent Digestion in a High Rate Up-Flow Anaerobic Sludge Fixed Film Bioreactor". *J. Process Biochemistry*. Articles in Press. 1-9.