
Parallel Huffman Decoder with an Optimize Look UP
Table Option on FPGA

Fix VLC
Code Length Pn (Huffman)

By Zulfakar Aspar, Zulkalnain Mohd Yusof, Ishak Suleiman
Faculty of Electrical Engineering, Universiti Teknologi Malaysia

Total Bit =
PnXBi t

Abstract
Compression is very important for system with limited
channel bandwidth and/or limited storage size. One of
the main components in imagehideo compression is a
variable length coding (VLC). This paper would discuss
about one of the most popular VLC known as Huffman
Coding. In our present work, a real time hardware
parallel Huffman decoder has been successfully designed
and implemented using 50,000 gate FPGA (FLEX1OK20
from Altera). The parallelism is important to be
exploited in the design to achieve the high frame rate
such as in JPEG and MPEG implementation. Using
parallel technique, a codeword is guaranteed to be
processed within a single clock cycle. The codeword to
be processed is matched with the one stored in a Look
Up Table (LUT). A LUT is needed during Coder and
Decoder process. In order to saves memory cost, an
optimize LUT is suggested. This paper does not intend
to complete an optimized operating speed design, instead
this paper only concentrate on producing a workable
real-time decoder design.

1. Introduction
Imagehideo compression is one of the major

components used in video-telephony, videoconferencing
and multimedia-related applications. Compression
allows efficient utilization of channel bandwidth and/or
storage size. One of the main components in
imagehide0 compression is entropy coding. The most
important part in entropy coding is variable length
coding (VLC). One of the most well known VLC is
Huffman Coding. Using Huffman coding, lossless
compression is achieved by exploiting statistical
redundancy that exist in the data. In order to get a high
throughput, the Huffman algorithm is implemented in
hardware.

This paper is organized as follow. Section 1 is the

on the operating speed performance, FlexlOK20RC240-3
and FlexlOK20RC240-4 were presented. Combining
with the FPGA usage the design was successfully done
in a short development cycle.

2. Huffman Algorithm
Shanon entropy defines that any given set of raw

data can be arranged in a more efficient manner pkovided
if the probability of each data symbol is known. The
basic idea in Huffman algorithm is to assign a shorter
codeword for a more frequent (probability) data and to
assign a longer codeword for a less frequent data.
Following Huffman algorithm, a set of data sample is
prepared as shown in table 2.

One of the main problems in Huffman Decoder is
due to the varying length of the coded codes. Therefore,
if the Huffman Decoder is implemented using bit serial
technique, the number of cycles required to decode a
symbol varies depending on the codelength. Therefore,
bit serial technique is slow for a real time
implementation. Another major problem is a single bit

Table 2: The Huffman Codes for a set of sample of Fix

1 1 1 1 2 0 1 1 1 1 60
Total Occurrence = 120 I Total All Bit = 325 I

error propagation. If any of the bits is corrupted by noise
during transmission, the entire group of data become
useless. Possible way of limiting the error propagation
error is to insert synchronous code at certain interval.

3. Bit Serial Huffman Decoder
The simplest and easiest way to design the serial

Huffman decoder is to decode the data bit by bit or in
serial fashion (manner). Using Moore model, the
decoder can easily be constructed. Given any set of
Huffman codes, the finite state machine can be built by

introduction o n Huffman Coding. Section 2 is a brief
explaination on Huffman algorithm. Section 3 is the bit
serial Huffman decoder implementation. Section 4 is the
bit parallel Huffman decoder implementation. Section 5
is the incoperation of Huffman Decoder into JPEG
Huffman Decoder. Section 6 is the optimization of the
Look Up Table to reduce the hardware consumption.
was implemented. Section 7 is the conclusion of this
paper. The design work done in this paper does not target
for an optimum clock speed. Instead, a minimum
acceptable working design is presented. As a
comparison, the effect of using different type of P G A ’ s

0-7803-6355-8/00/ $10.00 02ooOIEEE 1-73

treating each node (which is assigned by 1 or 0) as a
different states. The branches are treated as the path to
the different states or the path that the states need to
follow. The sample data in table 2 has a Huffman tree as
in figure 3. Then based on the guidance given and figure
3, the state diagram can be constructed.

To speed up design time, VHDL technique was
choose to build the circuit. The main problem with this
method is if the probability of the symbols change, the
Huffman tree also changes. Therefore, the design must
be changed. Another major problem is the number of
clock cycles to finish decode a codeword depends on the
length of the codeword. This will cause inconsistency
bit rate which require additional hardware to solve the
problem.

H

I

than one coded Huffman codeword (decoded on every
cycle). In addition, for storing the match coded
codeword with the decoded codeword, LUT also
contains the length of the coded codeword (codelength).
Therefore, after a coded codeword is decoded, the length
of the coded codeword will be accumulated by the
Accumulator. The Accumulator has a dual purposes:
First is to point to the correct location for the data input
stored in Buffer before the data can be decoded. This is
done by accumulating the codelength as every time a
codeword is decoded. Second is to trigger Buffer to load
a new data input if all coded codeword in previous data
input were decoded. The Look-up table (LUT) consists
of data pointer and ROM/RAM/PLA, which consists of a
table of, predetermine Huffman codes[2]. For example,

shifthew? ;&, Incoming

Figure 3: The Huffman tree for sample data in table 2

Although bit serial design consumes little hardware
(3 flip-flops only for this example), the speed is very
poor for a real time implementation. Thus, bit serial
Huffman is not suitable for a real time implementation.
A better alternative is to use bit parallel Huffman coding.

4. Bit Parallel Huffman Decoder
The bit parallel technique used is based on the work

done by Shaw-Min Lei, and Ming-Ting Sun [2] . The
advantage of this technique is a decoded code or a
codeword is produced in every clock cycle regardless of
the length of the Huffman codes. The increase in
hardware complexity is justified by the speed gained.
The basic idea of this method is to find the matching
coded codeword with the stored decoded codewords in a
Look Up Table (LUT). The length of the data input
stream is fixed such as 8 bits. As shown in table 2, 8 bits
length of data input stream may contain more than one
coded codeword. Therefore, a buffer is needed to hold
the input data stream. Another purpose of using the
buffer is to ensure that the stored data can be shifted to
the correct position after a codeword was decoded. If
there is no more uncoded codeword, the buffer will
receive new data stream and the process above is
repeated. As a result, more than one cycle may be
needed to decode a data stream, which may contain more

ACCUMULATOR

A I I
T I I
I I

Code Length *
Code Word

(Huffman Code)
Figure 2: The Bit Parallel Decoder technique is

important to speed up the decoding process

a first stream of data consists of a total of 8 bit stream of
001001 10. Initially, the Accumulator is zero. Thus, the
decoded codeword is A (000) or 00 with total codelength
as two. On the second cycle, the Accumulator is two,
forcing the Buffer to shift by two bits. Thus, the decoded
codeword is D (01 1) or 10 with total codelength as two.
On the third cycle, the Accumulator is four, forcing the
Buffer to shift by four. Thus, the decoded codeword is C
(010) or 011 with total codelength as three. On the
fourth cycle, the Accumulator is seven while the
remaining bit one. Combining this remaining bit with a
second 8 bit stream of data (10010101) which is stored in
the second Buffer layer, the LUT will see the shifted by
seven bit data as 01001010. Thus, the decoded
codeword is E (100) or 01001. On the fifth cycle, the
Accumulator is twelve, which is more than eight. As a
result, the Accumulator will be deducted by eight to
point to the next undecoded data. The data in the second
layer Buffer is put into the first layer Buffer and the
second layer Buffer receives a new stream of 8 bit data.
These are all done in the same cycle.

The example above shows the input data stream
may need more than one cycle to be decoded while
decoded data is always available on every clock cycle.
Any changes to the Huffman Code can be adjusted by
changing the LUT content.

1-74

The operating speed of the Bit Parallel Huffman
Decoder by using Altera FPGA FlexlOK20RC240-4 is
9.24MHz. If Altera FPGA FlexlOK20RC240-3 is used,
the decoder operating speed is 10.89MHz. Both FPGA’s
total’logic cells utilization is 37% or 436 over 1152 logic
cells.

JPEG Huffman

5. Bit Parallel JPEG Huffman Decoder
The successful design of the bit parallel Huffman

Decoder was incoperated in JPEG Decoder standard.
However, Parallel Huffman Decoder produces a decoded
codeword in every clock cycle whereas in JPEG
Huffman Decoder, the output of the decoder is alternated
between Huffman Codeword and Coded Amplitude as
shown in Table 5.1 [3], [4]. The Huffman Codeword is

2 I Huffman Codeword
1 I Huffman Codeword

Table 5.1: The difference between Huffman Decoder and
JPEG Huffman Decoder

2 to 1
MULTIPLEXER

Decoder I Cycle I Dataoutput
Huffman , I 1 I Huffman Codeword

LOOK-UP
TABLE

(Huffman Code)
v

I 1 2 I Coded AmDlitude I

the fixed length codes or the codes before compressed.
The Coded Amplitude is the value of a DCT coefficient.
Therefore, the original Huffman Decoder design must be
modified to decode the respective Huffman Codewords
and Coded Amplitudes. The detail of the actual JPEG
Decoder design can be referred to [3] and [4].

According to JPEG standard, the decoded Huffman
Codeword consists of number of Run and Category.
Number of Run is the number of zeros between
coefficient or the coefficient location. Category is the
number of bits assigned for the Amplitude or Amplitude
bit length. Amplitude is the value of DCT coefficient.
The Amplitude bit length tells how much the data in the
Buffer should be shifted due to Amplitude Length.
Hence, in the first cycle the accumulator will accumulate
the CodeLength while in the second cycle the
accumulator will accumulate the Amplitude length.

The operating speed of the JPEG Huffman Decoder
by using Altera FPGA FlexlOK20RC240-4 is 9.30MHz.
If Altera FPGA FlexlOK20RC240-3 is used, the decoder
operating speed is 10.95MHz. Both FPGA’s total logic
cells utilization is 47% or 547 over 1152 logic cells.

6. Optimize Look Up Table
From experience above, it was found that the larger

the LUT, the more efficient the compression will be.
However, it is impossible to keep the LUT as large as
possible without adding extra cost. In JPEG Huffman
Decoder LUT mention before, the input bit width is
restricted to 16 bit length (refer to JPEG Luminance
table). As a result, the Huffman Codewords can be
divided into two main groups separated by leading zeros
and leading ones. Using this knowledge, the LUT size
can further be reduced. Instead of using a 262 entries
(17 bits input wide) times 13 bits width per entry, the
LUT can reduced to 262 entries (10 bits input wide)
times 13 bits width per entry. The only addition
hardware is a leading zeros or leading ones detector so
that the buffer can be adjusted to the correct position.

Even though, the total logic get consumption
increases, the size of the memory used is drastically
reduced. The only problem encounter in this
optimization method is the stable time for the buffer to
position itself at the right position increases. The
modified LUT is shown in Figure 6.

Incoming

1’s BUFFER)
LEADING Data (From

1

POINTER LUT
I I

CodeLength 1 1 Codeword

(Huffman Code)

Figure 6: The stable time increases as an additional
layer of data Shifter/Positioner is needed.

When a data stream arrives from Buffer, the Shifter
will reposition itself into a new position based on the
information detected by Leading 1’s Detector (LlD). As
a result, the shifter can only reposition itself after L1D
has stable. Hence, additional time is needed. The
Pointer is used to select the right MSB bits of the LUT if
needed. The combination of the Pointer and the Shifter
will ensure the optimize LUT is decoded at the correct
position.

The operating speed of the Bit Parallel JPEG
Huffman Decoder by using Altera FPGA
FlexlOK20RC240-4 is 9.91MHz. If Altera P G A
FlexlOK20RC240-3 is used, the decoder operating speed

1-75

is 11.54 MHz. Both FPGA's total logic cells utilization
is 99% or 1145 over I152 logic cells.

7. Conclusion
The Parallel Huffman Decoder is a very important

technique to ensure that decoded data is produced in
every clock cycle. An example of Parallel Huffman
Decoder application shows that the decoder is easily
modified to customize for a dedicated application.
Further work proves that with another small
modification, the total memory consumption to build
LUT can be further reduced with small additional logic
gets. Preliminary results show that the optimize LUT
performance is good enough to be implemented in any
application such as JPEG Decoder. The speed may be
further improved by designing a customize IC using
VLSI technology.

Further work is to integrate this technology into a
complete compression standard such JPEG Decoder,
MPEG or MPEG I1 Decoder, MP3 Decoder and others.

REFERENCES
[13 Richard W. Hamming, (1986) Coding and

Information Theory. New Jersey: Prentice-Hall.
[2] Shaw-Min Lei, and Ming-Ting Sun. "An Entropy

Coding System for Digital HDTV Applications.",
IEEE TRANSACTION ON CIRCUITS AND
SYSTEMS FOR VIDEO TECHNOLOGY. 1, no. 1,

[3] M. Kovac, N. Ranganathan. "JAGUAR: A Fully
Pipelined VLSI Architecture for JPEG Image
Compression Standard", Proceedings of the IEEE,
83, no.2, Feb 1995.

Architectures for Huffman and Viterbi Decoders."
IEEE TRANSACTION ON CIRCUITS AQ)l

PROCESSING. 39, no. 6 (JUNE): 385-391.
[5] Peter Pirsch, Nicolas Demassieux, and Winfried

Gehrke. 1995. "VLSI Architectures for Video
Compression - A Survey." Proceeding of IEEE, 83,
no. 2 (February): 220-244.

[6] Peter A. Ruetz, Po Tong, Douglas Bailey, Daniel A.
Luthi, and Peng H. Ang. 1992. "A High-
Performance Full-Motion Video Compression Chip
Set." IEEE TRANSACTION ON CIRCUITS AND
SYSTEMS FOR VIDEO TECHNOLOGY. 2, no. 2

147-154, Mar 1991.

[4] Kesab K. Parhi. 1992. "High-speed VLSI

SYSTEMS-11: ANALOG AND DIGITAL SIGNAL

(JUNE): 111-133.
[7] "Altera Megafunction Partners Program",

http://www.altera.com

1-76

http://www.altera.com

