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Abstract 

Researchers from the Satellite Navigation Research Group 
(SNAG) of UTM are currently conducting a research 
program that mitigates the effect of the Anti Spoofing (AS) 
policy. A robust strategy, called the Pseudo Randomized 
Search Strategy (PRSS) has been developed to counter the 
effect of this AS policy. The PRSS algorithm is an adaptive 
search technique that can learn high performance 
knowledge structure in reactive environments that provide 
information as an objective function. A combination of 
three methods, namely optimization, global random search 
and ambiguity function mapping has produced an efficient 
and robust mitigation technique. Numerical results indicate 
that, in all the test cases, no more than 4% search of the 
total search space was investigated to determine the correct 
set of answers. This result implies that the size of the search 
window does not play an important role in determining the 
search efficiency. This will take away the constraint resulted 
from the AS policy in processing the GPS satellites signal. 
The algorithm also shows its robustness because it does not 
require a good initial starting point. Using different initial 
point, all of them produced the correct results. 
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I. INTRODUCTION 

Couselman and Gourevitch (1981) introduced the 
Ambiguity Function Mapping (AFM) technique in their 
paper titled “Miniature Interferometer Terminals for Earth 
Surveying : Ambiguity and Multipath with the Global 
Positioning System”. The root of the AFM is believed to be 
derived from VLBI techniques. Remondi (1984) first used 
this method extensively for GPS static positioning and later 
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also for pseudo-kinematic positioning (Remondi, 1989). 
Mader (1990, 1992) also used the AFM for rapid static and 
kinematic GPS positioning. The most recent use of this 
method was by Han (1996), who gained some improvement 
on the computation time, particularly on the grid step size 
used. But beyond this, the AFh4 gained little popularity. 

Theoretically, as proven by Lachapelle, et a1 (1992b), the 
AFM is equivalent to the Least Squares Search method 
widely used in other search techniques such as Fast 
Ambiguity Resolution Approach (Frei and Beutler, 1990), 
Cholesky Decomposition method (Landau and Euler, 1992), 
Least Squares Search (Hatch, 1990) and, most recently, the 
Least Squares Ambiguity Decorrelation Adjustment 
(Teunissen, 1994). Most of the above techniques have been 
incorporated in commercial GPS processing software 
packages. 

One of the main features of the AFM compared to other 
techniques is that it is immune to cycle slips. Although most 
researchers have shied away from the AFM, in fact the 
AFM is the first on-the-fly ambiguity resolution technique 
introduced. The main reason for the lack of the popularity 
of the AFM is largely its computational burden. To reduce 
the computation burden of the AFM, the most obvious step 
is to reduce the mathematical operations needed to 
determine the position that produces the maximum 
ambiguity function. Since AFM works in the position 
domain, good initial coordinates of the unknown point are 
needed in order to establish the search window. Another 
point that is problematic is that the grid for the search step 
size needs to be determined beforehand. If the step size is 
too small, then the computation will take a long time and, if 
it is too coarse, the correct position may possibly be 
eliminated. Han (1996) reported that using a certain 
combination of L1 and Lz frequencies, the search area 
should be within & h for six satellites and the step size 
should be less that one-tenth of the observable wavelength. 
This method works best with dual frequency receivers since 
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they can provide good initial position estimates by reducing 
the effects of the ionosphere. But, with only LI 
measurements available, the method requires so many 
measurements that it is rendered useless for kinematic 
applications. 

This paper will address the combination of optimization, 
global random search strategy and AFM to produce a highly 
efficient and robust technique in resolving the ambiguity on- 
the-fly using only L1 measurements. A brief review on each 
of the three strategies will be discussed. It will be followed 
by the combination strategy used to produce a highly 
efficient search algorithm and finally numerical results are 
presented. 

11. AMBIGUITY FUNCTION MAPPING 

The AFM uses a function to determine the maximum value 
of a certain position. The function used in practice is as 
follows: 

where 4 : z ( x , y , z )  is the double difference observed phase 

at the true position ( x . y , z )  and ~ ~ ~ m ( x o , y o , z o )  is the 
computed double difference phase at the trial position of 
( x , , y , , z , )  . The summations over i and j refer to the total 
number of epochs m and number of satellites n. The 
function A will reach a maximum value when the trial 
position (x , ,  yo,  z , )  is equal to the true position ( x ,  y ,  z )  . In 
the case of one epoch, m=l, and one satellite, n=1, and 
assuming there are no biases or errors, the maximum of A is 
1. As the trial position ( x , , y , , z , )  is varied within a 
volume of the search space, a pattern of maxima and 
minima will be observed at each trial position and the 
correct position will be identified as a peak. If enough 
measurements are available, this peak is distinguishable 
among other relative maxima. 

The AFM works by trial and error within the search area 
space. For example, if the search space is 1 m x 1 m x 1 m 
and the step size used for the trial position is 1 cm, for m 
satellites and n epochs there will a total of (m * n * loo3) 
trial positions to be tested. Clearly, for this method to work 
efficiently, a good initial position is needed so that a small 
search area can be constructed. If the method of trial and 
error is used, then dual frequency measurements will have 
shorter computation times compared to single frequency 
because of a wider lane. 

In the traditional AFM, the function is computed at every 
grid point within the search volume in an attempt to find a 
unique set of integer numbers. Using the traditional AFM 
method to develop the objective function, there will result 
three unknowns, that is, the coordinates (x,y,z) of the 
position. In this research, to avoid estimating an initial 
position and extra unknowns, a direct search for the integer 
numbers is performed instead. In this case, rather than an 
initial position being defined, an initial set of integer 
numbers is defined. 

Therefore, the previous function is rewritten as: 

where, instead of position (x,y,z) as unknowns, the modified 
equation uses the carrier phase ambiguities (n) as the 
unknowns. 

111. SEARCH AND OPTIMIZATION 

Optimization theories encompass the quantitative study of 
optima and methods for finding them. When an 
optimization process is performed, it can be said that we are 
seeking to improve the performance toward some optimal 
point or points. The method used to derive the optimum 
point is called search technique. 

Basically, there are three types of search techniques: 
calculus-based, enumerative and random. The calculus- 
based method has been used very extensively and can be 
categorized into indirect and direct techniques. Indirect 
techniques seek local extrema by solving the nonlinear set 
of equations resulting from setting the gradient of the 
objective function to zero. On the other hand, the direct 
searches seek the local optima by hopping on the function 
and moving in a direction related to the local gradient. The 
enumerative scheme is a straight-forward search method 
that begins in a finite search area and the search algorithm 
starts looking at objective function values at every point in 
the space. Lastly, the random search method uses 
probabilistic methodology to guide the search for an 
optimum point. 

The calculus-based method, if used together with AFM, 
does not provide any real advantage. The reason is that this 
method is very local in nature. The optima sought are the 
best in the neighborhood of the current point. This means 
that the GPS phase measurements must have a very low 
noise or biases. For a single frequency measurement, this 
assumption is improbable since it is corrupted with 
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multipath and ionospheric delay errors. Secondly, this 
method depends heavily on the existence of derivatives 
(well-defined slope values) and this requirement adds 
another burden to AFM since computation of derivatives is 
very expensive. 

The current AFM uses the enumerative search scheme. 
Using this technique, improvements in computation time 
have been made, for example by Remondi (1991), Mader 
(1992) and Han (1996). The enumerative search works well 
under conditions of dual frequency and good initial trial 
position but does not work well for single frequency 
measurements corrupted with multipath. This led to the 
choice of the random search method in the AFM. 

There are various methods of random search that can be 
used to improve the robustness and efficiency of the AFM. 
But one method that stood out among the rest is based 
evolutionary algorithms. This particular method is based on 
the collective learning process within a population of 
individuals, each of which represents a search point in the 
space of potential solutions. One particular point that 
interested the authors is that the population can be 
arbitrarily initialized. What this means is that, if this method 
is applied to AFM, the trial ambiguity can be initialized 
arbitrarily and the search space does not need to be defined 
beforehand. This algorithm, coupled by randomization 
processes of selection, mutation and crossover, evolves 
toward better and better regions of the search space. The 
process of selection exists both in calculus-based and 
enumerative searchs but are very deterministic in nature. 
The processes of mutation and crossover are exclusive to 
the evolutionary algorithms. Basically, the environment of 
the evolutionary algorithm induces quality information (in 
this case, the ambiguity function value) about the search 
points, and the selection process favors those trial points of 
higher ambiguity function value to reproduce more often 
than those of lower function value. The crossover process 
allows the mixing of the main trial ambiguity information 
while passing it to a new set of trial ambiguities. The 
process of mutation introduces innovation into the 
population set. 

IV. PSEUDO RANDOMIZED SEARCH STRATEGY 

A skeleton of the evolutionary search algorithm is shown in 
Fig. 1 below. During iteration t ,  the algorithm maintains a 
set of trial ambiguities P(t) of structure {Ai ,  ,.......$I, } 

where A: is the trial ambiguity 1 for iteration r, N is the 
total number of trial ambiguities used in each iteration and 
P is the population set. The size of N remains fixed for the 
duration of the search. 

t = 0; 
initialize P(t); 
evaluate A ( Ai ) at P(t); 
while (not termination condition) 
{ 

t = t + l ;  
select P(t) from P(t-I);  
crossover P(t); 
mutate P(t); 
evaluate A( Ai)at P(t); 

1 

Fig. 1: Evolutionary Search Algorithm 

Each ambiguity Ai is evaluated by computing A (Ai ) at 6: . 
The values of the ambiguity function provide a measure of 
fitness of the evaluated structure. When each ambiguity in 
the trial set has been evaluated, a new set of trial 
ambiguities is formed in three steps. First, the structures in 
the current iteration are selected to reproduce on the basis 
of their ambiguity function value. That is, the selection 
algorithm chooses structures for replication by a stochastic 
procedure that ensures that the expected number of new 
ambiguities associated with a given structure A,!, is 

A( A,! )/p(P,r), where A( A,! ) is the ambiguity function value 
of the structure A,! and p(P,t) is the average performance of 
all structures in that particular set of trial positions. What 
this means is that the structures that performed well may be 
chosen several times for replication and structures that 
performed poorly may not be chosen at all. Using only this 
type of procedure as is the case for most other search 
algorithms, would cause the best performing structures in 
the initial set of positions to occupy a larger and larger 
proportion of the trial sets over time. This is where the 
processes of crossover and mutation come into play. 

Next, the selected structures are combined to form a new set 
of structures for evaluation using the crossover process. 
This procedure will combine two trial ambiguities, say, nf 

and ni for sets i and k and iteration t, respectively, to 

produce new and better ambiguities, nf" and np ' .  This 
process operates by swapping corresponding segments of 
string representations of ambiguities nf and n: . 

In generating new structures for testing, the crossover 
process draws only on information present in the structures 
of the current iteration set. If specific information is 
missing, then it is unable to produce new structures that 
contain it. The mutation process, by arbitrarily altering one 
or more components of a selected structure, provides the 
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means for introducing new information into the position set. 

Satellite Pair 
SV# 2-7:i 

:k 
SV# 2-15:i 

:k 
SV# 2-26:i 

:k 

V. OPTIMIZED AMBIGUITY FUNCTION METHOD 

Ambiguity Binary Coding 
431 550 0000001 1101010010110 
431425 10000011101010010110 
454 520 0001 11 101 11 101 1101 10 
454524 01101110111101110110 
155 356 101 1101 101 11 10100100 
155 340 10111011011110100100 

The evolutionary search algorithms, as previously 
described, are used here in the AFM. But, instead of using 
position as the search parameter, the ambiguity integer 
number of the carrier phase was used as the parameter to be 
searched. The main advantage is that, since the search 
algorithm works on the binary coding (0,l) of the parameter 
itself, it is easier to work on the ambiguity number than the 
position itself. For example, consider the three double 
difference ambiguities for a four satellite configuration. 
Table 1 shows the coding used in the search algorithm for 
sets i and k. 

In Table 1 each set of three ambiguity numbers can be used 
to derive one initial position. The three ambiguities are 
considered one string since they are concatenated together. 
In this paper, a set of eight ambiguities are used for each 
iteration and, therefore, for each iteration, there will be 
eight concatenated ambiguity strings. 

To see an example of how the process of crossover is 
performed, look at the ambiguities for SV 2-7 of sets i and k 
in Table 1. In a one-point crossuver that has been 
implemented in this search, a point is chosen at random 
(using a roulette wheel procedure) to swap ambiguities i and 
k to produce a new set for the next iteration. The process is 
illustrated in Fig. 2 below. 

To make sure that diversities exist and most importantly to 
prevent a premature convergence of a local optimum, the 
process of mutation in implemented. This process is a 
random alteration on a particular string of ambiguity where 
the point chosen will be change from 0 to 1 and vice versa. 
Fig. 3 shows the process of a one-bit mutation of the SV# 2- 
7 set i ambiguity. 

Initial Coding New Coding 

set i 0000001*110101 

* is the crossover point 

set k 1000001*1101010010110 0000011*1101010010110 . 
Fig. 2 : Crossover Process 

0000001 0101010010110 0000001 ~101010010110 

I Initial Coding NewCoding I 
Fig. 3 : One Bit Mutation 

VI. RESULTS AND ANALYSIS 

To show the validity of this search algorithm, static data of 
only L, measurements was used. Three data sets were used, 
one each for a short (3-km), medium (12-km) and long (21- 
km) baseline. Since the purpose is to validate the search 
algorithm of the optimized AFM, the results shown are 
based on the correct set of ambiguity numbers and not the 
correct position, as is usually done for the AFM. 

The ‘true’ ambiguities for these measurements were 
determined by processing all available epochs of 
measurements using the ASHTECHTM GPPS processing 
software. The processing results are as shown in Table 2 
below. 

Table 2 : True Double Difference Ambiguities 
I Baseline I SVPair I DDN I Epochs I o(XYZ) I 

Based on the standard deviations (0) for the positions, it can 
be safely assumed that the ambiguities obtained are the true 
values. The test that a search has reached a global optimum 
will therefore be based on comparisons with the above 
values. 

The PRSS algorithm depends on the values of two main 
parameters, the probability values of crossuver (Pc) and 
mutation (Pd. In order to find the best combination of these 
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two parameters, various tests were performed. The primary 
concern in this research is to minimize the number of 
measurements used, that is, to use the minimum number of 
measurement epochs. In this case, measurements of only 
one epoch were used. The parameter value ranges that were 
found to give the best results are as shown in Table 3. This 
particular test numbers was chosen after some preliminary 
test was performed found that this range work the most 
efficiently. 

2 
3 
4 

Table 3 : Probabilitv Parameters 

246954 462367 459295 
132617 807367 459439 
98377 246950 462366 

Parameter 
0.5 - 0.9 
0.0001 - 0.001 

7 I459438 
8 I636341 

The maximum value of the ambiguity function was 
normalized to one. The iterations were stopped when the 
ambiguity function reached a value greater than 1 and, also, 
all ambiguity set values equaled the same value. 

462367 459438 
459438 462367 

The first iteration of this search starts with initial 
ambiguities of 8071 10, 246954, 132617, 98377, 1008399, 
462367, 459438 and 636341, with corresponding fitness 
values ranging from 0.188069 to 0.270883. The next 
iteration shows a fast convergence to an optimum value. For 
example, for ambiguity set 0, there is nearly a 50% change 
from initial value of 807 110 to 462367. Table 4 shows the 
values of the first, second and third iterations of ambiguity. 
The same observations can be made for other set 
ambiguities. It can be observed that, for iteration 2, there 
exists some pattern of uniformity among the ambiguities set. 
For example, ambiguity sets 1, 2 and 7 have the same 
ambiguity value of 462367 and ambiguity set 6 has a value 
of 464366. This change was achieved through the process 
of five crossovers and zero mutations. Fig. 4 shows part of 
the computer output for the first two iterations. 

Table 4 : Iteration 1,2 and 3 of Epoch 1 
for the 3 km Baseline 

Set I Iteration 1 I Iteration 2 I Iteration 3 
1 I 807110 I 462367 I 462511 

5 I 1008399 I459439 I462366 
6 I462367 I462366 I462367 

Since ambiguity sets 5 and 6 with ambiguity values of 
462367 and 459438 respectively, the highest fitness values 
of 0.256765 and 0.270883, it is expected that the next 

iteration produced will be confined to these two higher 
fitness value ambiguities set. This is shown in the next 
iteration where six out of eight ambiguities produced ,are 
from combinations of the two higher fitness value 
ambiguities. The next iteration shows that the ambiguity 
values of 462367 (#5) and 459438 (#6) have taken over the 
whole set of ambiguities. 

Iteration 0 Iteration 1 
num string fitness string fitness 

1) 01 10001 100001010001 1 0.180269 I 1 11 1 100001 1100001 1 10 0.256765 
2) 0101010100100011 1100 0.188069 I 1111 1000011 100001 110 0.256765 
3) 1001000001 10000001 00 0.1 81562 I 0101001 100001010001 1 0.180269 
4) 10010010000000011000 0.180127 ~01100101001000111100 0.188069 
5) 11 1100001 10001 101 11 1 0.1741 12 I 1 11 10101010000001 1 10 0.270876 
6) 11111000011100001110 0.256765 ~01111000011100001110 0.256769 
7)01110101010000001110 0.270883 ~11111000011100001110 0.256765 
8)10101101101011011001 0.190127 ~01110101010000001110 0.270883 

________________________________________----------------------------------------------~~-.~~~~~-~~ 

Iteration 0 Accumulated Statistics: 
Total Crossovers = 2, Total Mutations = 0 
min = 0.180269 max = 0.270883 avg = 0.242145 sum = 1.937161 
Global Best Ambiguities Set so far, Iteration 0: 
Fitness = 0.270883: 01 110101010000001 110 

Ambiguities set 0 = 8071 10 
Ambiguities set 1 = 246954 
Ambiguities set 2 = 132617 
Ambiguities set 3 = 98377 
Ambiguities set 4 = 1008399 
Ambiguities set 5 = 462367 
Ambiguities set 6 = 459438 
Ambiguities set 7 = 636341 

Fig. 4 : Initial Iteration of the 3 km Baseline 

Ambiguity sets #3 (807367) and #4 (246950) have been 
totally eliminated by the crossover and mutation processes 
where the new ambiguity sets produced are 459439 and 
462366, respectively. All other ambiguity sets also changed 
from their original second iteration values, but not as 
drastically because their fitness values were higher 
compared to sets #3 and #4. For successive iterations, until 
iteration 5695, all the changes were very subtle and fitness 
values increased slowly. 

For iteration 5695, all the ambiguity sets had the same value 
of 452606, with a fitness value of 0.471367. This is one of 
the criteria needed to stop the iteration, but iteration was 
continued because the fitness values for succeeding 
iterations was increasing slowly. For example, iteration 
5705 had a fitness value of 0.499698. This is an example of 
the search reaching a local optimum value. The search 
continued with every additional iteration showing a greater 
fitness value until the maximum fitness value of 0.988221 
was reached at iteration 7661. The iteration was stopped 
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since the next iteration produced a fitness value greater than 
1.0. The final ambiguities set computed included values of 
454529 (7 values) and 454528 (1 value). Fig. 5 shows part 
of the final iteration output. The whole process took 2.71 
seconds of CPU time. To reach this final iteration, a total of 
15284 crossover and 1107 mutation processes were 
performed. The total number of these two processes shows 
the number of changes that are needed to be performed on 
all eight sets of ambiguities. A higher number of these 
processes will consume more processing time. 
Even though not all 8 sets have the same value, it is 
apparent that the true ambiguity must be the value 454529 
since it occurs 7 times. The total number of possible searchs 
for this problem is 2 ” ,  which is a total of 1, 048, 576 
combinations. The PRSS search required 7661 iterations to 
converge to a global optimum and this is equivalent to 
0.73% of the total search space. 

1 
2 
3 

1)10000001111101110110 0.970624 
2)10000001111101110110 0.970624 
3)10000001111101110110 0.970624 
4)00000001111101110110 0.935461 
5)10000001111101110110 0.970624 
6)10000001111101110110 0.970624 
7)10000001111101110110 0.970624 
8)10000001111101110110 0.970624 

- 
Solved (sec) Space 
454529(7),454528(1) 7661 2.712 0.73 
454530(8) 6364 2.253 0.61 
454530(8) 6364 2.253 0.61 

10000001 11 1 101 1 I01 10 0.970624 
001000011111011101 10 0.988221 
10000001111101110110 0.970624 
10000001111101110110 0.970624 
10000001111101110110 0.970624 
10000001111101110110 0.970624 
00000001111101110110 0.935461 
10000001111101110110 0.970624 

Epoch 

~ ~~ ~~~~~~~~ 

Iteration 7661 Accumulated Statistics: 
Total Crossovers = 15284, Total Mutations = 1107 
min = 0.970624 max = 0.988221 avg = 0.966229 sum = 1.958845 
Global Best Ambiguities Set so far, Iteration 7661: 
Fitness = 0.988221: 00100001111101110110 

Ambiguities set 0 = 454529 
Ambiguities set 1 = 454529 
Ambiguities set 2 = 454529 
Ambiguities set 3 = 454528 
Ambiguities set 4 = 454529 
Ambiguities set 5 = 454529 
Ambiguities set 6 = 454529 
Ambiguities set 7 = 454529 

................................................................................................ 

Set Ambiguities Iterations Time % 
Solved (sec) Search 

Fig. 5 : Final Iteration of 3 km Baseline for Epoch 1 

The same search was performed using the 2nd, 31d and 4” 
epoch of measurements. The next epoch search can be used 
as external criteria to validate the result of the first epoch. 
This external validation can only be performed if no loss of 
lock occurs between the consecutive epochs of 
measurement. If this is the case, then the ambiguity 
number for consecutive epochs are the same. For Epoch 2 , 3  
and 4, the algorithm required the same number of iterations 
crossovers and mutations, with slightly different fitness 
values, to converge to a global optimum where all eight 

Epoch 

ambiguities took the value 454530. Tables 4, 5 and 6 show 
summaries of the 3, 12 and 21-km baselines results, 
respectively. 

Set Ambiguities Solved Iteration Time % 
S (sec) Search 

Table 4 : Summary of 3 km Baseline Processing 
I Epoch I Set Ambiauities I Iterations I Time I %Search 1 

I 4 I 454530(8) I 6364 I 2.253 I 0.61 I 

40004(6), 7236(2) 0.879 
40004(5),40020(3) 2317 0.878 3.54 
40004(5),40020(3) 2317 0.878 3.54 

I 1905886(1) I I 
4 I 1906397(8) I 161 I 0.155 I 0.01 I 

True to its name, the PRSS algorithm is very random in 
nature. As explained above, the PRSS algorithm depends on 
two parameters that are the probabilities of crossover (P,) 
and mutation (P,). Various combinations were tested for 
each baseline and no clear-cut combination of P, and P ,  
were found. Various combinations were tested for the 21- 
km baseline. The best range for P, is between 0.9 and 0.5. 
P, less than 0.5 will cause the PRSS algorithm to fail. The 
probability of P ,  has a more random value for various P, 
since a different P,  will produce a different P, range. For 
example, P, = 0.9 will result in the best range for P, 
between 0.001 and 0.009. But for P, = 0.8, the value of P, 
= 0.001 will cause the search to fail. Instead the best range 
is from 0.003 to 0.009. 

0.8 0.0003 - 0.009 
0.7 0.0007 - 0.009 

0.5 0.0003 - 0.007 
Fig. 6 : P, and P, Combination for the 21 km 

Baseline. 
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VII. CONCLUSION 

It has been shown that a pseudo-randomized search coupled 
with the AFM, produces a very efficient search of the 
correct set of ambiguities for baseline lengths ranging from 
3 km to 21 km. 

The primary conclusion that can be made from this research 
is that the PRSS algorithm is capable of resolving the 
carrier phase ambiguity under the three main constraints 
that had been set up originally. These constraints are that 
the ambiguities must be resolved under the following 
conditions : 

a. On-The-Fly, that is, no initialization is required 
b. One Epoch measurement; this will assure an 

instantaneous position. 
C. L1 C/A code measurement; this will ensure handheld 

receiver can be used. 

The PRSS algorithm also can be considered as very 
efficient in performing its ambiguity search. The efficiency 
is based on the processing time and search space window 
requirement. For all the test search’s, no more than four 
seconds of processing time was needed to resolve the 
ambiguity correctly and, for the search space, no more than 
three percent of the space window are used. 

The PRSS algorithm is a very robust search algorithm. The 
algorithm does not need good starting initial ambiguities to 
resolve the ambiguities correctly. When different initial 
ambiguities were used and tested, all the ambiguities for the 
3-km and 12-km baseline were resolved correctly. More 
tests should be performed to determine the effect of good 
initial starting initial ambiguities on this algorithm. This is 
true especially under kinematic mode where some form of 
filtering can be implemented where next position can be 
estimated. 

The PRSS algorithm was designed not solely for single 
frequency receivers but can be easily adapted to dual 
frequency receivers. It is expected that the PRSS algorithm 
will perform better with the dual frequency receivers. 
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