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ABSTRACT 
In this paper, we propose a hybrid intelligent parameter 
estimator for the active force control (AFC) scheme which 
utilizes evolutionary computation (EC) and artificial neural 
networks (ANN) to control a rigid robot arm. The EC part 
of the algorithm composes of a hybrid genetic algorithm 
(GA) and an evolutionary program (EP). The development 
of the controller is divided into two stages. In the first stage, 
which is performed off-line, the proposed EC algorithm is 
employed to evolve a pool of ANN structures until they 
converge to an optimum structure. The population is divided 
into different groups according to their fitness. The elitist 
group will not undergo any operation, while the second 
group, i.e. stronger group, undergoes the EP operation. 
Hence, the behavioral link between the parent and their 
offspring can be maintained. The weaker group undergoes a 
GA operation since their behaviors need to be changed more 
effectively in order to produce better offspring. In the 
second stage, the evolved ANN obtained from the first 
stage, which represent the optimum ANN structural design, 
is used to design the on-line intelligent parameter estimator 
to estimate the inertia matrix of the robot arm for the AFC 
controller. In this on-line stage, the ANN parameters, i.e. the 
weights and biases, are further trained using live data and 
back-propagation until a satisfactory result is obtained. The 
effectiveness of the proposed scheme is demonstrated 
through a simulation study performed on a two link planar 
manipulator operating in a horizontal plane. An external 
load is introduced to the manipulator to study the 
effectiveness of the proposed scheme. 
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1. INTRODUCTION 
In general, robotic control can be divided into two main 
categories, i.e. position control and force control. Some of 
the popular classical methods in robot position control are 
on-off control, independent joint control and computed 
torque control. The two former methods suffer from 
overshoot problem and only applicable to relatively very 
slow operations [l] ,  whereas the later method requires the 
estimated mathematical inverse dynamic model of the robot 
to operate successfully, which is almost impossible to obtain 
accurately [ 2 ] .  

A.M.S. Zalzala 
Heriot-Watt University 

Edinburgh EH14 4AS, United Kingdom 
E-mail: a.zalzala@hw.ac.uk 

In robot force control, the two most used methods are 
impedance force control (IFC) [3] and hybrid position-force 
control (HPFC) [4]. However, there are a few drawbacks in 
applying these two schemes. The performance of the IFC is 
dependent on how accurate the model of the robot is 
estimated. In the HPFC, the desired position and force have 
to be specified by the user and need to be updated when the 
robot works with a different environment (i.e. different 
external force) or when the robot internal frictional forces 
change. 

Another robot force control method is active force 
control (AFC) [5]. AFC operates mainly on measured and 
estimated parameters hence lessening the computational 
burden. Some advantages of the AFC strategy is that it has a 
fast de-coupling property and it can be applied to variable 
loading conditions. The performance of AFC depends 
mainly on how accurate the inertia matrix of the robot arm 
is estimated. The inertia matrix can be estimated via crude 
approximation, look-up table, iterative learning technique or 
using ANN algorithms [6]. 

Since late 1980’s, researchers have attempted to 
implement computational intelligence methods, i.e. ANN, 
EC, and fuzzy logic in robot control to either function as a 
robot controller itself, or as part of a controller system. 
Some of the works on the implementation of ANN in robot 
control can be found in [7], [8] and [9] .  More recently, 
some researchers have incorporated GAS with classical 
controller such as PID or with ANN controllers [lo]. 

In this paper, we utilize both EC and ANN to 
estimate the inertia matrix (IN) of the robot arm in an AFC 
approach. The EC comprises a GA and EP and is used 
during off-line stage to evolve a pool of ANN structures 
until they converge to an optimum one. The selected ANN 
structure is then used in the on-line stage. In this stage, the 
ANN is further trained using on-line data from the system. 
The on-line training is terminated when a satisfactory 
performance is obtained. 

This paper is organized as follows. Section 2 describes the 
AFC strategy for robot control. In Section 3, CI brief 
literature reviews on the evolutionary artificial neural 
network (EANN) is presented. The proposed EANN 
algorithm for the off-line stage is explained in section 4 and 
the proposed on-line intelligent AFC method is described in 
section 5. Simulation results of both o f f i n e  and on-line 
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training stages are shown in section 6. Finally, discussion 
and conclusion are given in section 7. 

2. 
AFC is a control method first introduced by Hewit and 
Burdess [ I  I], and is derived from the Newton’s second law 
of motion for a rotating mass, i.e. T = / a  , where T is 
the sum of all torques acting on the body, Z is the moment of 
inertia, and a i s  the angular acceleration. For a robot 
system which has a serial configuration, the equation of 
motion becomes T + Q = /(Q>a , where T is the applied 
torque, Q is the disturbance torques, I ( @ )  is the mass 
moment of inertia of the robot arm and 0 is the robot joint 
angle, and a is the angular acceleration of the robot arm. 

The idea of the AFC approach is that if the value of 
disturbance torques Q’ can be computed or measured within 
an acceptable accuracy, this value could be used to de- 
couple the actual disturbance torques Q from the applied 
torque. Hence, the system stays stable even under variable 
external forces. The estimated value of the disturbance 
torque can be calculated as Q’ = Z’a ’ - T’, where the 
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superscript ’ denotes a measured or computed quantity. The 
applied torque T’ can be measured by using a current sensor 
and a ’ can be measured by using e.g. an accelerometer. On 
the other hand, I’ can be obtained by several means such as 
a simple estimation or by just assuming a perfect model. 
The more recent literature adopted iterative learning 
techniques and ANN to estimate the value of I’ [ 121. 

Figure 1 shows the schematic diagram of the AFC 
method applied to a robot arm together with the resolved 
motion acceleration controller [13]. There are two types of 
controllers employed, i.e. the PD resolved-motion 
acceleration control (PD-RMAC) and the AFC. The PD- 
RMAC is employed to calculate the reference acceleration 
command This is followed by a decoupling transfer 
function (W# IN/K,,, where IN is the estimated inertia 
matrix K,, is the motor constant. This will produce the 
control signal IC. The calculation involves inverse 
kinematics of the robot arm. This is fed into the AFC loop 
where the actual disturbance compensation is taking place 
assuming that both the acceleration and the torque vectors 
are suitably measured. 

Fig. 1 : The block diagram of the active force controller applied to the robot force control 

The estimated disturbance torques Q’ can be computed by 
the equations Q’ = IN 8, -T<, and Ty = K,,, /, , where 8, is 

evolutionary ANN algorithm to assist the AFC in estimating 
the value of ZN. 

the acceleration signal, IN is the estimated inertia matrix and 
Tq is the applied control torque, K,, is the motor constant 
and I ,  is the controlled current. I ,  is the sum of Z, and I, 
where I, is the estimated current signal representing the 
disturbance. The estimation of inertia matrix of the robot 
arm has been done previously by using traditional 
techniques such as crude estimation technique, as well as 
intelligent techniques such as employing ANN in off-line 
training environment [13]. The main problem in AFC is to 
obtain a good estimation of IN. In this paper, we propose an 

3. A BRIEF REVIEW OF EVOLUTIONARY 
NEURAL NETWORKS 
Evolutionary artificial neural network (EANN) is an 

area of popular interest with many publications aiming to 
improve the performance of ANN in terms of its 
generalization capabilities and efficiency, i.e. time and 
space complexity. Whitley [I31 and Fogel [I41 have 
reported some of the early works in this area, while good 
reviews have been reported by Yao [15, 161. 

In general, there are three approaches: the evolution of 
connection weights, of architectures, and of learning rules. 
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Some researchers have used a fixed architecture and 
evolved only the connection weights of the architecture 
[17], some evolved both the architecture and the connection 
weights [18][ 191, and others evolved only the architecture of 
the network and employed back-propagation or other 
methods to train the weight [20]. 

In the evolution of connection weights, two popular 
representation schemes are binary strings and real numbers. 
The problem with binary representation scheme is that it 
needs excessively large number of bits in order to get a 
precise representation, and the training may take a 
considerably long time. To overcome this, real numbers 
representation is introduced which conflicts with applying 
the classical techniques of crossover. Herrera [2 11 described 
and analyzed the real number representation and its 
operators’ capabilities. The connection weights can be 
evolved via a GA approach which involves two kinds of 
search operators, crossover and mutation. However, weights 
can be evolved using EP hence skipping the use of a 
crossover operator. In evolving architectures, the 
chromosome representation can be divided into two 
different schemes, the direct encoding (DE) and indirect 
encoding (IDE). In DE, the number of neurons along with 
the connection and the number of hidden layers are directly 
encoded as a binary string representation. The drawback of 
this type of encoding is that it is only suitable for handling 
relatively small number of neurons since large EANN need 
large representation matrices. On the other hand, the IDE is 
a compact representation of the EANN architectures, where 
small chromosomes can grow massive neural network by 
some development rules during chromosome decoding. 
Some of the earlier work on this was reported by Kitano 
[22], while a comparison of both schemes was reported 
quite recently [23]. The two popular evolutionary 
algorithms used to evolve the network architecture are GA 
and EP. 

4. THE PROPOSED HYBFUD INTELLIGENT AFC 

The proposed hybrid intelligent AFC scheme involves two 
stages of operation: (1) the off-line training stage, which 
evolves the ANN structure for the AFC loop (see figure 4), 
and (2) the on-line training, which trains the ANN 
parameters until a satisfied robot tracking performance is 
obtained. 

CONTROLLER SCHEME 

4.1 Off-line training stage: evolving the ANN structure 
The purpose of executing the off-line training stage is to 
search for the optimum ANN structure for the AFC problem 
mentioned earlier. This is done by implementing both GA 
and EP methods to evolve a pool of ANN structures until it 
converges. Earlier report [15,16] indicated that in order to 
maintain the behavioral link between the offspring and their 
parents, the use of crossover operator should be avoided 
since it can destroy both parent networks. Therefore, an EP 

method, which emulates the Lamarckian evolution theory 
and employs mutation only, is preferred. Examples of such 
mutation operators are neuron deletion and neuron addition. 

However, in the previous work [24], a new EANN 
algorithm, which combined the GA and EP operators, is 
presented. It has been shown that the hybrid GA and EP 
approach can provide fast convergence rate, since GA can 
explore wider area of search in shorter number of evolution, 
while EP can maintain the behavioral link of the selected 
offspring after the competition stage between the GA and 
EP offspring. 

In this paper, a modified version of hybrid GA and 
EP EANN algorithm is proposed. In this algorithm, we 
divide the population into three different groups, namely 
elitist, strong and weak group. Since GA has the capability 
of distorting the ANN behavioral link between the offspring 
and their parents, it is a good method to be applied to the 
weak group of the population. By applying a GA to a weak 
group, the convergence rate of the evolution can be 
increased. The crossover operator in GA will break the 
behavioral link between the offspring and their weak parents 
and thus producing stronger. In contrast, the EP algorithm is 
applied to the stronger groups of the population consisting 
of stronger individuals. Only mutation operators, i.e. neuron 
deletion and neuron addition, are used thus preserving the 
behavioral link. The proposed algorithm is shown in figure 
2. The strongest individual stays in the elitist group and 
maintained untouched by GA or EP operator until a stronger 
offspring is created and win over the elitist. This will force 
down the loosed elitist to joint in the second group (strong 
group) and be subjected to EP operation. By this grouping 
procedure, the time taken for one evolution to finish will be 
shorter compared to the previous algorithm [24]. 

4.1.2 The chromosome representation 
Binary string representation is used to represent the 
structure of the multi-layer feed-forward (MLFF) network. 
The structural parameters evolved are the number of neuron 
in the hidden layer, number of hidden layer and types of 
transfer function in the hidden layer. Figure 2 shows an 
example of the chromosome representation in a binary 
string and its corresponding ANN structure. In the previous 
work in [24], integer representation is used to represent the 
ANN structures. However, integer representation is less 
efficient for evolving the ANN structure. This is mainly due 
to the unsuitable real-numbered crossover and mutation 
methods been adopted to the integer numbered 
chromosomes. Further more, the binary crossover and 
mutation methods are proven to be efficient especially for a 
short chromosome length such as in this application. 
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4.1.2 
The major steps in the proposed EANN algorithm is shown 
if figure 2. The explanation of the steps is as follows: 

Major steps in the proposed E A "  algorithm 

-Randomly generate M number -of networks in binary 
representation within the specified range, which 
represents the number of neuron, number of hidden 
layer and type of transfer function (TF) at the hidden 
layer, as depicted in figure 3. 
Train each networks using backpropagation (BP) 
algorithm, for a reasonable number of epoch and 
evaluate the sum-squared error of each networks and 
calculate their cost function accordingly. 
Divide the networks into three different groups, i.e. 
elitist, strong and weak group, according to their cost 
function. This is done using the rank-based selection 
method. 
Apply GA operator (crossover and mutation) onto the 
individuals in the weak group. The crossover method 
employed is the multi-point crossover, and the mutation 
method used is the simple flip-over method. Then, 
compare the distorted offspring with their parents. If the 
offspring is better, replace the parent with the offspring. 
If not, the parent stays alive for the next generation. 
Apply the EP operator (mutation only) onto each 
individuals in the strong group. The mutation steps are 
as follows: 
a) Delete two neurons from each network and 

evaluate the offspring's cost function. If the 
offspring is better than the parent, the offspring 
replaces the parent. 

b) If not, add two neurons onto the network, and 
evaluate again. If the offspring is better than the 
parent, the offspring replaces the parent. If not, the 
parent stays alive for the next generation. 

Combine the network obtained from step 5 and 6 and 
the elitist network to get new generation ANN. 
Repeat step 4 to 6 for a specified number of 
generations. 

4.2 On-line stage: on-line ANN parameter training 
In the previous work [24], the algorithm presented acquires 
only off-line ANN parameter training by backpropagation 
and parameter tuning by fast evolutionary programming 
(FEP) algorithm. This off-line training method has certain 
limitation issues such as the learning data set has to be 
updated whenever the robot dynamic properties change. 
This can be due to internal factors such as friction property, 
or external factors such as unexpected external disturbances. 
The other limitation of the off-line training is the accuracy 
of the training data itself, which usually consist noises. 
Therefore, an on-line parameter training scheme is proposed 
to tackle these problems. 

estimate the IN of the robot arm for the AFC loop. In this 
stage, the ANN is further trained on-line by using real input 
data measured from the robot arm. As the training session 
progresses, the value of ANN parameters, i.e. weight and 
bias, are adjusted to reduce the position error of the robot 
arm. The ANN is trained using BP algorithm. 

An external disturbance force (Q) is introduced to the robot 
arm end-effector. The disturbance force is a sinusoidal 
variable load with certain range of magnitude and 
frequency. This is to study the effectiveness of the ANN- 
AFC controller scheme. The training of the ANN is stopped 
when appropriate result is obtained. 

5 SIMULATION RESULTS 
The EANN algorithm in the off-line stage is programmed 
using MATLAB [25]. Some limitations have been imposed 
on the EANN in the simulation. The limitations are (a) type 
of ANN is MLFF with full connectivity between neurons, 
(b) largest number of neuron in the hidden layer is 32 and 
one hidden layer, and (c) types of TF at hidden layer is 
either tan-sigmoid or log-sigmoid. 

The on-line ANN-AFC scheme is programmed using 
SIMULINK. The robot for the ANN-AFC simulation is a 
rigid two-arm robot which movement is restricted to 
horizontal axis. The robot parameters and the controller 
gains (KP and Kd) are obtained from the previous work [12]. 
The task given to the robot is to move in a circular trajectory 
with specified radius while subjected to an external 
disturbance force (Q) at the end-effector. The value of the 
disturbance force is made constant with the magnitude of 
15N through out the simulation period. The sum-squared of 
the tracking error (SSE) is monitored to study the 
performance of the proposed scheme. 

5.1 Result of the EANN (off-line stage) 
Figure 5 shows the results of the EANN evolution over 
twenty generations. The graph shows the total cost function 
of the population decreasing sharply in the first three 
generations, and converging after 10 generations. The 
number of neuron in the hidden layer is also converged to 
between five to seven. Six neurons is the optimum number 
of neuron since half of the population converges to this 
solution. The transfer function of the hidden layer converges 
into a log-sigmoid. 

The ANN structure selected from the off-line stage is used 
to design the on-line ANN-AFC controller for the robot 
force control. The schematic diagram of the controller is 
shown in figure 4. As shown in the figure, the thick line 
indicates the implementation of on-line ANN subsystem to 
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Fig. 4: The schematic diagram of the on-line ANN-AFC controller for robot force control 
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Fig. 5: The result of total cost function of the population for 20 generations (left) and final population structures 

Figure 6 shows the tracking error performance of the off- 
line ANN-AFC scheme for different number of nodes. It 
shows that by selecting different number of nodes, the 
tracking error performance of the robot arm is changed. 
Therefore, during offline stage, the network needs to be 
evolved to obtain the optimum ANN structure. 

Fig. 6: The tracking error of the robot arm for different 
number of nodes 
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5.2 Results of ANN-AFC scheme (on-line stage) 
The ANN structure obtained in the off-line stage is used to 
design the on-line ANN for the ANN-AFC controller. In 
this stage, the ANN is trained for 15 seconds and it is shown 
in figure 7 that the tracking error of the robot arms is 
considerably reduced. 

6 CONCLUSIONS 
It is found out from the result of the simulation that the 
proposed EANN algorithm did converge to the optimum 
ANN structure. However, the final generation shows that 
there are three optimum solutions to the number of neuron 
in the hidden layer i.e. five, six and seven neurons. The 
variation in the solutions is due to the mutation operator in 
the EP algorithm, which deletes or adds two neurons at a 
time. A better convergence can be obtained if the neuron 
deletion and addition is reduced to one neuron at a time. 
However, this will need longer generation before it can 
converge. 

The ANN-AFC scheme shows an impressive 
improvement after 15 seconds of on-line training. This 
shows that the proposed scheme performs very well under 
constant external force condition. However, further 
investigations are required to study whether or not the 
scheme's performance is maintained if the robot arm is 
subjected to variable external loading conditions. It is found 
out that the on-line training can perform better than the off- 
line training. This is true since the off-line training data 
contain some unknown noise, which can affects the ability 
of the network generalization. 

In conclusion, it is shown that the combination of EC 
and ANN can help to produce a better intelligent robot 
controller scheme. EC is a good tool for optimization the 
ANN structure and ANN is a good tool for assisting the on- 
line parameter estimation for AFC controller. This work 
also showed that the EP and GA can be used together to 
evolve the ANN structures. Future works should be 
concentrated on applying variable loading conditions to the 
robot arm to study the robustness of the scheme. Some 
improvement should be studied such as using adaptive 
learning rate and momentum rate for the on-line ANN-AFC 
scheme. 

4 I 
I I 

2 -  

0 5 10 15 
Fig. 7: The tracking error (sseY%%Cr)obot position during 
on-line training session 
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