
A Hybrid Intelligent Active Force Controller for Robot Arms Using
Evolutionary Neural Networks

S.B. Hussein, H. Jamaluddin, M. Mailah
Universiti Teknologi Malaysia

Skudai, Johor Bahm 8 13 10, Malayisa
E-mail: shamsul@flun.utm.my

ABSTRACT
In this paper, we propose a hybrid intelligent parameter
estimator for the active force control (AFC) scheme which
utilizes evolutionary computation (EC) and artificial neural
networks (ANN) to control a rigid robot arm. The EC part
of the algorithm composes of a hybrid genetic algorithm
(GA) and an evolutionary program (EP). The development
of the controller is divided into two stages. In the first stage,
which is performed off-line, the proposed EC algorithm is
employed to evolve a pool of ANN structures until they
converge to an optimum structure. The population is divided
into different groups according to their fitness. The elitist
group will not undergo any operation, while the second
group, i.e. stronger group, undergoes the EP operation.
Hence, the behavioral link between the parent and their
offspring can be maintained. The weaker group undergoes a
GA operation since their behaviors need to be changed more
effectively in order to produce better offspring. In the
second stage, the evolved ANN obtained from the first
stage, which represent the optimum ANN structural design,
is used to design the on-line intelligent parameter estimator
to estimate the inertia matrix of the robot arm for the AFC
controller. In this on-line stage, the ANN parameters, i.e. the
weights and biases, are further trained using live data and
back-propagation until a satisfactory result is obtained. The
effectiveness of the proposed scheme is demonstrated
through a simulation study performed on a two link planar
manipulator operating in a horizontal plane. An external
load is introduced to the manipulator to study the
effectiveness of the proposed scheme.

..

Keywords: Evolutionary computation, genetic algorithms,
evolutionary programming, neural networks, robotics, active
force control.

1. INTRODUCTION
In general, robotic control can be divided into two main
categories, i.e. position control and force control. Some of
the popular classical methods in robot position control are
on-off control, independent joint control and computed
torque control. The two former methods suffer from
overshoot problem and only applicable to relatively very
slow operations [l] , whereas the later method requires the
estimated mathematical inverse dynamic model of the robot
to operate successfully, which is almost impossible to obtain
accurately [2] .

A.M.S. Zalzala
Heriot-Watt University

Edinburgh EH14 4AS, United Kingdom
E-mail: a.zalzala@hw.ac.uk

In robot force control, the two most used methods are
impedance force control (IFC) [3] and hybrid position-force
control (HPFC) [4]. However, there are a few drawbacks in
applying these two schemes. The performance of the IFC is
dependent on how accurate the model of the robot is
estimated. In the HPFC, the desired position and force have
to be specified by the user and need to be updated when the
robot works with a different environment (i.e. different
external force) or when the robot internal frictional forces
change.

Another robot force control method is active force
control (AFC) [5]. AFC operates mainly on measured and
estimated parameters hence lessening the computational
burden. Some advantages of the AFC strategy is that it has a
fast de-coupling property and it can be applied to variable
loading conditions. The performance of AFC depends
mainly on how accurate the inertia matrix of the robot arm
is estimated. The inertia matrix can be estimated via crude
approximation, look-up table, iterative learning technique or
using ANN algorithms [6].

Since late 1980’s, researchers have attempted to
implement computational intelligence methods, i.e. ANN,
EC, and fuzzy logic in robot control to either function as a
robot controller itself, or as part of a controller system.
Some of the works on the implementation of ANN in robot
control can be found in [7], [8] and [9] . More recently,
some researchers have incorporated GAS with classical
controller such as PID or with ANN controllers [lo].

In this paper, we utilize both EC and ANN to
estimate the inertia matrix (IN) of the robot arm in an AFC
approach. The EC comprises a GA and EP and is used
during off-line stage to evolve a pool of ANN structures
until they converge to an optimum one. The selected ANN
structure is then used in the on-line stage. In this stage, the
ANN is further trained using on-line data from the system.
The on-line training is terminated when a satisfactory
performance is obtained.

This paper is organized as follows. Section 2 describes the
AFC strategy for robot control. In Section 3, CI brief
literature reviews on the evolutionary artificial neural
network (EANN) is presented. The proposed EANN
algorithm for the off-line stage is explained in section 4 and
the proposed on-line intelligent AFC method is described in
section 5. Simulation results of both o f f i n e and on-line

0-7803-6375-2/00/$10.00 02000 IEEE. 117

mailto:a.zalzala@hw.ac.uk

training stages are shown in section 6. Finally, discussion
and conclusion are given in section 7.

2.
AFC is a control method first introduced by Hewit and
Burdess [I I], and is derived from the Newton’s second law
of motion for a rotating mass, i.e. T = / a , where T is
the sum of all torques acting on the body, Z is the moment of
inertia, and a i s the angular acceleration. For a robot
system which has a serial configuration, the equation of
motion becomes T + Q = /(Q>a , where T is the applied
torque, Q is the disturbance torques, I (@) is the mass
moment of inertia of the robot arm and 0 is the robot joint
angle, and a is the angular acceleration of the robot arm.

The idea of the AFC approach is that if the value of
disturbance torques Q’ can be computed or measured within
an acceptable accuracy, this value could be used to de-
couple the actual disturbance torques Q from the applied
torque. Hence, the system stays stable even under variable
external forces. The estimated value of the disturbance
torque can be calculated as Q’ = Z’a ’ - T’, where the

A STRATEGY FOR ACTIVE FORCE CONTROL

superscript ’ denotes a measured or computed quantity. The
applied torque T’ can be measured by using a current sensor
and a ’ can be measured by using e.g. an accelerometer. On
the other hand, I’ can be obtained by several means such as
a simple estimation or by just assuming a perfect model.
The more recent literature adopted iterative learning
techniques and ANN to estimate the value of I’ [121.

Figure 1 shows the schematic diagram of the AFC
method applied to a robot arm together with the resolved
motion acceleration controller [13]. There are two types of
controllers employed, i.e. the PD resolved-motion
acceleration control (PD-RMAC) and the AFC. The PD-
RMAC is employed to calculate the reference acceleration
command This is followed by a decoupling transfer
function (W# IN/K,,, where IN is the estimated inertia
matrix K,, is the motor constant. This will produce the
control signal IC. The calculation involves inverse
kinematics of the robot arm. This is fed into the AFC loop
where the actual disturbance compensation is taking place
assuming that both the acceleration and the torque vectors
are suitably measured.

Fig. 1 : The block diagram of the active force controller applied to the robot force control

The estimated disturbance torques Q’ can be computed by
the equations Q’ = IN 8, -T<, and Ty = K,,, /, , where 8, is

evolutionary ANN algorithm to assist the AFC in estimating
the value of ZN.

the acceleration signal, IN is the estimated inertia matrix and
Tq is the applied control torque, K,, is the motor constant
and I , is the controlled current. I , is the sum of Z, and I,
where I, is the estimated current signal representing the
disturbance. The estimation of inertia matrix of the robot
arm has been done previously by using traditional
techniques such as crude estimation technique, as well as
intelligent techniques such as employing ANN in off-line
training environment [13]. The main problem in AFC is to
obtain a good estimation of IN. In this paper, we propose an

3. A BRIEF REVIEW OF EVOLUTIONARY
NEURAL NETWORKS
Evolutionary artificial neural network (EANN) is an

area of popular interest with many publications aiming to
improve the performance of ANN in terms of its
generalization capabilities and efficiency, i.e. time and
space complexity. Whitley [I31 and Fogel [I41 have
reported some of the early works in this area, while good
reviews have been reported by Yao [15, 161.

In general, there are three approaches: the evolution of
connection weights, of architectures, and of learning rules.

118

Some researchers have used a fixed architecture and
evolved only the connection weights of the architecture
[17], some evolved both the architecture and the connection
weights [18][191, and others evolved only the architecture of
the network and employed back-propagation or other
methods to train the weight [20].

In the evolution of connection weights, two popular
representation schemes are binary strings and real numbers.
The problem with binary representation scheme is that it
needs excessively large number of bits in order to get a
precise representation, and the training may take a
considerably long time. To overcome this, real numbers
representation is introduced which conflicts with applying
the classical techniques of crossover. Herrera [2 11 described
and analyzed the real number representation and its
operators’ capabilities. The connection weights can be
evolved via a GA approach which involves two kinds of
search operators, crossover and mutation. However, weights
can be evolved using EP hence skipping the use of a
crossover operator. In evolving architectures, the
chromosome representation can be divided into two
different schemes, the direct encoding (DE) and indirect
encoding (IDE). In DE, the number of neurons along with
the connection and the number of hidden layers are directly
encoded as a binary string representation. The drawback of
this type of encoding is that it is only suitable for handling
relatively small number of neurons since large EANN need
large representation matrices. On the other hand, the IDE is
a compact representation of the EANN architectures, where
small chromosomes can grow massive neural network by
some development rules during chromosome decoding.
Some of the earlier work on this was reported by Kitano
[22], while a comparison of both schemes was reported
quite recently [23]. The two popular evolutionary
algorithms used to evolve the network architecture are GA
and EP.

4. THE PROPOSED HYBFUD INTELLIGENT AFC

The proposed hybrid intelligent AFC scheme involves two
stages of operation: (1) the off-line training stage, which
evolves the ANN structure for the AFC loop (see figure 4),
and (2) the on-line training, which trains the ANN
parameters until a satisfied robot tracking performance is
obtained.

CONTROLLER SCHEME

4.1 Off-line training stage: evolving the ANN structure
The purpose of executing the off-line training stage is to
search for the optimum ANN structure for the AFC problem
mentioned earlier. This is done by implementing both GA
and EP methods to evolve a pool of ANN structures until it
converges. Earlier report [15,16] indicated that in order to
maintain the behavioral link between the offspring and their
parents, the use of crossover operator should be avoided
since it can destroy both parent networks. Therefore, an EP

method, which emulates the Lamarckian evolution theory
and employs mutation only, is preferred. Examples of such
mutation operators are neuron deletion and neuron addition.

However, in the previous work [24], a new EANN
algorithm, which combined the GA and EP operators, is
presented. It has been shown that the hybrid GA and EP
approach can provide fast convergence rate, since GA can
explore wider area of search in shorter number of evolution,
while EP can maintain the behavioral link of the selected
offspring after the competition stage between the GA and
EP offspring.

In this paper, a modified version of hybrid GA and
EP EANN algorithm is proposed. In this algorithm, we
divide the population into three different groups, namely
elitist, strong and weak group. Since GA has the capability
of distorting the ANN behavioral link between the offspring
and their parents, it is a good method to be applied to the
weak group of the population. By applying a GA to a weak
group, the convergence rate of the evolution can be
increased. The crossover operator in GA will break the
behavioral link between the offspring and their weak parents
and thus producing stronger. In contrast, the EP algorithm is
applied to the stronger groups of the population consisting
of stronger individuals. Only mutation operators, i.e. neuron
deletion and neuron addition, are used thus preserving the
behavioral link. The proposed algorithm is shown in figure
2. The strongest individual stays in the elitist group and
maintained untouched by GA or EP operator until a stronger
offspring is created and win over the elitist. This will force
down the loosed elitist to joint in the second group (strong
group) and be subjected to EP operation. By this grouping
procedure, the time taken for one evolution to finish will be
shorter compared to the previous algorithm [24].

4.1.2 The chromosome representation
Binary string representation is used to represent the
structure of the multi-layer feed-forward (MLFF) network.
The structural parameters evolved are the number of neuron
in the hidden layer, number of hidden layer and types of
transfer function in the hidden layer. Figure 2 shows an
example of the chromosome representation in a binary
string and its corresponding ANN structure. In the previous
work in [24], integer representation is used to represent the
ANN structures. However, integer representation is less
efficient for evolving the ANN structure. This is mainly due
to the unsuitable real-numbered crossover and mutation
methods been adopted to the integer numbered
chromosomes. Further more, the binary crossover and
mutation methods are proven to be efficient especially for a
short chromosome length such as in this application.

119

Transfer function (TF) fi 0 0 0 1 0 1 0 1

-1 - Number of
neuron

Number of hidden layer

Hidden layer
n

'\\ Output layer

U

Fig. 2: Binary string representation of ANN structure (top) and its corresponding ANN (bottom)

I Random initial

1 - BP tr

crossover

mutation

El

Better?

no

ition ofANNs]

EP operator

16 Better?

j e, Hidden node

1 - Better?

no

New offspring New offspring
... .. i I

no

&,
Fig. 3: Flow chart of the major steps in the proposed EA" algorithm

120

4.1.2
The major steps in the proposed EANN algorithm is shown
if figure 2. The explanation of the steps is as follows:

Major steps in the proposed E A " algorithm

-Randomly generate M number -of networks in binary
representation within the specified range, which
represents the number of neuron, number of hidden
layer and type of transfer function (TF) at the hidden
layer, as depicted in figure 3.
Train each networks using backpropagation (BP)
algorithm, for a reasonable number of epoch and
evaluate the sum-squared error of each networks and
calculate their cost function accordingly.
Divide the networks into three different groups, i.e.
elitist, strong and weak group, according to their cost
function. This is done using the rank-based selection
method.
Apply GA operator (crossover and mutation) onto the
individuals in the weak group. The crossover method
employed is the multi-point crossover, and the mutation
method used is the simple flip-over method. Then,
compare the distorted offspring with their parents. If the
offspring is better, replace the parent with the offspring.
If not, the parent stays alive for the next generation.
Apply the EP operator (mutation only) onto each
individuals in the strong group. The mutation steps are
as follows:
a) Delete two neurons from each network and

evaluate the offspring's cost function. If the
offspring is better than the parent, the offspring
replaces the parent.

b) If not, add two neurons onto the network, and
evaluate again. If the offspring is better than the
parent, the offspring replaces the parent. If not, the
parent stays alive for the next generation.

Combine the network obtained from step 5 and 6 and
the elitist network to get new generation ANN.
Repeat step 4 to 6 for a specified number of
generations.

4.2 On-line stage: on-line ANN parameter training
In the previous work [24], the algorithm presented acquires
only off-line ANN parameter training by backpropagation
and parameter tuning by fast evolutionary programming
(FEP) algorithm. This off-line training method has certain
limitation issues such as the learning data set has to be
updated whenever the robot dynamic properties change.
This can be due to internal factors such as friction property,
or external factors such as unexpected external disturbances.
The other limitation of the off-line training is the accuracy
of the training data itself, which usually consist noises.
Therefore, an on-line parameter training scheme is proposed
to tackle these problems.

estimate the IN of the robot arm for the AFC loop. In this
stage, the ANN is further trained on-line by using real input
data measured from the robot arm. As the training session
progresses, the value of ANN parameters, i.e. weight and
bias, are adjusted to reduce the position error of the robot
arm. The ANN is trained using BP algorithm.

An external disturbance force (Q) is introduced to the robot
arm end-effector. The disturbance force is a sinusoidal
variable load with certain range of magnitude and
frequency. This is to study the effectiveness of the ANN-
AFC controller scheme. The training of the ANN is stopped
when appropriate result is obtained.

5 SIMULATION RESULTS
The EANN algorithm in the off-line stage is programmed
using MATLAB [25]. Some limitations have been imposed
on the EANN in the simulation. The limitations are (a) type
of ANN is MLFF with full connectivity between neurons,
(b) largest number of neuron in the hidden layer is 32 and
one hidden layer, and (c) types of TF at hidden layer is
either tan-sigmoid or log-sigmoid.

The on-line ANN-AFC scheme is programmed using
SIMULINK. The robot for the ANN-AFC simulation is a
rigid two-arm robot which movement is restricted to
horizontal axis. The robot parameters and the controller
gains (KP and Kd) are obtained from the previous work [12].
The task given to the robot is to move in a circular trajectory
with specified radius while subjected to an external
disturbance force (Q) at the end-effector. The value of the
disturbance force is made constant with the magnitude of
15N through out the simulation period. The sum-squared of
the tracking error (SSE) is monitored to study the
performance of the proposed scheme.

5.1 Result of the EANN (off-line stage)
Figure 5 shows the results of the EANN evolution over
twenty generations. The graph shows the total cost function
of the population decreasing sharply in the first three
generations, and converging after 10 generations. The
number of neuron in the hidden layer is also converged to
between five to seven. Six neurons is the optimum number
of neuron since half of the population converges to this
solution. The transfer function of the hidden layer converges
into a log-sigmoid.

The ANN structure selected from the off-line stage is used
to design the on-line ANN-AFC controller for the robot
force control. The schematic diagram of the controller is
shown in figure 4. As shown in the figure, the thick line
indicates the implementation of on-line ANN subsystem to

121

RMAC Controller

transformation

Fig. 4: The schematic diagram of the on-line ANN-AFC controller for robot force control

n 71 I

Total ''t n' \
cos t

Function n 5f \
nst \

J
!=I i n 15 7n 75

Number of generation

NO. of Transfer
neuron function

Ind. 1

Ind. 4

Ind. 5

Ind. 6

logs

tans

logs

logs

logs
logs

Fig. 5: The result of total cost function of the population for 20 generations (left) and final population structures

Figure 6 shows the tracking error performance of the off-
line ANN-AFC scheme for different number of nodes. It
shows that by selecting different number of nodes, the
tracking error performance of the robot arm is changed.
Therefore, during offline stage, the network needs to be
evolved to obtain the optimum ANN structure.

Fig. 6: The tracking error of the robot arm for different
number of nodes

-3 Tracking error performance

16 nodes

1.5

IC '\

L

0 1 2 3
Time (Seconds)

122

5.2 Results of ANN-AFC scheme (on-line stage)
The ANN structure obtained in the off-line stage is used to
design the on-line ANN for the ANN-AFC controller. In
this stage, the ANN is trained for 15 seconds and it is shown
in figure 7 that the tracking error of the robot arms is
considerably reduced.

6 CONCLUSIONS
It is found out from the result of the simulation that the
proposed EANN algorithm did converge to the optimum
ANN structure. However, the final generation shows that
there are three optimum solutions to the number of neuron
in the hidden layer i.e. five, six and seven neurons. The
variation in the solutions is due to the mutation operator in
the EP algorithm, which deletes or adds two neurons at a
time. A better convergence can be obtained if the neuron
deletion and addition is reduced to one neuron at a time.
However, this will need longer generation before it can
converge.

The ANN-AFC scheme shows an impressive
improvement after 15 seconds of on-line training. This
shows that the proposed scheme performs very well under
constant external force condition. However, further
investigations are required to study whether or not the
scheme's performance is maintained if the robot arm is
subjected to variable external loading conditions. It is found
out that the on-line training can perform better than the off-
line training. This is true since the off-line training data
contain some unknown noise, which can affects the ability
of the network generalization.

In conclusion, it is shown that the combination of EC
and ANN can help to produce a better intelligent robot
controller scheme. EC is a good tool for optimization the
ANN structure and ANN is a good tool for assisting the on-
line parameter estimation for AFC controller. This work
also showed that the EP and GA can be used together to
evolve the ANN structures. Future works should be
concentrated on applying variable loading conditions to the
robot arm to study the robustness of the scheme. Some
improvement should be studied such as using adaptive
learning rate and momentum rate for the on-line ANN-AFC
scheme.

4 I
I I

2 -

0 5 10 15
Fig. 7: The tracking error (sseY%%Cr)obot position during
on-line training session

REFERENCES

1.

2.

3.

4.

5 .

6 .

7 .

8.

9

H. Asada and J.J.E. Slotine, Robot Analysis and
Control, John Wiley and Son, 1986
F.L. Lewis, C.T. Abdallah, D.M. Dawson, Control of
Robot Manipulators, Ed. John Griffin, Macmillan Pub.,
New York, 1993
N. Hogan, Impedance control: An approach to
manipulator, part i, ii, iii, ASME Journal of Dynamic
Systems, Measurement, and Control, vol.3,pp. 1-24,
1985
M. H. Raibert and J. J . Craig, Hybrid Position/Force
Control of Manipulators, Trans. ASME J. Of Dynamic
Systems, Measurement, and Control, 102, June 198 1,

J.R. Hewit and J.S. Burdess, Fast Dynamic Decoupled
Control for Robotics Using Active Force Control,
Mechanisni and Machine Theory, Vol. 16, No.5, 1981,

M. Mailah, Intelligent Active Force Control Using
Neural Network and Iterative Learning Algorithms,
Ph.D Thesis, University of Dundee, 1998
D. T. Pham and S. J. Oh, Adaptive Control of a Robot
Using Neural Networks, Robotica, vol. 12, 1994, pp.

S. Jung, Neural Network Controllers for Robot
Manipulators. Ph.D thesis, University of California
Davis, 1996
A. Rana and A. M. S. Zalzala, A Neural Network Rased
Collision Detection Engine for Multi-Arm Robotic
Systems, Int ' I Journal of Intelligent Control Systems,

pp. 126-133

535-542

553-561

vol. 2, NO. 4, 1998, pp. 53 1-558

123

10. N. Chaiyaratana and A. M. S. Zalzala, Hybridisation of 2 4 . S.B. Hussein, A.M.S. Zalzala, H. Jamaluddin, and M.
Neural Networks and Genetic Algorithms for Time- Mailah, An Evolutionary Neural Network Controller
Optimal Control, Congress on Evolutionary for Intelligent Active Force Control, Evolutionary
Computation, vol. I , July 1999, pp. 389-396 Design and Manufacturing, Ed. I.C. Parmee, Springer-

11. J.R. Hewit and J.S Burdess, An Active Method for the Verlag, London, 2000
Control of Mechanical Systems in The Presence of 2 5 . Matlab, The Mathworks Inc., ver. 5.3.0.10183 (Rll) ,
Unmeasurable Forcing, Transactions on Mechanism Jan. 1999
andMachine Theory, vol. 21, No. 3, 1986, pp. 393-400

12. M. Mailah, A simulation Study on the Intelligent Active
Force Control of a Robot Arm using Neural Network,
Jurnal Teknologi WTM, No.30(D), June 1999, pp. 55-78

13. D. Whitley, T. Starkweather and C. Bogart, Genetic
Algorithms and Neural Networks: Optimizing
Connection and Connectivity, Parallel Computing,

14. D. B. Fogel, L.J. Fogel, and V. W. Porto, Evolving
Neural Networks, Biological Cybernetics, 63, 1990, pp.

15. X. Yao, A Review of Evolutionary Artificial Neural
Networks, International Journal of Intelligent Systems,
~01.8, No.4, April 1993, pp. 539-567

16. X. Yao, A New Evolutionary System 'for Evolving
Artificial Neural Networks, IEEE Transactions on
Neural Networks, vol. 8, No. 3, May 1997, pp. 694-713

17. D. Fogel, Using evolutionary programming to create
networks that are capable of playing tic-tac-toe, in
Proceedings of IEEE International Conference on
Neural Networks, San Francisco:IEEE, 1993, pp. 875-
880

18. D. Dasgupta and D. McGregor, Designing application
specific neural networks using the structured genetic
algorithm, in Proceedings of COGA "-92 - IEEE
International Workshop on Combinations of Genetic
Algorithms and Neural Networks, Baltimore:

19. K.F. Man, K.S. Tang and S. Kwong, Genetic
Algorithms, Springer, London, 1999, pp. 155- 172

2 0 . S. Oliker, M. Furst, and 0. Maimon, A distributed
genetic algorithm for neural network design and
training, Complex System, vol. 6, no. 5 , 1992, pp. 459-
477

21 . F. Herrera, M. Lozano, and J.L. Verdegay, Tackling
Real-Coded Genetic algorithms: Operators and Tools
for Behavioural Analysis, Artificial Intelligence
Review, 12, 1998, pp. 265-319

22. H. Kitano, Designing Neural Networks using Genetic
Algorithm with Graph Generation System, Complex
Systems, vo1.4, 1990, pp. 461-476

23. A.A. Siddiqi and S.M. Lucas, A Comparison of Matrix
Rewriting versus Direct Encoding for Evolving Neural
Networks, Proceedings of IJCNN, FUZZ-IEEEJCEC,

~01.14 No.3, 1990, pp. 347-361

487-493

IEEE,1992, pp. 87-96

1998, pp. 392-397

124

