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An unsteady mathematical model to study the characteristics of blood flowing through an
arterial segment in the presence of a couple of stenoses with surface irregularities is devel-
oped. The flow is treated to be axisymmetric, with an outline of the stenoses obtained from
a three dimensional casting of a mildly stenosed artery [1], so that the flow effectively
becomes two-dimensional. The governing equations of motion accompanied by appropri-
ate choice of boundary and initial conditions are solved numerically by MAC (Marker and
Cell) method in cylindrical polar coordinate system in staggered grids and checked numer-
ical stability with desired degree of accuracy. The pressure-Poisson equation has been
solved by successive-over-relaxation (SOR) method and the pressure–velocity correction
formulae have been derived. The flexibility of the arterial wall has also been accounted
for in the present investigation. Further, in-depth study in the flow pattern reveals that
the separation Reynolds number for the multi-irregular stenoses is lower than those for
cosine-shaped stenoses and a long single irregular stenosis. The present results predict
the excess pressure drop across the cosine stenoses than the irregular ones and show quite
consistency with several existing results in the literature which substantiate sufficiently to
validate the applicability of the model under consideration.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

There is evidence that cardiovascular stenotic flows as well as vascular wall deformability play important roles in the
development and progression of arterial stenosis, one of the most widespread diseases in human beings, leading to the mal-
function of the cardiovascular system. Some researchers have the opinion that the damage to the inner coating of the artery,
the intima, is responsible for the initial formation of stenosis [2] and also for regrowth of the stenosis after balloon angiog-
raphy [3]. It has been established that once a mild stenosis is developed, the resulting flow disorder further influences the
development of the disease and arterial deformability, and changes the regional blood rheology, as well [4].

Because of the fact that real atherosclerotic lesions are asymmetric and irregular [1], we need to have better understand-
ing factor controlling blood flow in such constricted geometries. In general, the surface irregularities of the stenosis add com-
plexity to experimental and numerical simulations of the flow phenomena. Keeping in view such complexities, a great
amount of scientific effort has already been invested on investigating the flow characteristics of blood through occluded ves-
sels [5–12]. Johnston and Kilpatrick [5] obtained in their findings that the highest pressure drop was noted across the cosine-
shaped stenosis rather than the irregularly-shaped stenosis throughout the entire range of Reynolds numbers and concluded
. All rights reserved.
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that the smoothness factor was the prime cause for such behaviour. In a bid to ‘‘verify or disprove” the findings of [5],
Andersson et al. [6] were inclined to draw the conclusion that the pressure drop across the stenosed artery is practically
unaffected by surface irregularities at low Reynolds number and they also demonstrated that the high flow resistance pre-
dicted across the cosine-shaped stenosis is a consequence of its symmetry and not due to its smooth surface, while the irreg-
ular stenosis geometry exhibits an asymmetric shape which tended to reduce the pressure drop. Finally, they concluded that
the degree of stenosis asymmetry is at least equally important as the presence of surface irregularities. Yakhot et al. [7] in
their extensive simulation using an immersed-boundary method, explored the influence of the shape and surface roughness
on the flow resistance and found that surface irregularities had no significant influence on the flow resistance across an
obstacle for a physiological range of Reynolds numbers. They agree with Andersson et al. [6] that the pressure drop excess
across the cosine-shaped stenosis is a consequence of the particular geometrical shape of the stenosis and is unaffected by
stenosis surface roughness. In their findings, they concluded that the narrowest cross-section of the cosine-shaped stenosis
caused higher occlusion of the vessel and, consequently, higher flow resistance. In conformity with the findings of [5–7],
Chakravarty et al. [8] concluded that flowing blood experiences much higher resistance to flow in the presence of a co-
sine-shaped stenosis than irregular model. In a numerical study based on finite volume algorithm for flow through compli-
cated geometries, Politis et al. [9,10] demonstrated in their simulation on composite arterial coronary grafts that the local
hemodynamics (described by velocity, pressure drop, wall shear stress and flow rates) are strongly influenced by the local
geometry, specially at the anastomotic sites and they also concluded that sites of lowest shear stress regions (the lateral
walls of bifurcations) are susceptible to the occurrence of coronary artery disease [9] while in transient flow simulation
by a finite-volume method, the process of restenosis has been successfully carried out by employing different grafting dis-
tances and various inflow rate ratios [10]. In another study on pulsatile flow in composite arterial coronary grafts, Politis
et al. [11] concluded that the time-varying physiological flow rate through the composite arterial coronary grafts produces
a more disturbed flow than a pure sinusoidal flow, specially at peak cardiac systole. They are also of the opinion that wide
region of recirculation zones along with stagnation flow occur at peak systole. Intracoronary flow through an anatomically
accurate 3D coronary arterial tree from an explanted porcine heart by excluding coronary motion was successfully carried
out both experimentally as well as computationally by Boutsianis et al. [12]. They concluded that the areas of amplified vari-
ations in wall shear stress, mostly evident in the neighbourhoods of arterial branching, seem to correlate well with clinically
observed increased atherogenesis and the intracoronary flow lines showed stasis and extreme vorticity during the phase of
minimum coronary flow in contrast to streamlined undisturbed flow during the phase of maximum flow. Recently, effects of
surface roughness of stenosis on blood flow have been successfully carried out by Sarifuddin et al. [13–15] and Mandal et al.
[16].

Owing to the existence of multiple sites of narrowing into the arterial lumen, Seeley and Young [17] studied the pressure
drop across multiple stenoses by considering two blunt plugs in series and opined that, in general, the pressure drop cannot
be obtained by a summation of pressure drops for single stenosis since the proximal and distal stenoses ‘‘interfere” with each
other unless the spacing between them exceeds some critical distance depending on Reynolds number. Meanwhile, Talukder
et al. [18] indicated that the total effect of a series of noncritical stenoses is approximately equal to the sum of their individ-
ual effects and that the combined effect of series of noncritical stenoses thus can be critical. They suggested that the flow
energy loss due to the presence of the stenoses, which is directly related to the pressure drops across them, increases with
the number of stenoses and is not strongly dependent on the spacing between them. Dreumel and Keiken [19] opined that
the pressure drop across two identical (62%) stenoses equals to that of two single stenoses for low Reynolds numbers. Their
observation also predicts the excess pressure drop for a long single stenosis compared with double stenoses of the same
length with the distance in between. Kilpatrick et al. [20] presented an approximate assessment of the combined effect
by summing the value of the resistance for each stenoses, but not by the degree of the stenoses. They also opined that if
one stenosis is more severe than the other, the combined effect can be regarded as same as the effect of the more severe
stenosis acting by itself. The distance between the stenoses does not change their combined effect. Gould and Lipscomb
[21] and Sabbah and Stein [22] concluded that multiple stenoses produce more resistance to flow than a single stenosis
of similar length. Multiple stenoses would be expected to have a greater impact on flow than a single stenosis of similar total
length, owing to the multiple entrance and exit points with increased propensities for flow turbulence as pointed out by Nic-
hols et al. [23].

Fukushima et al. [24] numerically investigated the velocity and wall shear stress distribution in a model with two stenos-
es. They noted that the head of the velocity profiles in the first constriction was flatter than that in the second constriction
and the slope of wall shear stress much greater at the reattachment points in the first diverging section than at the points in
the second diverging section. Johnston and Kilpatrick [25] and Ang and Mazumdar [26] simulated the arterial blood flow in
paired smooth stenoses and triple smooth stenoses, respectively, using the FIDAP computational fluid dynamics package.
They concluded that the more severe stenosis dominates the pair and the recirculation between stenoses is stronger with
a severe proximal stenosis than a severe distal stenosis. Dullien and Azzam [27] studied the flow rate-pressure drop through
channels with continuous irregular walls experimentally and they observed a reduction in flow rate through channels with
wall roughness when compared with the value for a smooth channel of the same mean size. Bertolotti et al. [28] studied the
influences of multiple stenoses numerically as well as experimentally to diagnosis peripheral arterial diseases and evaluated
the peak systolic velocity ratio (PSVR) and pressure drop to detect and grade multiple stenoses in lower limb mimicking
arteries. They are also of the opinion for mutual haemodynamic interaction between two stenoses. Very recently, Mustapha
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et al. [29–31] explored the effect of multiple stenoses on the flow characteristics of blood past a couple of irregular arterial
constrictions.

Since coronary artery disease may have multiple sites of narrowings, an attempt is made in the present theoretical inves-
tigation to develop a mathematical model to explore the characteristics of Newtonian blood flow past a realistic diseased
arterial segment. Additionally, experimental observations showed that the deformability of the vessel wall also has a poten-
tial contribution to the flow behaviour of blood. This provokes us to consider the effect of arterial wall motion into the flow
characteristics of blood. The aim of the present study is to explore the effects of some essential features like the unsteadiness
of flow, the flexibility of the arterial wall, the effect of differently shaped stenoses and the influence of multiple stenoses with
varying severities compared to a long single stenosis on the flow characteristics of blood. More importantly, one of the objec-
tives of the present investigation is to demonstrate that relatively simple finite difference schemes can be employed to sim-
ulate flow in rather complex geometries. The present approach differs considerably from others who have calculated or
analysed similar problems by using an immersed boundary method, finite element method, a finite-volume method to han-
dle the irregular stenosis rather than finite difference formulations.
2. Stenosis model

The geometry of the stenosis considered herein is a rough (irregular) stenosis profile, which is constructed from the data
developed by Back et al. [1] mimicking real surface irregularities since the actual variation of the cross-sectional area of a left
circumflex coronary artery casting from a human cadaver is retained. The second geometrical model of the stenosis (smooth)
considered is the conventionally used cosine curve (cf. Fig. 1a):
Rðz; tÞ ¼

a1ðtÞ 1� d1
2R0

1þ cos pðz�S1Þ
Z1

� �� �h i
; S1 � Z1 < z < S1 þ Z1;

a1ðtÞ 1� d2
2R0

1þ cos pðz�S2Þ
Z2

� �� �h i
; S2 � Z2 < z < S2 þ Z2;

a1ðtÞ; otherwise;

8>>><
>>>:

ð1Þ
where R(z, t) is the radius of the artery in stenotic region and R0, in non-stenotic region. The time-variant parameter is de-
scribed as
a1ðtÞ ¼ 1þ kR cosðxt � /Þ ð2Þ
in which x = 2pfp is the angular frequency with fp is the pulse frequency and kR is a constant. Secondly, we consider a couple
of irregular stenoses versus a long single irregular stenosis of similar total length L (cf. Fig. 1b).
3. Governing equations

The streaming blood in the arterial lumen is treated as a homogeneous Newtonian fluid. Introducing a radial coordinate
transformation x ¼ r

Rðz;tÞ, the Navier–Stokes equations and the equation of continuity that govern the unsteady nonlinear fully
developed swirl-free flow of blood may be written in dimensionless form as
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Fig. 1a. Profile of a couple of stenoses.
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where r and z are the dimensionless coordinates, scaled with respect to r0, with the z-axis located along the symmetry axis of
the artery. As there is no secondary or rotational flow, so the total velocity is defined by dimensionless radial and axial com-
ponents, u and w scaled with respect to the cross-sectional average velocity U0. The Reynolds number Re may be defined as
Re = U0r0q/l in which q is the density and l, the viscosity of blood.

The transformed boundary and initial conditions are
wðz; x; tÞ ¼ 0; uðz; x; tÞ ¼ @R
@t

for x ¼ 1; ð6Þ

@wðz; x; tÞ
@x

¼ 0 ¼ uðz; x; tÞ for x ¼ 0; ð7Þ

wðz; x; tÞ ¼ 2ð1� x2Þ; uðz; x; tÞ ¼ 0 for z ¼ 0; ð8Þ
@wðz; x; tÞ

@z
¼ 0 ¼ @uðz; x; tÞ

@z
for z ¼ L; ð9Þ

and lastly; wðz; x; 0Þ ¼ uðz; x;0Þ; pðz; x;0Þ ¼ 0 for z > 0: ð10Þ
4. Method of solution

The governing Eqs. (3)–(5) along with the set of boundary and initial conditions (6)–(10) are solved numerically by finite
difference method in a staggered grid, normally known as MAC (Marker and Cell) method. In this type of grid alignment, the
flow velocity field and the pressure are calculated at different locations of control volume as indicated in Fig. 2 while the
difference equations have been derived in three distinct cells corresponding to the continuity Eq. (5), the axial momentum
(3) and the radial momentum (4) equations. The discretizations of the time derivatives terms are based on the first order
accurate two-level forward time differencing formula while those for the convective terms in the momentum equations
are accorded with a hybrid formula consisting of central differencing and second order upwinding. The diffusive terms
are, however, discretized with second order accurate three-point central difference formula. Thus, in this finite difference



Fig. 2. Typical MAC cell.
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formulation, we define x = jDx, z = iDzi, t = kDt and pðz; x; tÞ ¼ pðiDzi; jDx; kDtÞ ¼ pk
i;j, in which k refers to the time direction, Dt,

the time increment, and Dzi, Dx are the width and length (i, j)th control volume.
The discretized form of the continuity equation at the (i, j) cell takes the form
xljR
k
li

wk
i;j �wk

i�1;j

Dzi

 !
� ðxljÞ2

@R
@z

� �k

li

wat �wab

Dx

� �
þ

xjuk
i;j � xj�1uk

i;j�1

Dx

 !
¼ 0; ð11Þ
where
wat ¼ 0:25ðwk
i;j þwk

i�1;j þwk
i�1;jþ1 þwk

i;jþ1Þ; ð12Þ
wab ¼ 0:25ðwk

i;j þwk
i�1;j þwk

i;j�1 þwk
i�1;j�1Þ; ð13Þ

xlj ¼ xj �
Dx
2
; Rk

li ¼ RðzliÞ; zli ¼ zi �
Dzi

2
: ð14Þ
Here (zli,xlj) and (zi,xj) represent the respective coordinates of the cell center and the cell top right corner of the control
volume.

The axial momentum equation may be put to the form as
wkþ1
i;j �wk

i;j

Dt

 !
¼ 2

pk
i;j � pk
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þ xlj
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with pt ¼
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; ð16Þ

p¼b
ðpk
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iþ1;j�1ÞDzi
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ð17Þ
and
wmek
i;j ¼ Conwk

i;j þ
1

Re
ðDiffwk

i;jÞ; ð18Þ
where Conwn
i;j, the convective terms and Diffwk

i;j, the diffusive terms of the axial momentum at the nth time level at (i, j) cell –
the expressions of which are not presented for the sake of brevity.

Likewise, the finite difference equation approximating the momentum equation in radial direction is given by
ukþ1
i;j � uk

i;j

Dt

 !
¼ 1

Rk
li

pk
i;j � pk

i;jþ1

Dx

 !
þ umek

i;j; ð19Þ
where
umek
i;j ¼ Conuk

i;j þ
1

Re
Diffuk

i;j: ð20Þ
The Poisson equation for pressure, derived from Eqs. (11), (15) and (19) takes the final form as
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Divkþ1
i;j � Divk

i;j

Dt
¼ Ai;jpk

i;j þ Bi;jpk
iþ1;j þ Ci;jpk
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li
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i�1;j
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 !
þ
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i;j � xj�1umek

i;j�1

Dx

 !
: ð21Þ
Here, Divk
i;j represents the discretized form of the divergence of velocity field at the (i, j) cell and the expressions for A, B, C, D,

E, F, G, H, S have got their respective expressions included in the Appendix. The Poisson equation for pressure (21) is solved
iteratively by the successive-over-relaxation method with a certain number of iterations in order to get the intermediate
pressure-field at the kth time step. The value of the over-relaxation parameter is taken here as 1.2 to make the maximized
rate of convergence of SOR.

4.1. Pressure and velocity corrections

The velocity obtained after solving the momentum equations using an intermediate pressure-field may not satisfy the
continuity equation. Thus, the corrector stage is necessary to get a more accurate velocity-field which will satisfy the con-
tinuity equation more accurately. The pressure correction formula is
pk
i;j ¼ p�i;j þx2Dpi;j; ð22Þ
where p�i;j is obtained after solving the Poisson equation, x2 (60.5) is an under relaxation parameter and
Dpi;j ¼ �
Div�i;j
DtAi;j

: ð23Þ
The velocity correction formulas are
wkþ1
i;j ¼ w�i;j þ

DtDpi;j

0:5ðDziþ1 þ DziÞ
; ð24Þ

wkþ1
i�1;j ¼ w�i�1;j �

DtDpi;j

0:5ðDzi þ Dzi�1Þ
; ð25Þ

ukþ1
i;j ¼ u�i;j þ

DtDpi;j

RliDx
; ð26Þ

ukþ1
i;j�1 ¼ u�i;j�1 �

DtDpi;j

RliDx
; ð27Þ
where w�i;j;w
�
i�1;j;u

�
i;j;u

�
i;j�1 represent the updated velocity-field.

4.2. Numerical stability

We have chosen a step size of 0.025 along x, while along z it varies due to the irregularities of the stenoses data but the
step-size along t is based on the following stability condition [32–34], given by
Dt ¼ cMin½Dt1;Dt2�ij ð28Þ
with
Dt1 6Min
Dzi

jwj ;
Dx
juj

� �
ij

and Dt2 6Min
Re
2

Dx2Dz2
i

ðDx2 þ Dz2
i Þ

� �
ij

; ð29Þ
where 0.2 < c < 0.5; the reason for this extra added factor c in (28) led to a considerable computational savings as evident
from [34] and our experience concurs with them. Moreover, the upwinding parameter b appearing in the expression of
Conwn

i;j is selected according to the inequalities
1 P b P Max
wDt
Dzi

����
����; uDt

Dx

����
����

� �
ij

: ð30Þ
This inequality yields a very small value of the parameter b. As a safety measure the value is multiplied by a factor 1.2, in
practice.
5. Numerical results and discussion

For the purpose of numerical computation of the desired quantities of major physiological significance, the following
parameters have been ranged around some typical values in order toobtain results of physiological interest [1,35]:
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k ¼ 0:0001; x ¼ 2pfp; f p ¼ 1:2 Hz; / ¼ 0�; q ¼ 1:05� 103 kg m�3; r0 ¼ 0:154 cm; U0 ¼ 0:5; Dx ¼ 0:025:
The numerical results present in this section are obtained after the steady state is achieved, that is, when the non-dimen-
sional time is 68. The computational domain has been confined with a finite non-dimensional arterial length of 60.6 in which
the upstream, between two stenoses and the downstream lengths have been selected to be 8, 2 and 10 times the non-dimen-
sional radius, respectively. For this computational domain, solutions are computed through the generation of staggered grids
with a size 979 � 40 while the insertion of additional points are needed between any two consecutive original irregular ste-
nosis data of Back et al. [1] by interpolation and this has been made for the purpose of generating finer mesh adequately. It is
worth pointing out that this simulation (using Matlab) has been carried out on a desktop workstation equipped with Pen-
tium IV, 2.8 GHz processor with 512 MB RAM. On average, the simulation requires 6 h for getting velocity field in steady
state.
5.1. Model verification and validation

A few simulations with a finer grid and smaller time-step for the axial velocity profiles downstream the constrictions at
Re = 300 are presented in Fig. 3. These simulations concerning the grid independence study were performed for the purpose
of examining the error associated with the grid and time step used. One may notice from this figure that the profiles con-
cerning three distinct grid sizes almost get overlapped one with another. Thus the grid independence study in the present
context of numerical simulation has its own importance to establish the correctness of the results obtained.

In order to validate the applicability of the model under consideration, we compare our numerical results of the normal-
ized pressure drop obtained for a single irregular stenosis with the experimental results [1] and existing numerical results [6]
in Fig. 4. The comparison in Fig. 4 shows considerable agreement with both the experimental measurement [1] and theoret-
ical results [6] with a little variation for rigid arterial segment. Such deviations are in good agreement with Yakhot et al. [7],
which results from the responsible treatment of unsteady flow mechanism of the present investigation in refined mesh sizes.
The present figure also displays the result for flexible artery predicting higher pressure drop which may be justified in the
sense that the excess pressure drop appears due to more area covering for flexible artery with respect to the rigid artery.
5.2. Pressure drop

Pressure drops across a stenosis is due to huge changes of energy in the blood resulting from speed up of blood flow
through the critical stenosis. The previous investigation [24] showed that the most important factors which influence the
pressure drop across multiple stenoses are the severity of the stenoses, the distance between the two stenoses and the Rey-
nolds numbers. Talukder et al. [18] noted that the flow energy loss due to the presence of the stenoses, which is directly
related to the pressure drop across them, increases with the number of stenoses and is not strongly dependent on the spac-
ing between them. Table 1 shows dimensionless normalized pressure drop across a single irregular stenosis and multiple
irregular stenoses with the distance between the two stenoses is 2R0.
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Fig. 4. Comparison of dimensionless pressure drop across a single irregular stenosis.

Table 1
Dimensionless pressure drop across a single and multiple irregular stenoses.

Model of stenosis Re = 20 Re = 100 Re = 500 Re = 1000

A single-irregular 53.6008 11.7804 4.5152 3.0864
Multi-irregular 102.4716 21.9838 7.0521 5.5042
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5.2.1. Multiple irregular stenoses versus cosine stenoses
Observations from Fig. 5 clearly indicate that the normalized pressure drop is for the cosine model excess over irregular

model of multiple stenoses. Such observations are in good agreement with those of [6]. On the basis of the present data it
may also be noted that the higher value for the cosine-shaped stenoses than the irregular stenoses is due to the increased
area covering. Thus contrary to the conclusions of previous studies, the present findings demonstrate along with Yakhot et al.
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Fig. 5. Dimensionless pressure drop across multiple stenoses with irregular and cosine geometry.
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[7] that the excess pressure drop is neither caused by the smoothness of the stenoses nor by its higher degree of symmetry
relative to the irregular stenoses, but is rather an effect of area cover.

5.2.2. Multiple irregular stenoses versus a long single irregular stenosis
The dimensionless pressure drops across both the multiple irregular stenoses and a long single irregular stenoses are

equal for low Reynolds number while for Reynolds number in between 30 and 100, the dimensionless pressure drop pro-
duced by a long single irregular stenosis is about 3.6% higher compared to multi-irregular stenoses of a similar total length
as evident from Fig. 6. These results are in good agreement with those of Dreumel and Keiken [19]. However, when the Rey-
nolds numbers are increased up to 1000, the values of dimensionless pressure drops across multiple stenoses exceeds the
values for a long single stenosis which in turn produces more resistance to flow.

5.3. Velocity profiles

Fig. 7 shows the cross-sectional profiles of the axial velocity component corresponding to various axial positions in the
multi-irregular stenoses at Re = 1000. It appears that the profiles get distorted substantially in the downstream of the nar-
rowest point (z = 18.8525 and z = 41.4525). Although the height of the narrowest point for these two stenoses are similar, the
velocities at the critical height of the first stenosis are higher than second stenosis. From this figure, it can be seen that an
almost parabolic profile is retained in the flow upstream which is in good agreement with those of Andersson et al. [6] and
Sariffudin et al. [15], who treated the streaming blood through a single irregular stenosis.

The dimensionless centerline velocities for multi-irregular and multi-cosine stenoses at Re = 1000 are presented in Fig. 8.
The centerline velocity for multiple-cosine stenoses gives higher values than multiple-irregular stenoses. The conclusion that
area cover causes the excess pressure drop across these two geometrically different stenoses models may further be justified
from the behaviour of the axial centerline velocity along the axis of each stenosis. This figure also includes one additional
curve for a long single stenosis so as to estimate the influence of long single stenosis on the centerline velocity. This result
shows that the pressure drop across a long single stenosis is lower than multiple stenosis at Re = 1000 owing to smaller area
covering for a long single stenosis.

5.4. Critical Reynolds number

Critical Reynolds number is the minimum Reynolds number that can produce flow separation which can be understood in
a sense that the shear stress at the wall becomes zero. The critical Reynolds numbers for three different models of stenoses
are shown in Table 2. It is worthwhile to mention that flow separation takes place for lesser Reynolds number when the
streaming blood past through a multiple irregular stenoses than multi-cosine and a long irregular stenosis of similar total
length.
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Fig. 6. Dimensionless pressure drop across multi-irregular stenoses and a long single stenosis of the same total length.
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5.5. Wall shear stress

The flow separation points are observed when the shear stress at the wall changes its sign. The reattachment points fol-
lowed by separation points occur when the wall shear stress changes its sign again.



Table 2
A critical Reynolds number.

Model of stenosis Critical Reynolds number

Multi-irregular 450
Multi-cosine stenoses 620
A long single-irregular 910
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The narrowest passage of all the outlines of the multi-cosine, multi-irregular stenoses and a long single irregular stenosis
give rise to higher wall shear stress in the converging region of the stenosis, as portrayed in Figs. 9a and 9b for lower and
higher Reynolds numbers respectively. The wall shear stress has been normalized by its magnitude corresponding to the
Newtonian model in the unconstricted arterial tube far upstream of the stenosis. The present demonstration of the wall
shear stress is compared with those of Johnston and Kilpatrick [5], Andersson et al. [6], Yakhot et al. [7] and Sariffudin
et al. [15] for a single irregular stenosis and is found to have an excellent agreement with them. In the converging section
of the stenosis, the irregular model predicts lower shear stresses, but at the narrowest point the values are much higher, fol-
lowed by a change from higher shear stress to lower shear stress in the diverging sections of the irregular stenosis. The
curves of Fig. 9a show no point of flow separation with a low Reynolds number (Re = 20). At Re = 1000, the stress magnitudes
are greatly enhanced in general, and in particular the peak wall shear stresses corresponding to the all narrowest points.
Multi-irregular stenoses show larger separated region compared to a cosine-shaped stenosis and a long single irregular ste-
nosis as depicted in Fig. 9b. Thus one may conclude that the effect of multi-irregular stenoses is more severe than multi-co-
sine stenoses and also a single irregular stenosis so far as flow separation is concerned.

5.6. Variations of the severity of the stenoses

According to the modern conception in the realm of stenotic flow phenomena, recirculation zones are usually observed in
arteries which experience a high degree of occlusion in their lumen. To study the effects of a more severe stenosis, the ori-
ginal stenosis profile (48% areal occlusion) is modified to increase the severity of 74% areal occlusion maintaining the same
general shape. The variations of the combinations of severity of multi-irregular stenoses profiles are shown in Fig. 10.

5.6.1. Wall shear stress for various severities
In Fig. 11, the wall shear stress distributions show a close reflection of the outline of the stenoses. The point where the

maximum shear stress occurs lies at the narrowest cross-section. In Fig. 11a, the separated region only occurs at the down-
stream of the first stenosis at Re = 500. There is a rapid increase in wall shear stress upstream of the first stenosis, then after
the critical height of stenosis, the wall shear stress decreases until separation occurs. In Fig. 11b, a larger separation region is
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Fig. 9a. Variations of normalized wall shear stress through of each stenosis geometries at Re = 20.
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observed downstream of the distal stenosis. The maximum value of wall shear stress is at the critical height of the distal
stenosis. From this figure one may note that the less severe stenosis does not affect the pattern of blood flow because the
more severe stenosis dominates the flow field. From Fig. 11c, a large separated region is observed at the downstream of
the proximal stenosis until the reattachment point occurs in the converging part of the distal stenosis. Fig. 11d depicts
two large recirculation zones at Re = 500. Two larger separated regions are observed, the first is at downstream of the first
stenosis until the upstream of the distal stenosis and the second is downstream of the distal stenosis. A large separation zone
is observed in between the two identical stenoses having same severities. The peak of wall shear stress is at the critical
height of both stenoses, with the values of wall shear stress at the first stenosis higher than at second stenosis.
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5.6.2. Streamline and vorticity
Instantaneous patterns of streamlines governing the flow of blood through the multi-irregular stenoses of different sever-

ity combination at Re = 500 is shown in Fig. 12. It is clearly seen that a large recirculation region develops at the downstream
of more severe stenoses. In the case of 74% areal occlusion for both stenoses, recirculation regions are developed at two
places, which are in between the two stenoses and in the diverging section of the second stenosis. One can see from the fig-
ures that fluid modeling structures replicate in detail the surface complex geometry.

From Fig. 13, vorticity contour has some interesting features and shows that when it crosses the narrowest section of the
artery, vortices expand as the mean flow slightly decelerates. The line of vorticity moves towards the centerline of the tube
resulting in a tortuous vorticity contour adjacent to the peak of the constriction. However, on the basis of our preliminary
observations, it would seem that modeling a realistic geometry is important because surface irregularities may affect the
dynamics of near-wall vortices. The correct prediction of the vortex dynamics might be important for estimating the
near-wall residence times for blood cells. It is particularly relevant because it is now widely accepted that biological pro-
cesses initiating atherosclerosis are strongly influenced by a combination of fluid and mechanical factors as propounded
by Moore et al. [36].
Fig. 12. Instantaneous patterns of streamlines for different combinations of stenoses severity.



Fig. 13. Vorticity contour for the model of different combination of stenoses severity.
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6. Conclusion

A two-dimensional axisymmetric mathematical model to study the characteristics of blood flow through an artery in the
presence of a couple of stenoses with surface irregularities has been developed. The numerical simulation is primarily based
on MAC method. The numerical stability and necessary convergence of the results obtained have been thoroughly examined
and achieved with satisfactory level of accuracy within the specific computational domain of the present problem free from
the choice of grid size. The behaviour of the computed results reveals the need of interpretation with proper justification and
making scientific conclusions so that one can use the present findings into development of its future extension, if any. The
novelty of the present study is the consideration of the Newtonian characteristics of the streaming blood past a flexible arte-
rial segment containing a couple of irregular stenoses in its lumen. Since there is a coupling between the growth of the ste-
nosis and the flow of blood in the artery each affecting other significantly and since the development of arterial coarctation
usually of varied geometrical shapes, the choice of differently shaped stenoses models considered in the present study is of
much importance in analyzing and estimating their influences on the flow phenomena.

One of the remarkable features is the occurrence of larger pressure drop experienced by the flowing blood over the entire
range of Reynolds numbers in the cosine shaped stenoses model only relative to the irregular shaped model owing to the
factor of larger area covering, however, a couple of irregular stenoses model experiences higher resistance to flow for
Re > 100 than a long single irregular model (cf, Fig. 6).

Moreover, in the pattern of wall shear stress, the flow separation does occur for large Reynolds number in case of a long
single irregular stenosis model. It is important to record that the multiple stenoses as well as their surface roughness prompt
an early separation of flow (cf. Table 2).

The major limitation of the present study include the consideration of the arterial wall as a thin moving wall and the cho-
sen sites of the stenoses in the arterial lumen. It has been speculated that the atherosclerotic lesions are preferentially oc-
curred in arteries and arterioles in regions of high curvatures where there are bifurcations and junctions, the critical sites
where there would be major changes in fluid loading on the vessel walls. Heterogeneity of vascular wall and non-Newtonian
rheology of the streaming blood may certainly play important roles for the further development of the present investigation.
Any development of the future extension of the present investigation in order to get away these limitation can be made suc-
cessfully, however complex it may be, based on the present findings so that the model refinement analysis shall continue to
achieve results closer to the real situation.
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