NATURAL BACKGROUND RADIATION IN THE KINTA DISTRICT, PERAK, MALAYSIA

LEE SIAK KUAN

A thesis submitted in fulfillment of the

requirements for the award of the degree of

Master of Science (Physics)

Faculty of Science

Universiti Teknologi Malaysia

NOVEMBER 2007

To my dear mother, my late father, brothers, sister, my wife and sons.

ACKNOWLEDGEMENT

I would like to thank the Atomic Energy Licensing Board (Vot. no. 68876) for funding this research. I also like to express deep gratitude to UTM, Physics Department and Institute Ibnu Sina for providing various facilities.

My sincere thank to my supervisors Prof. Dr. Husin Wagiran and Prof. Dr. Ahmad Termizi Ramli for their encouragement, and support throughout the course of this research work.

Special thanks go to En. Mohamad Yasin Sudin, En. Ahmad Abu Bakar, En. Mohamad, staff from AELB for the assistant during field survey and visit to the amang factories in the Kinta District. I thank Associate Professor Dr. Shaharom Noordin from Faculty of Education, UTM for allowing me to attend his lectures on Statistics. I also wish to express my appreciation to En. Abdul Kahar Embi from Department of Geosciences in Ipoh to use his SURFER software in this project. I thank Dr. Abdul Khalid Wood, En. Md. Suhaimi Elias and other staff from MINT for the assistance in analyzing the NAA samples. I would also like to thank Prof. Dr. Noorddin Ibrahim for sending my samples to MINT and get analyzed, helpful discussions and suggestions. I also would like to take this opportunity to thank the entire academic and laboratory staff from Physics Department and Pn. Wanny from Institute Ibnu Sina for the cooperation they have given me. I thank my research partner En. Nursama Heru Apriantoro for the cooperation during field survey.

I also take great pride in thanking my wife, Teo Poh Choo, and my sons Sing Han and Sing Sian for their help and encouragement. I wish to acknowledge my appreciation to all those who had assisted in this project.

ABSTRACT

Measurement of natural background radiation levels in the Kinta District was carried out between 2003 and 2005. Gamma dose rates were measured from 1007 locations using a portable gamma-ray survey meter, Model 19 Micro R meter manufactured by Ludlum. The measured dose rates ranged from 39 to 1039 nGy h⁻¹ and have a mean dose rate of 222 ± 191 nGy h⁻¹ (1.36 mSy y⁻¹). Two small areas of hot spots around Kampung Sungai Durian with dose rates of 1039 nGy h⁻¹ were found. This is the highest dose rate recorded in Perak to date. A total of 128 soil samples collected were analyzed for the activities of the naturally occurring radionuclides, gross alpha and gross beta activities. The activity concentrations of ²³⁸U, ²³²Th and ⁴⁰K were analyzed by using a HPGe detector. The ranges are 12 - 426 Bq kg⁻¹ for ²³⁸U, 19 - 1377 Bq kg⁻¹ for 232 Th and from less than 19 – 2204 Bg kg⁻¹ for 40 K. Based on the radioactivity levels determined, the gamma absorbed dose rates in air at 1 meter above the ground were calculated using the procedure applied by UNSCEAR 2000. The total calculated dose rates and measured dose rates have shown good correlation coefficient of 0.94. The calculated Radium Equivalent Activity (Ra_{eq}) range from 0.14 to 6.01 mSv y⁻¹. The gross alpha activity of the soil samples range from 15 to 9634 Bg kg⁻¹ with a mean value of 1558 ± 121 Bq kg⁻¹. The gross beta activity range from 142 to 6173 Bq kg⁻¹ with a mean value of 1112 ± 32 Bg kg⁻¹. The mean population weighted dose rate for the Kinta district is 1.2 mSv y⁻¹. Gamma isodose map for the Kinta District was plotted. The isodose map is the most recent and can be used as a reference.

ABSTRAK

Pengukuran bagi aras sinaran latar belakang semulajadi di daerah Kinta telah dijalankan antara tahun 2003 hingga 2005. Kadar dos telah diukur di 1007 lokasi dengan menggunakan meter survei sinaran gama, Model 19 Micro R Meter buatan syarikat Ludlum. Julat bagi kadar dos yang diukur ialah 39 hingga 1039 nGy h⁻¹ dan nilai min kadar dos ialah 222 ± 191 nGy h⁻¹ (1.36 mSv y⁻¹). Sekitar Kampung Sungai Durian terdapat dua kawasan kecil mempunyai kadar dos yang tinggi iaitu 1039 nGy h⁻¹. Sehingga kini, kadar dos ini merupakan yang tertinggi di negeri Perak. Sebanyak 128 sampel tanah telah diambil dan dianalisis untuk menentukan keaktifan radionuklid semulajadi, keaktifan alfa dan beta. Kepekatan ²³⁸U, ²³²Th dan ⁴⁰K telah dianalisis dengan menggunakan alat pengesan HPGe. Julat bagi 238 U ialah 12 – 426 Bq kg⁻¹, 19 – 1377 Bq kg⁻¹ bagi ²³²Th dan kurang daripada 19 - 2204 Bq kg⁻¹ bagi ⁴⁰K. Berdasarkan kepada aras keaktifan yang dikira, kadar dos terserap sinaran gama di udara pada jarak 1 m dari atas tanah telah ditentukan menggunakan prosedur UNSCEAR 2000. Jumlah kadar dos yang dikira dan kadar dos yang diukur menunjukkan pekali korelasi yang baik iaitu 0.94. Aktiviti setara radium (Raed) yang dikira berada dalam julat 0.14 hinga 6.01 mSv setahun. Keaktifan alfa bagi sampel tanah didapati berada dalam julat 15 hingga 9634 Bq kg⁻¹ dan min dosnya ialah 1558 \pm 121 Bq kg⁻¹. Keaktifan beta berada dalam julat 142 hingga 6173 Bq kg⁻¹ dan min dosnya ialah 1112 \pm 32 Bq kg⁻¹. Min kadar dos pemberat populasi bagi daerah Kinta ialah 1.2 mSv setahun. Peta isodos sinar gama bagi daerah Kinta telah diplotkan. Peta isodos ini adalah yang terkini dan boleh digunakan sebagai rujukan.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
DECLARAT	ION	ii
DEDICATIO	DN	iii
ACKNOWL	EDGEMENT	iv
ABSTRACT		V
ABSTRAK		vi
TABLE OF	CONTENTS	vii
LIST OF TA	BLES	xii

	V 11
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS/SYMBOLS	xvii
LIST OF APPENDICES	XX
LIST OF PUBLICATIONS	xxi

I. INTRODUCTION

1

1.1	Introduction	1
1.2	Research Objectives	3
1.3	Importance of this Research	3

vii

1.4	Statement of Hypotheses	4
1.5	Scope of Study	4
1.6	Research Methodology	5
1.7	Thesis outlines	6

II. LITERATURE REVIEW

2.1	Introd	ntroduction 7	
2.2	Radio	activity	7
	2.2.1	Alpha Particles	8
	2.2.2	Beta Particles	9
	2.2.3	Gamma-Rays	9
	2.2.4	Neutron	9
2.3	Intera	ction of Gamma Radiation with Matter	10
	2.3.1	Photoelectric Effect	10
	2.3.2	Compton Effect	11
	2.3.3	Pair Production	11
2.4	Secula	ar Equilibrium	12
2.5	Natura	al Radioactivity	13
	2.5.1	Potassium	13
	2.5.2	Uranium	14
	2.5.3	Thorium	16
2.6	The R	adioactivity of Soil	17
2.7	Tin Ta	ailings (Amang)	19
2.8	Globa	al Positioning System	24
2.9	Comn	nercial Uses of Amang Minerals	25
2.10	Geolo	ogy of the Kinta District	25
	2.10.1	Calcareous Rocks	26
	2.10.2	2 Argillaceous Rock	27
	2.10.3	3 Arenaceous Rocks	27

7

	2.10.4 Granitoid	29
	2.10.5 Alluvium	29
2.11	Soil Types in the Kinta District	29
2.12	ICRP Annual Dose Limit	30
2.13	Radiation Units	30
	2.13.1 Exposure – The Roentgen	30
	2.13.2 Radiation Absorbed Dose – The Rad	31
	2.13.3 Dose Equivalent – The Rem	31
	2.13.4 Dose Rate	32
	2.13.5 Relationship Between SI and Historical Units	33
2.14	The Biological Effects of Ionizing Radiation	34
2.15	Energy Response of Survey Meters	35

III METHODOLOGY

3.1 Experimental Methods and Measuring Using Survey Meter 36 3.2 Gamma-Ray Spectrometer Analysis 38 Sample Preparation for Counting 38 3.2.1 Standard Samples Preparation for Soil Analysis 39 3.2.2 Standard Samples Preparation for Amang Analysis 3.2.3 39 3.3 Gamma-Ray Detection System 40 3.4 Measurement of Gamma-Ray Radioactivity from Amang Samples 42 Calculation of the Concentration of ²³²Th, ²³⁸U and ⁴⁰K 3.5 43 3.6 Neutron Activation Analysis Method 45 3.6.1 Sample Preparation 46 3.6.2 Sample Irradiation 46 3.6.3 Calculation of Element Concentration 46 Determination of the Concentration of ²³⁸U and ²³²Th 3.6.4 47 Alpha and Beta Measurement 48 3.7

36

3.7.1	Alpha and Beta Counting System	48
3.7.2	Simultaneous Alpha and Bea measurements	50
3.7.3	Sample preparation	51
3.7.4	Standard Samples preparation for Alpha and	
	Beta Analysis	53
3.7.5	Alpha Counting Efficiency	53
3.7.6	Beta Counting Efficiency	54
3.7.7	Calculation of Alpha and Beta Activity	54

IV RESULTS AND DISCUSSION

55

4.1	Field Measurements in the Kinta District	55
4.2	Soil Types and Gamma-Ray Dose Rate Distribution	57
4.3	Geological Types and Gamma-Ray Dose Rate Distribution	62
4.4	Gamma-Ray Dose Rate Distribution for Soil and	
	Geological Types	65
4.5	Mukims and Gamma-Ray Dose Rate Distribution	66
4.6	Measurement of Natural Background Radiation in the	
	Kinta District	70
4.7	High Natural Background Radiation Areas in Tg.Tualang	72
4.8	Derivation of the Absorbed Dose Rates	75
4.9	Derivation of the Effective Dose Equivalent Rates	78
4.10	Measurement of Uranium, Thorium and Potassium in	
	Soil Samples	78
4.11	Th/U Ratio	86
4.12	Radioactive Equilibrium	90
4.13	Measurement of Gross Alpha and Gross Beta in	
	Soil Samples	91
4.14	Neutron Activation Analysis (NAA)	94
4.15	Radium Equivalent Activity (Raeq)	94

4.16	Linear Correlation Coefficient, R	95
	4.16.1 Correlation between Naturally Occurring	
	Radionuclides and Dose Rate	96
	4.16.2 Correlation between Naturally Occurring	
	Radionuclides	99
	4.16.3 Correlation between Gross Alpha and Gross Beta	
	Activities and Dose Rate	102
4.17	Measurement of Radiation Levels at Amang Factories	104
4.18	Measurement of Uranium and Thorium in Amang Samples	107
4.19	Measurement of Gross Alpha and Gross Beta Activities	
	from Minerals in Amang Samples	112
4.20	Measurement at the Radioactive Waste Storage Site	113
4.21	Isodose Contour Map	114

V	CON	ICLUSIONS AND SUGGESTIONS	118
	5.1	Conclusions	118
	5.2	Suggestions	121

REFERENCES	123
APPENDICES	131
LIST OF PUBLICATIONS	142

LIST OF TABLES

TABLE NO.

TITLES

PAGE

2.1	Characteristics of the of ⁴⁰ K decay scheme	13
2.2	Characteristics of the of ²³⁸ U decay scheme	15
2.3	Characteristics of the of ²³² Th decay scheme	16
2.4	Range of NBRL readings over various geological materials	18
2.5	Natural radioactivity	19
2.6	Preliminary values of ranges of exposure levels in some amang	
	processing plants, Malaysia.	21
2.7	Preliminary values of exposure values of exposure levels	
	measured in a typical amang plant.	22
2.8	Average dose rate of various sites of the amang plants visited.	
	Measurements were taken at a distance of 0.01 and 0.3 m away	
	from pilings.	23
2.9	Gamma activities of amang samples	24
2.10	Commercial uses of amang minerals	25
2.11	Soil types in the Kinta District	29
2.12	Annual Dose Limit, (ICRP, 1991)	29
2.13	Summary of values of quality factor, QF	31
2.14	SI units of radioactivity, absorbed dose and its relationship	33
3.1	Nuclides formed by neutron capture	48
3.2	Weight, count rate and efficiency for Triuranium octaoxide (U ₃ O ₈)	53

3.3	Weight, count rate and efficiency for Potassium Chloride (KCl)	54
4.1	Soil types and parent material	58
4.2	Statistical summary and 95% Confidence limit for the mean	
	gamma-ray dose for soil types (SPSS Output)	59
4.3	Geological features with rock types and number of readings taken	62
4.4	Statistical summary and 95% Confidence limit for the mean	
	gamma-ray dose for geological types (SPSS Output)	63
4.5	Statistical summary for the mean gamma-ray dose for soil types	
	and geological types (SPSS Output)	66
4.6	Statistical summary and 95% confidence limit for the mean	
	gamma-ray dose for each mukim (SPSS Output)	67
4.7	Statistics for dose rate (nGy h ⁻¹) distribution for each <i>mukim</i>	
	in the Kinta Valley	69
4.8	Frequency of the dose rate in the Kinta District	72
4.9	Radionuclide concentrations in surface soil	85
4.10	Soil samples with Th/U ratio of 3.02 and below	87
4.11	Activity of soil samples for gross alpha, gross beta, ²³⁸ U, ²³² Th,	
	40 K in Bq kg ⁻¹ , calculated and measured dose rate in nGy h ⁻¹ ,	
	Th/U ratio, geology and soil type	87
4.12	Comparison between NAA and direct method	94
4.13	Amang plants in the Kinta District, Perak	104
4.14	Samples collected from amang plants	107
4.15	Concentration of uranium and thorium from amang upgrading	
	plants	108
4.16	Concentration of uranium and thorium from amang plants	109
4.17	Specific activity of amang minerals	110
4.18	Gamma activities of minerals from amang samples	110
4.19	Gross alpha and gross beta activities from minerals	
	in amang samples	112
5.1	Analysis of variance for the mean dose rates of Table 4.7	119

LIST OF FIGURES

FIGUR	RE NO. TITLES	
2.1	Geology of the Kinta District	28
2.2	Energy response curves of various detectors.	35
3.1	Survey meter and GPS	34
3.2a	HPGe detector with high voltage, amplifier and multichannel	
	analyzer	41
3.2b	Block diagram of the HPGe detector system	41
3.3	Gamma-ray spectrometer	42
3.4	Typical spectrum for soil sample. Energy peaks for	
	the various radionuclides are indicated	43
3.5	Low alpha beta counting system	49
3.6	Laboratory oven	51
3.7	Swing Grinding Mill (Herzog)	52
3.8	Sieve shaker (Retsh)	52
4.1a	Frequency histogram of gamma radiation dose measurements	56
4.1b	Frequency histogram of the log-transformed data in Figure 4.1a	56
4.2	Proportion-proportion plot of the natural log-transformed data	57
4.3	Box plot showing the distribution and the variability of gamma-ray	I
	dose for each soil type	60
4.4	Mean dose and 95% confidence intervals for mean (SPSS output)	61
4.5	Box plot showing the distribution and the variability of gamma-ray	7

	dose for each geological type	64
4.6	Mean dose and 95% confidence interval for mean	66
4.7	Box plot showing the distribution and the variability of gamma-ray	
	dose for each <i>mukim</i>	68
4.8	Mean dose for each <i>mukim</i> and 95% confidence interval for mean	68
4.9	Locations of dose rate measurements	70
4.10	The bar chart where the highest frequency of 64 % is in	
	the range of $101 - 200 \text{ nGy h}^{-1}$	71
4.11	The activity of natural radionuclides and dose rate at various	
	sampling points	73
4.12	The activity of gross alpha, beta and dose rate at various	
	sampling points	74
4.13	Total calculated dose rate versus measured dose rate $(nGy h^{-1})$	76
4.14a	Bar Chart of uranium, thorium, potassium activities and dose in	
	soil samples.	80
4.14b	continued	81
4.14c	continued	82
4.14d	continued	83
4.15	Sampling locations for soil samples	84
4.16	Efficiency calibration curve for alpha	92
4.17	Efficiency calibration curve for beta	92
4.18	Correlation between beta activity versus ⁴⁰ K	93
4.19	Correlation between thorium and dose rate	96
4.20	Correlation between uranium and dose rates	97
4.21	Correlation between potassium and dose rate	98
4.22	Correlation between total activity and dose rate	98
4.23	Correlation between dose equivalent and dose rate	99
4.24	Correlation between uranium and thorium in soil	100
4.25	Correlation between uranium and potassium in soil	100
4.26	Correlation between potassium and thorium in soil	101
4 27	Correlation between ²³⁸ U and ²²⁶ Ra in soil	101

4.28	Correlation between gross alpha activity and dose rate	102
4.29	Correlation between gross beta activity and dose rate	103
4.30	Correlation between total gross (alpha and beta) activity and	
	dose rate	103
4.31	Location of Amang Factories	106
4.32	Specific activity of uranium in ilmenite, zircon and monazite	
	samples	111
4.33	Specific activity of thorium in ilmenite, zircon and monazite	
	samples	111
4.34	Bar chart of gross alpha and gross beta activities from minerals	
	in amang samples	112
4.35	Storage building at the Kledang Range	113
4.36	The isodose contour is superimposed with the geological types	115
4.37	The isodose contour is superimposed with the soil types	116
4.38	3D of dose rate profile for the Kinta District	117

xvi

LIST OF ABBREVIATIONS/SYMBOLS

С	-	Coulombs
J	-	Joules
М	-	Molecular weight of sample
Ν	-	Number of atom
R	-	Roentgen
Х	-	X-ray
g	-	Gram
m	-	Meter
р	-	Pico
u	-	Atomic mass unit
S	-	Second
ALARA	-	As low as reasonable achievable
DF	-	Distribution factor
FAO	-	Food and Agriculture Organization
GPS	-	Geographical positioning system
HPGe	-	High purity Germanium
IAEA	-	International Atomic Energy Agency
ICRP	-	International Commission on Radiological Protection
MCA	-	Multi-channel Analyzer
MINT	-	Malaysian Institute of Nuclear Technology Research
NAVISTAR	-	Navigation Satellite Receiver
NBRL	-	Natural background radiation level

PSI	-	Pound per square inch
QF	-	Quality factor
SPSS	-	Statistical Package for Social Sciences
TLD	-	Thermoluminescent dosimeter
UNSCEAR	-	United Nations Scientific Committee on the effects of
		Atomic Radiation
USA	-	United States of America
cpm	-	Counts per minute
eV	-	Electron volt
keV	-	Kiloelectron volt
kW	-	kilowatt
km	-	Kilometer
rad	-	Radiation absorbed dose
rem	-	Roentgen equivalent man
Ar	-	Argon
A_v	-	Avogadro's number
Bq	-	Becquerel
Ci	-	Curie
CH ₄	-	Methane
E_{BE}	-	Binding energy
Ee	-	Kinetic energy
Εγ	-	Gamma energy
F_{α}	-	Calculated activity of the standard sample for alpha
		particles
F_{β}	-	Calculated activity of the standard sample for beta particles
Gy	-	Gray
KC1	-	Potassium chloride
keV	-	Kiloelectron volt
kW	-	kilowatt
MeV	-	Megaelectron volt
Sv	-	Sievert

α	-	Alpha particle
β	-	Beta particle
γ	-	Gamma radiation
3	-	Efficiency
λ	-	Disintegration constant
⁴⁰ K	-	Potassium-40
²³⁹ Np	-	Neptunium-239
²³³ Pa	-	Protactinium-233
²²⁶ Ra	-	Radium-226
²²⁸ Ra	-	Radium-228
²³⁴ U	-	Uranium-234
²³⁵ U	-	Uranium-235
²³⁸ U	-	Uranium-238
²³² Th	-	Thorium-232
U_3O_8	-	Uranium trioxide

LIST OF APPENDICES

APPENDIX

TITLES

PAGE

А	Soil map of the Kinta District	132
В	Energy Response of Model 19 Micro R Meters.	133
С	Calculate the Total Activity of Standard Sample, U_3O_8	134
D	Calculate the Activity of Standard Sample, KCl	135
E	Road Map of the Kinta District	136
F	Mean dose rate	137
G	Mineral Map of the Kinta District	138
Н	Amang Tailing Process	139
Ι	Analysis of variance (Tukey's Test)	140

LIST OF PUBLICATIONS

Husin Wagiran, Lim Say Eng, Lee Siak Kuan and Mohamad Yasin Sudin. (2005).
"Concentration of Uranium and Thorium in the Product and By-Product of
Amang and Ilmenite Tailings Process." *Sains Malaysiana*. 34, 1. pp 45 -50. 142

Lee Siak Kuan, Husin Wagiran, Ahmad Termizi Ramli, and Nursama Heru Apriantoro. (2007). "Natural Gamma Background Radiation Dose Rate and Its Relationship with Geological Background in the Kinta District, Perak, Malaysia." *Prosiding Seminar Kebangsaan Juruteknologi Makmal Ke-VIII*, Universiti Malaysia Sabah. pp 173 – 188. 148

CHAPTER I

INTRODUCTION

1.1 Introduction

When the earth was formed four billion years ago, it contained many radioactive isotopes (Wang et. al. 1975 and Foster, 1985). Since then, all the shorter-lived isotopes have decayed. Only those isotopes with very long half-lives (100 million years or more) remain, along with the isotopes formed from the decay of the long-lived isotopes. These naturally occurring isotopes include uranium, thorium and their decay products, such as radon. The presence of these radionuclides in the ground leads to both external gamma ray exposure and internal exposure from radon and its progeny.

Everyone is inevitably exposed to background radiation, which varies from place to place and from time to time in both amount and type. Some of this exposure is caused by external radiations that come from both cosmic rays and radioactive materials in the ground. Cosmic radiation of concern is principally a result of protons and the products of their interaction with various nuclei. Exposure resulting from such radiation depends on the latitude and the altitude. The dose rate of radiation from cosmic rays ordinarily measures 0.28 mGy y^{-1} when tested at 70°, sea level; appropriate corrections may be made for other latitudes and altitudes (Henry, 1969).

Environmental gamma activities result from potassium, uranium, thorium, and their daughters in various rocks and soils; estimates of such activities at a height of about 1 m over granite areas are typically in the order of 1.5 mGy y⁻¹ and over limestone in the order of 0.2 mGy y⁻¹ (Henry, 1969). Obviously, the actual level of radiation caused by the radioisotopes content of rocks and soil varies widely from place to place, and the actual background at a given location can be determined only by measurement. Thus the dose rate depends on the geological location (Martin and Harbison, 1972). In order to predict the environment quality, monitor continuously the air gamma radiation level for 24 hours and detect the abnormality, we need to know the natural background of gamma radiation (Tu Yu and Jiang Dezhi, 1996).

Granite is the major igneous rock that is abundantly available in Peninsular Malaysia. It is distributed in Western Belts and Eastern Belt, running roughly north to south along the length of the Peninsula. The Western Belt consists of the Main Range, the Kledang Range and other granite further west. The ages of the granites range from Permain to Cretaceous, with the majority of Triassic age (Bignell and Snelling, 1977).

The main sources of natural background radiation are as follows:

- 1. radioactive substances in the earth crust.
- 2. emanation of radioactive gas from the earth.
- 3. cosmic rays from outer space which bombarded the earth.
- 4. trace amounts of radioactivity in the body.

In addition to the natural background radiation, there are several other sources of human exposure which are peculiar to the last few decades. These sources are: diagnostic radiology, therapeutic radiology, use of isotopes in medicine, radioactive waste, fall-out from nuclear tests, and occupational exposures from nuclear reactors and accelerators. Research objectives are:

- i. to establish a baseline data of natural background radiation levels in the Kinta District.
- ii. to identify the hot spot areas.
- iii. to analyze the activity concentrations of the radionuclides of ²³⁸U, ²³²Th and ⁴⁰K from the soil samples and compare the calculated total dose rates with the measured dose rates.
- iv. to analyze the gross alpha and gross beta activities of the soil samples.
- v. to plot the isodose contour map of gamma dose rate.

1.3 Importance of this Research

- A need to establish a baseline data which can be used as reference information to assess any changes in the natural background radiation level due to human activities or any artificial influences due to fallout (Goddard, 2000; Ibrahiem et. al., 1993; Quindos et. al., 1994).
- 2. A need to identify areas with high natural radiation (Erickson et. al., 1993) or hot spot areas.

- 3. Identification of natural radioactive elements present in soil, geology, and sediments in minor concentrations are of large interest because of their detrimental effects on natural environment (Vertacnik et. al., 1977).
- 4. Radioactivity is present everywhere in nature and it is necessary to study the radiation levels and to access the dose to the population, in order to know the health risks.

1.4 Statement of Hypotheses.

- 1. Kinta District has many tin mining sites, and is expected to have high background radiation from the minerals such as monazite and zircon.
- 2. Granite which forms the Main Range on the east and the Kledang Range on the west of the Kinta District are expected to have high radiation level than the limestone areas found in between them.

1.5 Scope of Study

This project covers the Kinta District, Perak. It is bounded on the north and south by lines of latitude $4^{\circ}45$ ' N. and $4^{\circ}15$ ' N. respectively, on the east by line of longitude $101^{\circ}15$ ' E. and on the west by $101^{\circ}00$ ' E.

Kinta District has 12 major towns namely Batu Gajah, Chemor, Gopeng, Ipoh, Kampar, Kellie's Castle, Malim Nawar, Pusing, Simpang Pulai, Tambun, Tanjung Rambutan, and Tanjung Tualang. It has an area of approximately 1958 km² and has a population of about 703493 (Population Census in 2000). Rainfall is throughout the year with 193 days recorded with a total of 2990 mm of rain. The temperature ranged from 23.9 to 32.9 °C (Shaari, 2003).

1.6 Research Methodology

A survey meter was used for the dose rate measurements in the Kinta District. Areas are chosen with flat ground away from obstacles, outcrops and buildings. At each location, the latitude and longitude were determined by using global positioning system (GPS) with an accuracy of about 100 meters.

The activities of the naturally occurring radionuclides ²³⁸U, ²³²Th and ⁴⁰K in the soil samples were measured by using HPGe gamma-ray spectrometry. Amang by-products were analyzed for ²³⁸U and ²³²Th.

Gross alpha and gross beta activities from the soil samples and amang byproducts were measured by using Low Background Counting System Canberra Model LB5500.

Statistical data analysis was performed using SPSS and Excel programs. Data was presented as mean, standard deviation, standard error and 95% confidence intervals. Frequency histogram of the gamma dose rate was plotted. Box plot was used to show the variability and the distribution of the gamma dose rate for various parameters such as geological types, soil types and *mukims*. Excel program was used in the correlation coefficient analysis of the data.

The isodose contour map for the dose rates was plotted using the Surfer software version 6.

1.7 Thesis Outlines

This thesis consists of 5 chapters. The first chapter consists of introduction, research objectives, importance of this research, and scope of study and research methodology. Chapter two is the literature review. It covers the work of relevant studies carried out. Chapter three explains the methods and equipment used in the experimental work. Chapter four shows the data obtained from the field measurements, statistical presentation of data using box plots, histograms, high radiation areas, analysis of soil samples using direct method and neutron activation analysis (NAA) method, correlation coefficient between dose rate and radionuclides and gamma isodose contour plot. Finally chapter five presents the conclusions of the project and the suggestions.

REFERENCES

- Adams, F and Dams, R., (1969). A compilation of precisely determined gammatransition energies of radionuclides produced by reactor irradiation. *Journal of Radioanalytical Chemistry*, 3, 99 -125.
- Auu, Gui Ah. (1983). PUSPATI TRIGA REACTOR FUEL WORTH MEASUREMENT. *Nuclear Science Journal*, 1, 9 – 12.
- Beretka, J. and Mathew, P.J. (1985). Natural Radioactivity of Australian Building Materials, Industrial Wastes and By-Products. *Health Phys.*, 48(1), 87-95.
- Bignell, J.D and Snelling, N.J. (1977). Geochronology of Malaysian Granites. In: Overseas Geology and Mineral Resources. *Institute of Geological Science*, London. pp. 30–45.
- Bose S.R., Williamson T.G., Mulder R.U. and Rab Molla M.A.(1993). Impact of a 2 MW_{th} Research Reactor on Radioactivity in Sediments. *Health Phys.*, 65(2), 200-208.
- Canberra Industries, Inc. (2001a). *Model LB5500 Low Background Counting System*. Meriden, USA: Eclipse LB User's Manual.
- Canberra Industries, Inc. (2001b). *Model LB5500 Low Background Counting System*. Meriden, USA: Installation Manual.

- Dickson H.W., G.D. Kerr, P.T. Perdue and S.A. Abdullah. (1976). Environment gamma-ray measurements using in situ and core sample sampling techniques. *Health Physics*, 30, 221 – 227.
- Director General of Mapping. (1970). Schematic Reconnaissance Soil Map Perak, Ipoh, Malaysia.
- Erickson, M.P., Albin, L.M. and Hughes, G. (1993). Background radiation dose estimates in Washington state. In: Proceedings of the 26th Midyear Topical Meeting. *Health Physics Society*. 24 -28 January, Coeur D'Alene, Idaho, pp. 647-650.
- Foster, R.J. (1985). *Geology*. 5th Edition, Charles E. Merrill Publishing Company, Columbus.
- Florou, H. and Kritidis, P. (1992). Gamma radiation measurements and dose rate in the coastal areas of a volcanic island, Aegean Sea, Greece. *Radiation Protection Dosimetry and Assessment*, 73, 227 – 289.
- Gangadharam, E.V. and Lam, E.S. (1981). *Radiation Levels in the Mineral Processing Industries in Malaysia.* PPA, SS3, 34 – 38.
- Garmin Corporation. (1988). GPS 12XL Personal Navigator, Operator's manual & reference. Taiwan, R.O.C.
- Geological Survey of Malaysia. 1976. *Mineral Distribution Map of Peninsular Malaysia*. 7th Edition, Dir. Nat. Mapping Malaysia.
- Goddard, C.C. (2002). Measurement of outdoor terrestrial gamma radiation in the Sultanate of Oman. *Health Phys.*, 82, 869-872.

- Hamby, D.M. and Tynybekov, A.K. (2002). Uranium, thorium and potassium in soils along the shore of the Lake Issyk-Kyol in the Kyrghyz Republic. *Environmental Monitoring and Assessment*. 73, 101-108.
- Henry, H.F. (1969). Fundamentals of Radiation Protection. John Wiley & Sons, USA.
- Hu, S.J., Chong, C.S, and Subas, S. (1981). ²³⁸U and ²³²Th in Cassiterites Samples and Amang By-products. *Health Phys.*, 40. 248 250.
- Hu, S.J. and Koo, W.K. (1983). Measurement of Airborne Radioactivity in Amang Plants. *Bulletin Physics*, USM.
- Hu, S.J., Koo, W.K and Tan, K.L. (1984). Radioactivity Associated with Amang up grading Plants. *Health Physics*, 46, 452 – 455.
- Hu, S.J. and Kandaiya, S. (1985). Health and safety problems among amang workers in the tin industry in Malaysia. *Jurnal Sains Nuklear Malaysia*, 3(2), 1-4.

Ibrahiem, N.M., Abd El Ghani, A.H., Shawky, S.M., Ashraf, E.M. and Farouk, M.A. (1993). Measurement of radioactivity levels in soil in Nile Delta and Middle Egypt. *Health Phys.*, 4, 620 – 627.

- Ingham, F.T. and Bradford, E.F. (1960). *The Geology and Mineral Resources of the Kinta Valley, Perak*. District Memoir 9, KL Government Printer.
- IAEA. (1979). Gamma ray surveys in uranium exploration. Technical reports series No. 186. Vienna, International Atomic Energy Agency.
- IAEA. (1989). Construction and use of calibration facilities for radiometric field equipment. Technical reports series No, 309. Vienna, International Atomic Energy Agency.

- ICRP (1991). 1990 recommendation of the International Commission on Radiological Protection. Oxford: Pergamon Press; *International Commission on Radiological Protection*. Publication 60.
- Iqbal, M., Tufail, M., and Mirza, S.M. (2000). Measurement of natural radioactivity in marble found in Pakistan using a NaI(Tl) gamma-ray spectrometer. J. Environ. Radioact., 51, 255 - 256.
- Iyogi Takashi, Shinjin Ueda, Shun'ichi Hisamatsu, Kunio Kondo, Hideto Haruta, Hiromi Katagiri, Mizumi Kurabayashi, Yuji Nakamura, and Nobuo Tsuji. (2002).
 Environmental gamma-ray dose rate in Aomori prefecture, Japan. *Health Phys.* 82(4): 521 526.
- Jacob P, Paretzke H.G, Rosenbaum H. and Zankl M. (1986). Effective dose equivalents for photon exposure from plane sources on the ground. *Radiat Protect Dosim.*, 14, 299 – 310.
- Knoll G. F. (1989). Radiation Detection and Measurement. 2nd ed. New York, John Wiley & Sons.
- Kocher D.C and Sjoreen A.L. (1985). Dose rate conversion factors for external exposure to photon emitters in soil. *Health Phys.*, 48, 1993 205.
- Kohshi, C., Takao, I. and Hideo, S. (2001). Terrestrial gamma radiation on Koshi prefecture, Japan. *Journal of Health Science*, 47(4), 362 372.
- Leong, K.C, Lau S.Y. and Poon, C.B. (1990). Gamma radiation dose from radionuclides on Hong Kong soil. *J Environ Radioact*, 11, 279 – 290.
- Lim, S. E. (2004). *The concentration of uranium and thorium in amang and ilmenite samples collected from industry*. UTM: B. Sc Thesis.

- Lough, S.A., and L.R. Solon. 1958. The natural radiation environment in radiation Biology and Medicine (Chap.17), W.D. Claus. ed. Reading, Pa.: Addison-Wesley Pub. Co.
- Lovell, S. (1979). An introduction to radiation dosimetry. Cambridge University Press.
- Ludlum. (1993). *Instruction Manual of Ludlum Model 19 Micro R Meter*. Sweetwater Texas. Ludlum Measurements, Inc.
- Malanca, A., Passina, V. and Dallara, G. (1993). Radionuclide Content of Building Materials and Gamma Ray Dose rates in Dwellings of Rio Grande Do Norte, Brazil. *Radiat. Prot. Dosim.*, 48, 199.
- Martin, A and Harbison, S.A. (1972). An Introduction to Radiation Protection. John Wiley & Sons, Inc. New York.
- Mireles, F., Davila , J.I., Quirino, L.L., Lugo, J.F., Pinedo, J.L., and Rios, C. (2003). Natural soil gamma radioactivity levels and resultant population dose in the cities of Zacatecas and Guadalupe, Zacatecas, Mexico. *Health Phys.*, 84(3), 368 – 372.
- Misha, U.C. and Sadasivan, S. (1971). Natural radioactivity levels in India soil. J. Sci. Industrial Res., 30, 59 – 62.
- Myrick, T.E., Berven, B.A. and Haywood, F.F. (1983). Determination of concentrations of selected radionuclides in surface soil in the U.S. *Health Physics*, 45(3), 631 642.
- Narayana, T., Somashekarappa, H.M., Karunakara, N., Avadhani, D.N., Mahesh, H.M., and Siddappa, K. (2001). Natural radioactivity in the soil samples of coastal Karnataka of South India. *Health Phys.*, 80(1), 24 -33.

- Omar, M., and Hasan W.F.W. (1990). Naturally Occurring Radionuclides in Malaysian Granites. *Jurnal Sains Nuklear Malaysia*, 17, No. 2., 73 – 76.
- Omar, M., Ibrahim, M. Y., Hassan, A., Mahmood, C. S., Lau H. M., Ahmad, Z. and Sharifuddin, M.A. (1991). Environmental Radiation and Radioactivity Levels in Malaysia. *IRPA National Seminar, Strategic Sector*, 16 – 19 Dec., 1991, Penang, Malaysia.
- ORTEC. (2001). *MAESTRO*®–32 A65-B32 Software User's Manual. Perkin Elmer Instruments.
- Paramanathan, S. (1998). Malaysian Soil Taxonomy: A Proposal for the Classification of Malaysian Soils. Selangor. Malaysian Society of Soil Science.
- Quindos, L.S., Fernandez, P.L., Soto, J., Rodenas, C. and Gomez, J.(1994). Natural Radioactivity in Spanish Soils. *Health Phys.*, 66(2), 194 200.
- Rajah S. S. (1979). The Kinta Tinfield, Malaysia. *Geol. Soc. Malaysia*, Bulletin 11, 111–136.
- Ramli A.T. (1997). Environmental terrestrial gamma dose and its relationship with soil type and underlying geological formations in Pontian District, Malaysia. *Applied Radiation and Isotopes*, 48, 407 - 412.
- Ramli A.T., Abdel Wahab, M.A., and Lee, M.H. (2001). Geological influence on terrestrial gamma-ray dose rate in Johore state, Malaysia. *Appl. Radiat. Isot.*, 54, 327 – 333.
- Ramli A.T., Ahmad Taufek and M.H. Lee. (2003). Statistical prediction of terrestrial gamma radiation dose rate based on geological features and soil types in Kota Tinggi district, Malaysia. *Applied Radiation and Isotopes*, Paper accepted 6 August, 2003.

- Sahabat Alam Malaysia. (1984). *Papan radioactive waste dump controversy*. Penang. The Phoenix Press Sdn Bhd.
- Saito K. and Jacob, P. (1995). Gamma-ray fields in the air due to sources in the ground. *Radiat. Prot. Dosim.*, 58, 29 – 45.
- Saito, K., Petoussi, N. and Zanki, M. (1990). Calculation of organ doses from environmental gamma rays using human phantoms and Monte Carlo methods. Part 1, Monoenergetic sources of natural radionuclides ion the ground. GSF-B2/90.
- Sankaran, A. V., Jayaswal, B., Nambi, K.S.V. and Sunta, C.M. (1986). U, Th, and K distributions inferred from regional geology and terrestrial radiation profiles in India. Bombay, India: BARC.
- Shaari Abdul Rahman. (2003). *Yearbook of Statistics Malaysia 2003*. Department of Statistics, Malaysia. Percetakan Nasional Malaysia Berhad, Kuala Lumpur.
- Sunta, C.M. (1969). Personnel Monitoring Using TLD in IRE Factor. Bhabha Atomic Research Centre, Bombay, India, Rep. BARC/1-12.
- Tan Siew Choo. (2000). Pengukuran keradioaktifan sampel alam sekitar dengan keadah spektrometer sinar gama. Tesis Sarjana Muda, UTM.

Triola, M.F. (2005). *Essentials of Statistic*, 2nd Edition, Pearson Education, Inc.

Tsoulfanidis N. (1995). Measurement and detection of radiation. Taylor & Francis.

Tu Yu and Jiang Dezhi. (1997). Investigation of outdoor gamma radiation level in Suzhu urban and rural areas. High Levels of Natural Radiation 1996, *Radiation Dose and Health Effects*. Elsevier Science B.V.

- UNSCEAR. (1977). United Nations Scientific Committee on the Effect of Atomic Radiation. New York; Report No. 44.
- UNSCEAR. (1982). United Nations Scientific Committee on the Effect of Atomic Radiation. New York: United Nations; 32nd session, Suppl No. 45 (A/37/45).
- UNSCEAR. (1988). Sources and Effect of Ionizing Radiation. United Nations Scientific Committee on the Effect of Atomic Nation report to the General Assembly, United Nations, New York.
- UNSCEAR. (1993). Sources and Effects of Ionizing Radiation. Report to General Assembly, with Scientific Annexes, United Nations, New York.
- UNSCEAR. (2000). *Sources and Effects of Ionizing Radiation*. Report to General Assembly, with Scientific Annexes, United Nations, New York.
- Wahab, A. (1988). Terrestrial Gamma radiation Dose and Its Relationship with Soil Type and Geology in Johore State, Malaysia. UTM: M.Sc thesis.
- Wang, C.H., David L. Willis, and Walter D. Loveland. (1975). Radiotracer Methodology in the Biological, Environmental, and Physical Sciences. Englewood Cliff, N.J., Prentice - Hall, Inc.
- Wong Yew Chong. (1985). A Radiometric Survey of Natural Background Radiation in the Kinta Valley, Perak. Annual Report Geological Survey of Malaysia. 223 – 229.
- VertaČnik, A., BarišiČ, D., Musani, Lj, ProhiČ, E., and JuraČiČ, M. (1997). Exchangeable fraction of elements in alluvial sediments. *Journal of Radioanalytical Chemistry*, 218(1), 45 – 52.