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Abstract - The research on two-wheel inverted 
pendulum or commonly call balancing robot has 
gained momentum over the last decade at 
research, industrial and hobby level around the 
world. This paper deals with the modeling of 2-
wheels Inverted Pendulum and the design of 
Proportional Integral Sliding Mode Control 
(PISMC) for the system. The mathematical  
model of  2-wheels inverted pendulum system 
which is highly nonlinear is derived. The final 
model is then represented in state-space. A 
robust controller based on Sliding Mode Control 
is proposed to perform the robust stabilization 
and disturbance rejection of the system. A 
computer simulation study is carried out to 
access the performance of the proposed control 
law.  
Keywords: two-wheels inverted pendulum, 
sliding mode control, pole-placement 
 
1.0 Introduction 

 
Wheeled inverse pendulum model have 

evoked a lot of interest recently at the research, 
industrial and hobby level and at least one 
commercial product (Segway) is available 
[1],[2],[3],[4],[5]. The robot are characterized by 
two driving wheels connected to an intermediate 
body carrying actuation, sensor, control and 
communication subsystem. Two independent 
driving wheels in same axis, and the gyro type 
sensor to know the inclination angular velocity 
of the body and rotary encoders to know wheels 
rotation. Due to its configuration with two 
coaxial wheels, each wheel is coupled to a 
geared dc motor. The vehicle is able to do 
stationary U-turns while keeping balance it pole.   
Such vehicles are of interest because they have a 
small foot-print and can turn on dime. The 
kinematics model of the system has been proved 
to be uncontrollable and therefore balancing of 
the pendulum is only achieved by considering 
dynamic effects[6]. Such robots are 
characterized by the ability to balance on two 

wheels and spin on the spot. This additional 
maneuverability allows easy navigation on 
various terrains, turn sharp corners and traverse 
small steps or curbs. These capabilities have the 
potential to solve a number of challenges in 
industries and society. For example, a motorized 
wheelchair utilizing this technology would give 
the operator greater maneuverability and thus 
access to places most able-body people take for 
granted. Small cart built utilizing this technology 
allows humans to travel short distances in a 
small area or factories area as proposed to using 
car or buggies which is more polluting[4]. 

In this work, a mathematical model of 3 
degree-of-freedom (DOF) 2-wheels inverted 
pendulum is derived and the model will be used 
for the design of a new robust controller. The 
dynamic modeling is done directly in terms of 
variables which are of interest with respect to the 
planning and control of  the 2-wheeled inverted 
pendulum position, inclination, speed and open 
for further exploration on heading orientation. A 
Newtonian approach is used to derive the 
equations[5]. The state space equation of the 
system is in the following form: 
   
  ),()()()( tttt XfBXAXX ++=&

(1.1)  
where A and B are constant matrices and f (X ,t) 
is the uncertainty matrix. The uncertainty matrix 
contains the components of the chassis and both 
wheels disturbance of the system. The nonlinear 
model then has been converted to linear model 
using two assumptions which is clearly state in 
next section of controller design. Simulation 
result of pole placement controller versus 
PISMC controller is shown. Result for both 
controllers is discussed. 
 
2.0  Dynamic Model 
 

Modeling is the process of identifying the 
principal physical dynamic effects to be 
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considered in analyzing a system, writing the 
differential and algebraic equations from the 
conservative laws and property laws of the 
relevant discipline, and reducing the equations to 
a convenient differential equation model [10].  In 
order to develop the control system, 
mathematical model is established to predict the 
behavior before applied into real system.  
Actually, the dynamics refer to a situation, which 
is varying with time [10]. The dynamic 
performance of a balancing robot depends on the 
efficiency of the control algorithms and the 
dynamic model of the system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Free Body Diagram of chassis and   
               wheel 
 

For heading control equation: 
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Refer to Figure 2.7. Using the Newton law: 
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Substitute (2.3) into (2.4) 
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The non-linear state space form is given by: 
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Which is: )()()( xfuxBxxAx ++=&  

Where: 
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3. 0 Controller Design 

The theoretical dynamic model is applied to 
govern the entire system to construct the control 
system. The dynamic model in equation (2.6) is a 
nonlinear model. It should be linearized in the 
way to design a linear controller. At zero of tilt 
angle, the robot system has its quasi-equilibrium 
state. So in this case the linearized model is 
assumed that the variation of the tilt angle is 
small enough to neglected. Then we have this 
linearized model in state space form. Parameter 
being used is Ip=0.0041kgm2, Iw=0.000039 
kgm2, Ipdel=0.00018 kgm2, Mp=1.13kg, 
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Mw=0.03kg, l=0.07m, R=3ohm, r=0.051m, 
D=0.2m,km=0.006123,ke=0.006087,g=9.81m/s2. 
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Where: 

After conducting the linearization and the 
test of controllability and observability, the 
overall control scheme is develop. As shown in 
figure 2, the tilt sensor, gyroscope and digital 
encoder measured six variables. All variables is 
feedback to the controller. The controller 
computes the state variables and produces the 
control input to stabilize and navigate the robot 
by multiplying the feedback gains and the value 
of the feedback variables subtract the reference 
values. The computed voltage is then decoupled 
and modified to the actual voltage to be applied 
to the right and left drive wheels[6]. 

 
 
 
3.1 Pole-placement controller 
 

The philosophy of design in this approach is 
to select the poles of the closed loop system in 
such a manner that the specifications for steady 
state accuracy as well as good transient response 
are satisfied[7]. A compensator is then designed 
that forces the closed-loop system to have this 
transfer function, figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The closed loop transfer function is design to 
make the damping ratio of the dominant pole 
equal to 1 and the settling time less than 2 
second. Also the steady state error to input 
reference is zero. 

The desired pole is then calculated base on 
specification given above,P=[-1 -9 -50 -80 -100 -
150]. By using matlab tools, the pole has been 
placed to get the feedback gain matrice, K. Value 
of matrice K is using with simulink diagram as 
tuning parameter in simulation work. The result 
is shown in figure 4, figure 5 and figure 6 
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Figure 2: WIP Control chart 
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Figure 3: Compensators for pole placement 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
3.2 PISMC Controller Design 0.1

 
The typical structure of a sliding mode 

controller (SMC) is composed of a nominal part 
and additional terms to deal with model 
uncertainty. The way SMC deals with 
uncertainty is to drive the plants state trajectory 
onto a sliding surface and maintain the error 
trajectory on this surface for all subsequent 
times. The advantages of SMC is that the 
controlled system becomes insensitive to system 
disturbances.  For the nonlinear model in 
equation (2.6), by using deterministic method the 
nominal values of matrices A and B is 
calculated. Let the dynamic model of the system 
take the following state space form: 
 
 
Note that is stick to original form 
represent a nonlinear function describing the 
deviation from linearity in term of disturbances 
and un-modeled  dynamics. 

)(xf

The sliding surface is defined such that the 
state tracking error converges to zero with input 
reference. Conventional sliding mode approach 
defines the sliding surface as [ ] )()( tCxtx =σ , 
where C is a vector of known coefficients to be 
designed base on the linear model of the system. 
The coefficients in the vector C completely 
determine the sliding surface. Proportional 
integral (PI) sliding surface has been proposed 
in[8],[9],[10],[11], to improve the tracking 
performance and disturbance rejection properties 
of conventional sliding mode approach. The PI 
sliding surface is defines as follows: 

[ ] ( ) ττσ dxCBKCAtCxtx
t

)()()(
0
∫ −−=  

Where, and are constant 
matrices. The matrix K satisfies 

mxnC ℜ∈ mxnK ℜ∈

0)( <+ BKAλ  and C is chosen so that CB is 
non singular. The control objective now turns to 
find a control law to drive [ )(tx ]σ  towards zero 
based on the state space model in equation (3.1). 
By defining a Lyapunov function: 

( ) [ ]2
2
1 σσ =V  

It can be guaranteed that the sliding surface 
[ ] 0)( =txσ  is reached in finite time by 
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choosing equation (3.4) to ensure that 
. 0≤= σσ &&V

)sgn(2 σησ −=&  
Where, η is tunable parameter. Taking the 
derivative of PI sliding surface in equation (3.2), 
the following equation is obtained. 
 
 
By substituting equation (3.1) and (3.4) into (3.6) 
and with some mathematical manipulations in 
term u, equivalent control equation (3.7) is 
obtained. 
 
 
 

Then by using same poles with the pole-
placement control method, to maintain the 
desired specifications, the value of K is obtain 
easily using matlab. And the tunable parameter 
η=100 is used. Finally the parameter of matrices 
C=[7899 5400 20 200 77 500;81 1 600 91 150 
13] is tune by heuristic to get the superior 
performances. The result of simulation is shown 
in Figure 7, Figure 8 and Figure 9. 
 
3.2.1 Stability Analysis. 

 
The lyapunov’s method of stability analysis 

is in principle the most general method for 
determination of stability for nonlinear or time 
varying system. This concept is introduced by 
Russian mathematician A.M Lyapunov.  

This section will determine the stability for 
the dynamics of the system during sliding mode. 

( ) ( )txMtx =&  :where: M = A+BK   (3.8) 
The system of equation 3.8 is said to be stable if 
every eigenvalue of M has a negative real part. 
This can be shown if and only if for any given 
positive definite symmetric matrix Q, the 
Lyapunov equation: 

QPMPM T −=+   (3.9) 
has a unique symmetric solution P and P is 
positive definite. Let the Lyapunov function 
candidate for the system is chosen as 

( ) ( ) ( )tPxtxtV T=   (3.10) 
where x(t) represents the solution of equation 3.8 
and P is the solution of the matrix Lyapunov 
equation such as equation 3.9. Differentiating 
equation 3.10 with respect to time, t gives 
( ) ( ) ( ) ( ) ( )txPtxtPxtxtV T &&& +=  

        ( )[ ] ( ) ( ) ( )[ ]tMxPtxtPxtMx TT +=  

        ( ) ( ) ( ) (tPMxtxtPxMtx TTT + )=  

        ( ) [ ] ( )txPMPMtx TT +=  
(3.4) 

        ( ) ( )tQxtx T−=     
Since the derivative of the Lyapunov function, 
V(t) is negative, the system is said to be 
absolutely stable during sliding mode. 
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4.0 Discussion 
 

The upright balancing is the most 
fundamental control for two-wheeled inverted 
pendulum robot because no other control is 
possible without stable upright balancing. 
Maintaining the robot’s upright balancing is 
similar to controlling a common inverted 
pendulum. However, the structure of the two-
wheeled inverted pendulum robot is not identical 
to that of the widely known inverted pendulum.  

For instance, in a typical inverted pendulum, 
the inverted rod or body is connected to the base 
with a bearing that allows free rotational between 
the base and upper pendulum however there is 
no bearing between the base and the upper body 
of the two wheeled inverted pendulum robot. 
Nonetheless both cases of the two-wheeled 
inverted pendulum robot more or less similar 
because, when no external force or torque is 
applied, the wheel turns around and the axle and 
the upper body falls on the floor. When the 
upright balancing is occur, this operation is 
consider for more stable operation. The robot 
should stay in the same position. The upright 
balancing enables the robot to keep its original 
position without losing its balance. In the initial 
condition, the robot was tilted at 30° but the 
angular velocity of the tilt angle was zero. In this 
paper the result of speed of robot is not shown.  

As can be seen in figure 3 to figure 8, the tilt 
angle of the mass center of the robot cross the 
horizontal axis were within 5 second for pole-
placement controller and about 2 second for 
PISMC controller. However more than 8 second 
lapsed for position of the center of the robot to 
return to its original position. It happen for both 
controller. But PISMC improve the overshoot 
magnitude less then 0.12 rad if compared to 
pole-placement which has about 0.3 rad. 
Although there is a slight movement (micron 
radian) of the position in PISMC controller to 
make the tilted body return to zero angle, the 
result are satisfactory and upright balancing was 
successful.  
 
5.0 Conclusion 

In this paper a two-wheeled inverted 
pendulum type robot is discussed. It has the 
advantage of mobility from without caster and an 
innate clumsy motion for balancing. To analyze 
this robot mechanism, Newtonian method of 3-
DOF modeling is used to conduct an exact type 
of dynamic modeling. The simulation result is 
successfully shown that PISMC has a good 
response to achieve the desired characteristic 

compare to pole-placement. The 3-DOF 
dynamical modeling, along with simulation 
analysis on the two-wheeled inverted pendulum 
robot should expedite the introduction of this 
kind of robot in daily life. 
 
References 
[1] Salerno, A. and Angeles, J., “Nonlinear 

Controllability of Quasiholonomic Mobile 
Robot”. Proc. IEEE ICRA, Taiwan, 2003. 

[2] Salerno, A. and Angeles, J.,”The control of 
semi-autonomous two-wheeled robot 
undergoing large payload variations”. Proc. 
IEEE ICRA, New Orleans, April 2004, pp. 
1740-1745. 

[3] Ha, Y.S. and Yuta, S.,”Trajectory tracking 
control for navigation of the inverse 
pendulum type self-contained mobile robot”, 
Robotics and autonomous systems, 17, 
pp.65-80, 1996. 

[4] Baloh, M. and Parent, M.,”Modeling and 
Model Verification of an intelligent self-
balancing two-wheeled vehicle for an 
autonomous urban transportation system”. 
Conf. Comp. Intelligence, Robotic and 
Autonomous systems, Singapore, Dec, 15, 
2003. 

[5] Grasser, F., D’Arrigo, A., Comlombi, S., 
and Rufer, A.,”Joe: A mobile inverted 
pendulum”, IEEE Trans. Electronics, vol. 
49, no 1, pp. 107, no. 114, 2002. 

[6] Kim, Y.H., Kim, S.H., and Kwak, Y.K. 
”Dynamic Analysis of a Nonholonomic 
Two-wheeled Inverted Pendulum Robot”, 
Proc. of the Eighth Int. Symp. on Artificial 
Life and Robotics(AROB8th, '03), P.415-
418, Beppu, Oita, Japan, 24-26 January, 
2003. 

[7] Nise, N.S.,”Control System Engineering, 3rd 
ed.”, John Wiley and Son, US, 2000. 

[8] Nawawi, S.W., Osman, J.H.S, Ahmad, 
M.N.,”A PI Sliding Mode Tracking 
Controller with Application to a 3-DOF 
Direct drive Robot Manipulator”, 
TENCON2004, Vol 4, pp455-458, 2004, 
Chengmai Thailand. 

[9] Sam, M.Y., Osman, J.H.S., Ghani, R.A., 
”Proportional integral sliding mode control 
of a quarter car active suspension”, 
TENCON02, Vol. 3, Oct 2002, pp 1630 – 
1633, Beijing. 

[10] Kane, T.R. and Levinson, D.A.,”Dynamics, 
Theory and Applications”, McGraw-Hill, 
1985. 


