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Abstract  
In general, block ciphers consist of one top-level 
structural model into which the round function F is 
plugged into.  The study focuses on Extended-Feistel-
Network (EFN) that is a generalization of a Feistel 
Network (FN).  This structure is employed in several 
ciphers that were developed for Advanced Encryption 
Standard such as CAST-256, MARS  and RC6.  The 
problem with EFN is that it requires many rounds 
when the number of sub-blocks used in EFN is large.  
This paper proposed a new structural model that can 
overcome this problem by incorporating EFN with a 
linear transformation based on Maximum Distance 
Separable (MDS) codes.  The diffusion analysis shows 
that EFN-MDS requires at most half the number of 
rounds to achieve completeness property as compared 
to EFN structure.  Therefore the proposed structure is 
suitable for designing ciphers with scalable block sizes 
and ciphers with large block sizes. 
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1. Introduction  
A Feistel Network (FN) is a general method of 
transforming the input block in a cipher through a 
repeated application of keyed, non-linear F-functions 
into a permutation [1][2].  It was invented by Horst 
Feistel [3] and was popularized by Data Encryption 
Standard (DES) [4].  Since then it has been used in 
many block cipher designs such as FEAL [5] and 
Blowfish [6].  An FN structure has been extensively 
analyzed by the cryptologic community for more than 
20 years and appears to be free of basic structural 
weaknesses [7]. A direct extension of FN splits the 
input block into n > 2 sub-blocks [2].  This structure is 
known as Extended Feistel Network [EFN].  EFN 
consists of a series of rounds whereby at least one sub-
block is subjected to an F-function.  The F-function 
plays a key role in the diffusion process due to its 

completeness property [2].  A completeness property 
is an important cryptographic criterion whereby all 
output bits of a cipher are dependent on all input bits 
and vice-versa.  This property was defined by Kam 
and Davida [8].  EFN is used in several Advanced 
Encryption Standard (AES) candidates such as CAST-
256 [9], MARS [10] and RC6 [11].  
 

In EFN structure, the rate of diffusion slows down 
as the number of sub-blocks increases.  This means as 
the number of sub-blocks increases, the threshold 
number of rounds required to achieve completeness 
also increases.  The increase is almost double the 
number of sub-blocks for EFN Type I model and one 
more than the number of sub-blocks for EFN Type II 
and Type III models.  This analysis was shown by 
Subariah and Aizaini [12].  In this paper we proposed 
a top level cipher structure that exploits EFN structure 
and yet improves its diffusion rate.  The structure 
incorporates EFN with a linear transformation that is 
based on Maximum Distance Separable codes (MDS 
codes).  MDS codes have proved to exhibit optimal 
diffusion property as shown by SHARK [13], AES 
[14] and Twofish [15].  Therefore we call our 
proposed structure EFN-MDS.  

 
This paper is organized as follows.  In section 2, a 

related work is reviewed and some background 
definitions of EFN and MDS are given.  The main 
contribution of this paper lies in section 3 and 4.  
Section 3 presented our proposed top level cipher 
structure for EFN-MDS while section 4 analyses the 
diffusion effect of our proposed structure.  Finally a 
conclusion is made in section 5. 
 
2. Background and Related Work 
In EFN, a round is a transformation that combines the 
sub-blocks of the plaintext through non-linear, key-
dependent F-functions followed by a permutation of 
the sub-blocks.  The permutation of the sub-blocks 
together with the F-functions play an important role in 
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the diffusion process in block ciphers [16].  The 
diffusion process refers to the effect of spreading the 
influence of an input bit over as much of the output 
bits as possible, thereby hiding features of the plaintext 
[17].  A cipher is called complete if each output bit 
depends on all of its input bits [18][2].  A diffusion 
analysis on EFN used in several AES candidates was 
discussed in [2]. 
 

MDS codes are used in several ciphers due to its 
property that exhibits optimal diffusion.  It is used in 
AES which has an SPN structure [14].  Some 
examples of ciphers with EFN structure that used 
MDS are Camellia [19] and Twofish [15].  Their 
approach is to use MDS matrix within the F-function 
that is after the S-boxes.  Our approach is that MDS 
matrix is used to mix the bits from different sub-blocks 
after the F-function operation. 

 

2.1 Extended Fiestel Network 
In a conventional FN, the plaintext block is divided 
evenly into two sub-blocks.  The round function F 
operates on the right sub-block and then combined 
with the left sub-block via bitwise exclusive or (XOR).  
The two sub-blocks are then swapped and become the 
input to the next round.  However, an EFN splits the 
input block into n > 2 sub-blocks [2].  These sub-
blocks are then mixed through repeated application of 
keyed, non-linear F-functions in order to generate a 
permutation of the input block [1].   The swapping of 
sub-blocks can be viewed as a circular shift.  There are 
various types of transformations in EFN.  This paper 
focuses on three types of EFN, namely, EFN Type-I, 
EFN Type-II and EFN Type-III. 

 
EFN Type-I employs only one F-function in its 

design.  The output cipher-text for each round can be 
described as follows: 
 
C1, C2, …, Cn-1, Cn =  

    Pn, P1, P2, …, Pn-1 ⊕ F(Pm).                   (1)                                                         
 

where Pi is the ith sub-block.  EFN Type-II uses one 
F-function for every two consecutive sub-blocks.  
Similarly, this type of transformation can be defined 
by: 
 
C1, C2, …, Cn-1, Cn =  Pn , P1 ⊕ F(P2), P2,  

P3 ⊕ F(P4), …, Pn-1 ⊕ F(Pn).         (2)                      
 
Finally EFN Type-III has one F-function for every 
sub-block and is defined as follows: 

 

C1, C2, …, Cn-1, Cn = P1 ⊕ F(P2), P2 ⊕ F(P3), …, Pn-1 
⊕ F(Pn), P1.            (3) 

 
The structures for the three EFN transformations 

are depicted in Figure 1.  EFN is used to extend the 
block size of a cipher.  However if the block size is 
very large, the number of rounds needed to reach 
completeness is also large. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 1:  EFN transformation structure 
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2.2 Maximum Distance Separable Matrix 
An MDS code over a field is a linear mapping from m 
field elements to n field elements, with a property that 
the minimum Hamming distance between any two 
distinct vectors is at least n+1 [15].  The Hamming 
distance between two vectors is equal to the Hamming 
weight of the difference of the two vectors with 
Hamming weight is defined as the number of nonzero 
components of a vector.  An MDS code can be 
represented by an MDS matrix, M consisting of m × n 
elements.  By using matrix M, the relation between 
output bits, C and input bits, P can be described as 
follows: 
 
                                                                    (4) MPC =
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In our proposed cipher structure, Pi and Ci refer to 

an input sub-block and output sub-block respectively.  
A well known MDS code can be obtained from Reed-
Solomon error-correcting code.  A necessary and 
sufficient condition for a matrix M to be MDS is that 
every square sub-matrix of M is non-singular [4]. 
 
3. Proposed Top-Level Cipher Structure 
The aim of our proposed cipher structure is to improve 
the diffusion of EFN structure.  The EFN structure is 
enhanced by adding a linear transformation after the 
sub-blocks are rotated.  The purpose is to mix the bits 
from one sub-block with another sub-block.  Since 
MDS matrix is known to exhibit optimal diffusion 
[20], we proposed that a linear transformation is based 
on the MDS matrix. 

In our proposed structure, the linear 
transformation based on MDS matrix combines every 
two neighbouring sub-blocks.  This ensures that the 
input bits from a sub-block are mixed with at least one 
other sub-block after the first round.  In EFN structure 
at least one sub-block is left unmixed after the first 
round.  Two sub-blocks combination allows only one 
MDS matrix needs to be defined even though the 
cipher block size is scalable, hence the cipher is code 
efficient.  Since MDS operates on two sub-blocks, the 
sub-block rotation is still needed to permute the sub-
blocks.  Without the rotation, MDS will operate on the 
same sub-blocks in every round. 

The structures for the EFN-MDS transformations 
are depicted in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 2:  EFN-MDS Structure 
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4. Diffusion Analysis of EFN-MDS 
Structure 

Diffusion is a spread of the influence of input bits to 
output bits [17].  An important cryptographic criterion 
of a cipher with regard to diffusion is completeness 
property whereby all output bits of a cipher are 
dependent on all input bits and vice versa.  In this 
section we will discuss the analysis on the 
completeness property of EFN-MDS Type I, EFN-
MDS Type II and EFN-MDS Type III structure 
models.  In this analysis, it is assumed that the round 
function, F, is complete. 
 
4.1 Methodology 

In this work, we employ the diffusion analysis used 
in [21] whereby the output sub-block for each round is 
determined.  The sub-block is represented by Pi, for 
example, a cipher with 4 sub-blocks is represented by 
P1, P2, P3, and P4.  For the output sub-block for each 
round, the letter in front the bracket represents the 
block affected by the round function or the MDS 
transformation and the bracketed letters represent the 
blocks which influence the affected block (i.e. the 
blocks which influence input bits).  For an illustration 
of the methodology used for the diffusion analysis, a 
well known cipher that is DES is used.  The 
dependencies for DES at the output of each round are 
shown in Table 1.  The table indicates that in DES, 
after one round, the bits corresponding to the plaintext 
sub-block P1 are now affected by the bits of plaintext 
sub-block P2.  After round two, the sub-block P2 is 
influenced by all the bits of all sub-blocks.  Then after 
the third round, a complete dependency of the output 
bits on the input bits has been achieved since both sub-
blocks are influenced by all bits of the plaintext.  
Therefore, we can say that DES achieves complete 
dependency after 3 rounds. 
 

Table 1:  Dependencies for DES 
Dependencies Round 

P1 P2
1 P2 P1(P2) 
2 P1(P2) P2(P1,P2) 
3 P2(P1,P2) P1(P1,P2) 

 

4.2 Results and Discussion 
In this work, we analyzed diffusion rates for 2, 4, 6, 

8 and 10 sub-blocks for all types of EFN-MDS 
models.  Table 2 illustrates the comparison of the 
threshold number of rounds needed to achieve 
complete dependency for these three models.  The 

analyses show that all types of EFN-MDS require the 
same number of rounds for similar number of sub-
blocks that is all types of models achieve complete 
dependency after 2, 3, 3, 4 and 5 numbers of rounds 
for 2, 4, 6, 8 and 10 sub-blocks respectively.  From 
these analyses, we can conclude that for n sub-blocks, 
all types of EFN-MDS require only n/2 number of 
rounds for n > 4 sub-blocks to achieve completeness.  
This means that EFN-MDS only requires about half 
the number of rounds required by EFN Type II and 
Type III, and need about a quarter number of rounds 
required by EFN Type I.  The summary of threshold 
number of rounds needed to achieve completeness for 
EFN-MDS is compared with EFN structure in Table 3 
and is illustrated further for clarity using a graph in 
Figure 3. 

 

Table 2:  Diffusion Analysis of EFN-MDS Models 
Threshold Number of Rounds 

To Achieve Completeness Number of 
Sub-blocks EFN-

MDS 
Type I 

EFN-
MDS 

Type II 

EFN-
MDS 

Type III 
2 2 2 2 
4 3 3 3 
6 3 3 3 
8 4 4 4 
10 5 5 5 

 
Table 3:  Comparison of Diffusion Analysis for EFN 

and EFN-MDS Structures 

EFN Type 

Threshold No. 
of Rounds to 

Achieve 
Completeness  

EFN-Type I 2n – 1 
EFN-Type II n + 1 
EFN-Type III n + 1 
All types of 
EFN-MDS  n/2 for n > 4 
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5. Conclusion 
In this paper we proposed a top level structure for a 
block cipher that we called EFN-MDS and analysed its 
completeness property.  From our analyses, it was 
found that the structure only requires at most half the 
number of rounds required by EFN structures.  Due to 
this property, therefore the structure is suitable for 
large block size cipher as well as ciphers that support 
scalable block sizes. 
 

It is important to note that completeness property 
is only a necessary condition for a block cipher in 
order to be secure, but it is not a sufficient condition.  
Therefore further work is to analyse the immunity of 
the structure against linear and differential 
cryptanalysis.  Another open problem is how to 
construct a suitable MDS matrix that can ensure a 
cipher can resist cryptanalytic attack. 
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