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ABSTRACT

An integral equation method based on the Kerzman-Stein and the

Neumann kernels for conformal mapping of doubly connected regions onto an

annulus is presented. The theoretical development is based on the boundary

integral equations for conformal mapping of doubly connected regions derived

by Murid and Razali (1999). However, the integral equations are not in the

form of Fredholm integral equation and no numerical experiments are reported.

If some information on the zero and singularity of the mapping function is

known, then the integral equations can be reduced to the numerically tractable

Fredholm integral equations involving the unknown inner radius. For numerical

experiments, discretizing the integral equations lead to a system of non-linear

equations. The system obtained is solved simultaneously using Newton’s iterative

method. Further modification of the integral equations of Murid and Razali

(1999) has lead to an efficient and numerically tractable integral equations which

involve the unknown inner radius. These integral equations are feasible for all

doubly connected regions with smooth boundaries regardless of the information

on the zeroes and singularities of the mapping functions. Discretizing the integral

equations lead to an over determined system of non-linear equations which is

solved using an optimization technique. Numerical implementations on some

test regions are also presented.
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ABSTRAK

Satu kaedah persamaan kamiran berdasarkan inti Kerzman-Stein dan

Neumann untuk pemetaan mensebentuk bagi rantau berkait ganda dua keseluruh

anulus dipersembahkan. Pembangunan teori berdasarkan persamaan kamiran

sempadan bagi pemetaan konformal rantau berkait ganda dua yang dibangunkan

oleh Murid and Razali (1999). Bagaimanapun, persamaan kamiran itu bukan

merupakan persamaan kamiran Fredholm dan tiada kajian berangka dijalankan.

Jika maklumat bagi pensifar dan pensingular bagi fungsi pemetaan diketahui,

persamaan kamiran boleh diturunkan kepada persamaan kamiran Fredholm yang

mudah diuruskan secara berangka yang melibatkan jejari dalam. Mendiskretkan

persamaan kamiran menghasilkan sistem persamaan tak linear yang diselesaikan

secara serentak menggunakan kaedah lelaran Newton. Usaha pengubahsuaian

selanjutnya terhadap persamaan kamiran Murid and Razali (1999) membawa

kepada persamaan kamiran yang efisien dan mudah diuruskan secara berangka

yang melibatkan jejari dalam. Persamaan kamiran ini boleh dilaksanakan untuk

semua rantau berkait ganda dua dengan sempadan licin tanpa memerlukan

maklumat pensifar dan pensingular bagi fungsi pemetaan. Mendiskretkan

persamaan kamiran tersebut menghasilkan sistem persamaan tak linear terlebih

tentu yang diselesaikan menggunakan teknik pengoptimuman. Pelaksanaan

berangka terhadap beberapa rantau ujikaji juga dipersembahkan.
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CHAPTER 1

INTRODUCTION

1.1 Background and Rationale

Exact solutions of boundary value problems for simple regions like disks

and annuli can be determined with relative ease even when the boundary

conditions are complicated. However, for regions with complex structure, solving

a boundary value problem can be quite difficult, even for a simple problem such

as the Dirichlet problem. One approach to solve this difficult problem is to

conformally transform a given region onto a simpler region where they can be

solved easily. Thus, if a Dirichlet problem can be solved for a region Ω, it can be

also solved for all regions that are conformally equivalent to Ω. The success of this

method rest on the ability to determine the one-to-one analytic function which

performs the transformation. One of the most important classical theorem in

conformal mapping is the Riemann mapping theorem which claims the existence

and the uniqueness of conformal map that transforms any simply connected region

onto a unit disk. Thus, the ideal standard region for simply connected regions is
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a unit disk. The Dirichlet problem on the unit disk can be solved by the Poisson’s

integral formula. The conformal map which handle such transformation is known

as Riemann map, briefly R. One can extend the statement of the mapping

function for the regions in the Riemann mapping theorem to the boundary by

Osgood-Caratheódory theorem (Henrici, 1986, p. 346). Actually, a unit disk is

not the only best standard region. We can select whichever region that renders

the problem simplest: usually a washer, wedge, wall or upper-half plane (Saff and

Snider, 2003, p. 371).

As compared to the simply connected regions, conformal mapping of

multiply connected regions suffer from severe limitations. There is no exact

equivalent of the Riemann mapping theorem that hold in multiply connected

case. This implies that there is no guarantee that any two multiply connected

regions of the same connectivity are conformally equivalent to each other. If we

wish to map a doubly connected region Ω onto a standard region, such standard

region likewise must also be a doubly connected region. This follows from the

fact that conformal mapping preserves the order of connectivity. The circular

annulus, r1 < |z| < r2 naturally recommend itself as a standard region. The

outer radius of the annulus can be assumed to be equal to one without loss

of generality. The inner radius (conformal radius), µ is not known in advance

and have to be determined in the course of the numerical solution. Since µ is

uniquely determined by Ω, then it follows that there is no single annulus that

can be conformally equivalent to all doubly connected regions. Two annuli are

only conformally equivalent to each other if and only if the ratio of two radii,

M = r2/r1 are the same for both annulus. The quantity M = r2/r1 is known as

the modulus of an annulus. For some discussion on multiply connected regions,

see, e.g., Nehari (1952) and Kythe (1998).

Conformal mapping has been a familiar tool of science and engineering

for generation. The practical limitation has always been that only for certain
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special regions are exact conformal maps known. While for the rest, they have

to be computed numerically. Since 1960’s, computer’s speed have improved

drastically and a mapping problem can now be solved numerically in seconds. The

statement of Symm in 1966 that have been restated by Wegmann (2005): “When

a conformal mapping, purporting to simplify solution of applied mathematics,

can be obtained only by numerical means, it is often considered to have outlived

its usefulness” is no longer true. Many methods have been proposed in the

numerical approximation of the conformal mapping function such as expansion

methods, integral equation methods, iterative methods, osculation methods,

Cauchy-Riemann equation methods, charge simulation method, and methods

of small parameter. See, e.g., Papamichael et al. (1986), Wegmann (1986),

Kerzman and Trummer (1986), Henrici (1986), Razali et al. (1997) and Amano

and Okano (1999). Interest in numerical conformal mapping began to grow in

the late seventies and culminated in 1986 in Trefethen’s collection of 15 articles

(Trefethen, 1986).

The integral equation methods which deal with computing the boundary

correspondence function, θ(t) has been regarded with great favor for solving

numerical conformal mapping. This correspondence refer to a particular

parametric representation of the boundary, Γ. See, e.g., Kerzman and Trummer

(1984), Henrici (1986), Razali et al. (1997) and Aptekarev et al. (2004).

If a boundary correspondence function is known, the value of both the

mapping function f and the inverse mapping function f−1 may be calculated by

quadrature at arbitrary interior points of their regions of definition. By means

of the Cauchy’s integral formula, it can be shown that for simply connected case

(Henrici, 1986, p. 380)

w = R(z) =
1

2πi

∫ β

0

eiθ(t)z′(t)

z(t) − z
dt, z ∈ Ω, z(t) ∈ Γ
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and

z = R−1(w) =
1

2π

∫ β

0

z(t)θ′(t)

1 − e−iθ(t)w
dt, w ∈ U, z(t) ∈ Γ.

Hence the Riemann mapping functions R and R−1 are uniquely determined by the

function θ and θ′. This fact is greatly utilized in numerical conformal mapping.

Various classical and modern integral equation which represent the boundary

correspondence function θ(t) and θ′(t) have been derived such as Warschawski

and Gerschgorin integral equations. Typically, the boundary is discretized at

n point, so that the integral equation reduces to an algebraic system of linear

equations.

The boundary correspondence function θ(t) can also be generalized to

the doubly connected case that maps the region bounded by Γ0 and Γ1 to an

annulus A := µ < |w| < 1. This correspondence refer to a particular parametric

representation of the outer and inner boundaries, Γ = Γ0 ∪ Γ1. If the boundary

correspondence functions θ0(t) and θ1(t) are known, both f(z) and f−1(w) are

calculated easily for arbitrary z ∈ Ω and w ∈ A, for instance by Cauchy’s

integral formula. In the following formulas, the strong singularity of Cauchy’s

integral formula for |w| near 1 or µ can be weakened by the integration by parts

(Henrici,1986, p. 462):

f(z) =
1

2πi

∫ β0

0

eiθ0(t)
z′0(t)

z0(t)
dt− 1

2πi

∫ β0

0

eiθ0(t)Log

(
1 − z

z0(t)

)
θ′0(t) dt

+
1

2πi

∫ β0

0

eiθ1(t)Log

(
1 − z1(t)

z

)
θ′1(t) dt, z0(t) ∈ Γ0, z1(t) ∈ Γ1.

For the inverse mapping function, we have

z = f−1(w) =
1

2π

∫ β0

0

z0(t)θ
′
0(t) dt−

1

2πi

∫ β0

0

z′0(t)Log
(
1 − w

eiθ0(t)

)
dt

− 1

2πiµ

∫ β0

0

z′1(t)Log

(
1 − eiθ1(t)

w

)
dt, z0(t) ∈ Γ0, z1(t) ∈ Γ1.

One method for the construction of the Riemann mapping function which

can be used for a simply connected region is by means of reproducing kernel
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function. At present, two useful types of reproducing kernel function are the

Szegö kernel function (briefly S) and the Bergman kernel function (briefly B).

The relationship between the two kernels are given by (see, e.g., Razali et al.

(1997))

B(z, a) = 4πS(z, a)2. (1.1)

For solving the conformal mapping problem, it is sufficient to compute the Szegö

kernel or the Bergman kernel functions due to the fact that there are classical

relations between these two kernels and the Riemann mapping function which

are given by the following two equations:

R(z) =
1

i
T (z)

S(z, a)2

|S(z, a)|2 , z ∈ Γ,

R(z) =
1

i
T (z)

B(z, a)

|B(z, a)|
, z ∈ Γ.

An integral equation of the second kind that expressed the Szegö kernel

as the solution is first introduced by Kerzman and Trummer (1986) using

operator-theoretic approach. Henrici (1986) gave a markedly different derivation

of the Kerzman-Stein-Trummer integral equation based on a function-theoretic

approach. The discovery of the Kerzman-Stein-Trummer integral equation,

briefly KST integral equation, for computing the Szegö kernel later leads to the

formulation of an integral equation for the Bergman kernel as given by Razali et al.

(1997). Both integral equations can be used effectively for numerical conformal

mapping of simply connected regions.

By using a boundary relationship satisfied by a function analytic in a

doubly connected region, Murid and Razali (1999) extended the construction

to a doubly connected region and obtained a boundary integral equation for

conformal mapping of doubly connected regions. Special realization of this

boundary integral equation are the integral equations for conformal mapping
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of doubly connected regions via the Kerzman-Stein and the Neumann kernels.

However, the integral equations are not in the form of Fredholm integral equations

and no numerical experiments are reported. In this research, we shall analyse

these integral equations and figure out ways to overcome their drawback.

1.2 Problem Statement

Our research problem is to formulate new integral equations for conformal

mapping of doubly connected regions with smooth boundaries via the Kerzman-

Stein and the Neumann kernels which are feasible for numerical purposes.

1.3 Research Objectives

The objectives of this research are:

1. To formulate new, numerically tractable integral equations for conformal

mapping of doubly connected regions via the Kerzman-Stein and the

Neumann kernels.

2. To use the integral equations to solve numerically the problem of conformal

mapping of doubly connected regions onto an annulus.
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1.4 Scope of the Study

The research will focus on the theoretical and numerical computation of

the doubly connected regions onto an annulus. The theoretical development will

be based on the integral equations for conformal mapping of doubly connected

regions via the Kerzman-Stein and the Neumann kernels derived by Murid and

Razali (1999). The drawbacks of the integral equations are that they are not

in the form of Fredholm integral equations and no numerical experiments are

reported in that paper. The aim of this research is to obtain new, numerically

tractable integral equations for conformal mapping of doubly connected regions

via the Kerzman-Stein and the Neumann kernels.

1.5 Outline of Thesis

The thesis is organized into six chapters. The introductory Chapter 1

details some discussion on the background and rationale of research, description to

the problem, objectives of research, scope of the study and chapter organization.

Chapter 2 gives an overview of methods for conformal mapping, in

particular of doubly connected regions. We discuss some theories of the Riemann

mapping function as well as the conformal mapping of multiply connected regions.

We also present some exact conformal mapping of doubly connected regions for

certain special regions like frame of limacon, elliptic frame, frame of Cassini’s

oval and circular frame. Some numerical methods that have been proposed in the

literature for the numerical evaluation for conformal mapping of doubly connected

regions are also presented in the last section of Chapter 2. The boundary integral

equation for conformal mapping of doubly connected regions derived by Murid

and Razali (1999) is also presented.
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In Chapter 3, we introduce the integral equations for conformal mapping

of doubly connected regions via the Kerzman-Stein and the Neumann kernel

that are the special realizations of the boundary integral equation derived by

Murid and Razali (1999). The drawbacks of these integral equations are that

they contained the unknown inner radius, µ and not in the form of numerically

tractable Fredholm integral equations. In this chapter, we show that if some

information on the zeroes and singularities of the mapping function are known,

then the integral equations via the Kerzman-Stein and the Neumann kernel can

be reduced to the numerically tractable Fredholm integral equations. Numerical

experiments on some test regions are also presented.

In Chapter 4, we show how the integral equation for conformal mapping

of doubly connected regions via the kerzman-Stein kernel studied in Chapter 3

can be further modified that totally avoid any prior knowledge on the zeroes and

singularities of a mapping function. Numerical experiments on some test regions

are also presented.

In Chapter 5, the approach in Chapter 4 is applied to develop an integral

equation for conformal mapping of doubly connected regions via the Neumann

kernel. Numerical experiments on some test regions are also reported.

In Chapter 6, we give some conclusions of this study and some suggestions

for further study.
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Szegö Kernel. Journal of Computational and Applied Mathematics. 14: 111-

123.

Kythe, P. K. (1998). Computational Conformal Mapping. New Orleans:

Birkhauser Boston.

Mayo, A. (1986). Rapid Method for the Conformal Mapping of Multiply

Connected Regions. Journal of Computational and Applied Mathematics.

14: 143—153.

Murid, A. H. M., Nashed, M. Z. and Razali, M. R. M. (1997). Numerical

Conformal Mapping via the Bergman Kernel. Journal of Computational and

Applied Mathematics. 82: 333—350.

Murid, A. H. M., Nashed M. Z. and M. R. M. Razali (1999). Some Integral

Equations Related to the Riemann Map, in Proceedings of the Third

CMFT Conference: Computational Methods and Function Theory ’97. N.

Papamichael, St. Ruscheweyh and E. B. Saff (Eds.). Singapore: World

Scientific. 405—419.

Murid, A. H. M. and Razali, M. R. M. (1999). An Integral Equation Method

for Conformal Mapping of Doubly Connected Regions. Matematika. 15(2):

79—93.

Murray, W. (1972). Numerical Methods for Unconstrained Optimization. London

and New York: Academic Press.

Nehari, Z. (1952). Conformal Mapping. New York: McGraw-Hill.



96

Papamichael, N., Warby, M. K., Hough, D.M. (1986). The Treatment of Corner

and Pole-Type Singularities in Numerical Conformal Mapping Technique.

Journal of Computational and Applied Mathematics. 14: 163—191.

Saff. E. B and Snider. A. D (2003). Fundamentals of Complex Analysis. New

Jersey: Pearson Education. Inc.

Symm, G. T. (1969). Conformal Mapping of Doubly Connected Domain. Numer.

Math., 13: 448—457.

Trefethen, L. N. (ed.) (1986). Numerical Conformal Mapping. Amsterdam:

North-Holland.

Wegmann, R. (1986). An Iterative Method for the Conformal Mapping of Doubly

Connected Regions. Journal of Computational and Applied Mathematics. 14:

79—98.

Wegmann, R. (2005). Methods for Numerical Conformal Mapping, in: R. Kühnau

(Ed.), Handbook of Complex Analysis: Geometric Function Theory, Vol. 2.

Elsevier: Amsterdam, pp. 351—477.

Wolfe, M. A. (1978). Numerical Methods for Unconstrained Optimization. New

York: Van Nostrand Reinhold Company.

Wolfram, S. (1991). Mathematica: A system of Doing Mathematics by Computer.

Redwood City: Addison-Wesley.

Woodford, C. (1992). Solving Linear and Non-Linear Equations. New York:

McGraw-Hill.

Zill, D.G. and Shanahan (2003). A First Course in Complex Analysis with

Applications. Sudbury: Jones & Bartlett Publishers.




