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ABSTRACT 

 

 

 

 

This thesis is concerned with the mathematical modeling and the position 
tracking control of hydraulic manipulators.  Hydraulically actuated manipulators are 
widely used in a number of applications including manufacturing and assembly since 
they provide high power to weight ratio and short response time.  To increase the 
performance of the manipulators, it is essential to control the system well.  However, 
in spite of their advantages, hydraulic manipulators are more complicated in nature 
due to the nonlinear characteristic of the mechanical linkage and the hydraulic 
actuator dynamics, parameter variations, payload uncertainties and strong couplings 
among various joints.  The control problem of this system consists of obtaining the 
physical dynamic model and specifying the corresponding control strategy so that it 
tracks a predefined desired trajectory as closely as possible at all times.  In this 
thesis, an integrated mathematical dynamic model of a hydraulically driven revolute 
robot manipulator in state variable form is presented.  The integrated model 
comprises of the dynamic model of the manipulator mechanical links as well as the 
actuators dynamics.  The formulation represents a more realistic dynamic model, 
thus provides a better and much more suitable model for the purpose of dynamic 
analysis and controller synthesis.  Proportional Integral Sliding Mode Control 
(PISMC) strategy is adopted to provide the position tracking control for the system.  
The technique takes the advantages of zero steady error due to the integral term and 
robustness offered by the Sliding Mode Control (SMC).  It is shown mathematically 
that the proposed controller does not only make the system insensitive to parameter 
variations, uncertainties and couplings; but also guarantees stability in the large 
based on Lyapunov theory.  The performance of the proposed approach is evaluated 
and compared with the existing Independent Joint Linear Control (IJC) technique 
through computer simulation.  A 3 DOF revolute robot is used in this study.  The 
results prove that the controller has successfully provided the necessary position 
tracking control for the hydraulic robot manipulator system.   
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ABSTRAK 

 

 

 

 

Tesis ini bertujuan untuk mengenengahkan model matematik dan teknik 
kawalan bagi robot berkuasa hidro.  Robot berkuasa hidro digunakan dengan meluas 
dalam pelbagai aplikasi termasuklah di sektor pembuatan dan pemasangan 
memandangkan sistem ini mampu membekalkan nisbah kuasa kepada berat yang 
tinggi dan tindak balas yang cepat. Pengawalan yang baik adalah amat penting bagi 
meningkatkan mutu pencapaian robot ini. Walaubagaimanapun, di sebalik kelebihan 
yang ditawarkan, sistem ini adalah lebih rumit disebabkan sifat sambungan 
mekanikal dan motornya yang tidak linear, parameter yang berubah-ubah, 
ketidaktentuan beban dan kesan perangkai. Masalah kawalan ini terdiri daripada 
usaha mendapatkan model dinamik fizikalnya dan menentukan strategi kawalan yang 
sewajarnya supaya robot ini menjejaki sebuah laluan/ trajektori yang dikehendaki. 
Dalam tesis ini, sebuah pemodelan matematik untuk lengan robot yang dipandu oleh 
kuasa hidro dibentangkan. Ia mengandungi model dinamik komponen mekanikal 
robot dan juga motor berkuasa hidro. Formulasi ini menghasilkan sebuah model yang 
lebih realistik, seterusnya memberikan model yang lebih baik dan sesuai untuk 
tujuan penganalisan dinamik dan sintesis kawalan. Strategi kawalan ragam gelincir 
berkadaran kamiran (PISMC) diadaptasi untuk membekalkan kawalan penjejakan 
posisi untuk sistem ini. Teknik tersebut memanfaatkan kelebihan keadaan mantap 
sifar yang disebabkan komponen kamiran dan ciri ketegapan yang ditawarkan oleh 
komponen kawalan ragam gelincir berkadaran. Adalah ditunjukkan melalui kaedah 
matematik bahawa pendekatan yang dicadangkan ini bukan sahaja mampu mengatasi 
ciri-ciri rumit yang terdapat dalam robot berkuasa hidro, bahkan stabil berdasarkan 
teori Lyapunov. Pencapaian kaedah ini dinilai dan dibandingkan dengan teknik 
kawalan penghubung berdikari linear (IJC) melalui simulasi komputer.  Sebuah robot 
yang mempunyai tiga darjah kebebasan digunakan dalam kajian ini.  Keputusan 
membuktikan bahawa, strategi kawalan ini berjaya dalam membekalkan kawalan 
laluan/ trajektori yang diperlukan untuk sistem lengan robot berkuasa hidro. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Robot Manipulator System 

 

 

Robot is an important element in today’s manufacturing and assembly 

industry.  It is capable of performing many different tasks and operations precisely 

without requiring common safety and comforts that human need.  In manufacturing, 

it can be used for many purposes since it can perform better than human and at lower 

costs.  For an instance, a welder robot can weld better than a human welder as it is 

able to move more uniformly and more consistently.  In addition, it does not require 

any protective clothing and many other necessities that human do.  Robot is also best 

suited to work in hazardous environments where human cannot perform the tasks 

such as in exploring the ocean bottom in which, it can stay underwater for a much 

longer period and able to go deeper and withstand higher pressure; furthermore, it 

also does not require oxygen (Niku, 2001). 

 

 

Robotic manipulator systems are driven by computers.  Their motions are 

controlled by a controller that is under the supervision of the computer.  The 

computer drives the robot to orient and position a tool or workpiece according to the 

positions and orientations required by a particular task (Niku, 2001).   
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The robotic system consists of several elements; the manipulator which is the 

main body of the robot, consisting of the links, joints and other mechanical structural 

elements of the robot, the end-effector which handles objects, the sensor that is used 

to collect information about the internal state of the robot or to communicate with the 

outside environment, the controller, the processor and the software which acts as the 

brain of the robot, and the actuator which functions as the muscle of the manipulators 

(Niku, 2001).  The common types of actuators used are the electric motors, the 

pneumatic cylinders, and the hydraulic cylinders.  Electric motors are the most 

commonly used robotic actuators; where as the pneumatic cylinders are used in 

robots that have ½ DOF (Niku, 2001).  On the other hand, hydraulic systems are very 

popular for large robots since they are capable of providing large torque and fast 

motion.  This study focuses on the hydraulically driven robot manipulators. 

 

 

 

 

1.2 Electrohydraulic Robot Manipulator 

 

 

Although electrically driven robots are simpler in the overall design, there are 

many industrial tasks where hydraulic actuators can be used advantageously.  

Machinery in construction, forming, mining, forestry industry, heavy load motion 

control and mobile equipment applications as well as large flight simulators take the 

advantage of the high power to weight ratio, the stiffness and short response time 

provided by the hydraulic drives.  For special applications such as very large robots 

and civil service robots, hydraulic actuator may also be an appropriate choice (Niku, 

2001). 

 

 

A hydraulic robot generally consists of hydraulic cylinders and rams which 

provide the forces or torques needed to move the joints and are controlled by the 

servo valves, a hydraulic pump which provides high-pressure fluid to the system, an 

electric motor which operates the hydraulic pump, a cooling system which rids the 

heat generated, a reservoir which keeps the fluid supply available to the system, a 
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servo valve that controls the amount and the rate of fluid to the cylinders; and is 

generally driven by a hydraulic servomotor, and sensors which are used to control 

the motion of the cylinders (Niku, 2001).  Figure 1.1 illustrates a schematic drawing 

of a typical hydraulic system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1:  Schematic of a Hydraulic System and its Components 

 

 

Figure 1.2 illustrates a hydraulic cylinder and a spool valve.  A servo valve is 

created when a servomotor is attached to the spool valve.  The servo valve and the 

cylinder together form a hydraulic servomotor.  Simple movement of the spool valve 

controls the motion of the actuator.  As the spool moves up or down, it opens the 

supply and return ports through which the fluid travels to the cylinder or returns to 

the reservoir.  The amount of the supply fluid and thus the displacement of the 

cylinder can be controlled by adjusting the size of these ports opening.  Similarly, the 

flow rate of the supply fluid and thus the velocity of the cylinder can be controlled by 

adjusting the rate of the ports opening (Niku, 2001). 

 

 

The command to the servomotor in controlling the spool valve is provided by 

the controller.  The controller calculates the distance and speed that a joint must 

Sensors Controller Source

Hydraulic 
Power 
Unit 

Return

Servo valve

Servomotor

Actuator / 
cylinder 
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move and sets the current or voltage to the servomotor, which in turn, controls the 

position and the rate of movement of the spool valve, which in turn, controls the flow 

of the fluid and its rate to the cylinder, which moves the joint (Niku, 2001).  A high 

control input voltage will produce large valve flow from the servo valve into the 

hydraulic motor.  This will eventually results in a fast motion of the motor.  The 

motor will in turn move the manipulator joint at high speed.  Sensors are used to 

provide feedback to the controller. 

 

 

 

 

 

 

 

         

 

 

 

 

Figure 1.2:  Schematic of a Spool Valve in Neutral Position 

 

 

Most of the industrial applications of robot manipulators such as spray 

painting, spot welding and pick and place operations use position control.  In such 

tasks, the manipulator is desired to follow a path (position and orientation) with 

timing restrictions.  The timed path is called trajectory of the of the manipulator’s 

end effector (Mendes et. al., 2002). 

 

 

However, precise position control of hydraulic robot is difficult both 

theoretically and practically.  In contrast to electric motor, in which the torque 

developed is proportional to electrical current or voltage, the torque developed by 

hydraulic actuators is proportional to the pressure difference or the flow rate towards 

the cylinder chamber which is in turn, determined by its spool position.  In other 

Return

Return

Supply 

Valve Spool 

Cylinder 
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words, the control voltage or current signal to valve of hydraulic actuator controls the 

speed of the actuator rather than its force or torque directly.  Furthermore, hydraulic 

system introduces additional nonlinearities to the control problem.  Therefore, 

hydraulic dynamics are more complex than electrical motor dynamics.  All of these 

factors make the modeling and control of such system a challenging task (Becker et. 

al., 2003).   

 

 

 As mentioned previously, the purpose of the manipulator control is to 

maintain the dynamic response of the manipulator in accordance with some pre-

specified trajectory and desired system performance.  The problem with present 

industrial position controllers is that its performance deteriorates when faster 

trajectories are demanded.  In general, the dynamic performance of the hydraulic 

manipulator directly depends on the efficiency of the control algorithms and the 

dynamic model of the manipulator.  The control problem consists of obtaining 

dynamic models of physical robot arm system and then specifying corresponding 

control laws or strategies so that the desired system response and performance can be 

achieved.   

 

 

 

 

1.3  Manipulator Linkage Dynamic Model 

 

 

In robotics system, dynamics is a study of the forces or torques required to 

cause the robot motion.  In order to drive the manipulator to follow a particular 

trajectory, it is important that the actuators are capable of exerting large enough 

forces and torques to move the link fast enough, therefore avoiding the robot from 

losing its positional accuracy.  In estimating the strength required by each actuator, it 

is necessary to determine the dynamic relationship that governs the motions of the 

robot.   
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In general, manipulator dynamic model can be derived from Newton-Euler 

formulation or Lagrange-Euler technique.  However, it is very difficult to use 

Newtonian mechanics since the robots are three-dimensional, multiple degree of 

freedom (DOF) mechanism with distributed masses.  Conversely, the derivation of 

the dynamic model of a manipulator based on Lagrange-Euler formulation is simple 

and systematic since it is based on energy term only.  Furthermore, the Lagrange-

Euler equations of motion provide explicit state equations for robot dynamics and 

can be utilized to analyze and design advanced joint-variable space control strategies 

(Niku, 2001). 

 

 

Based on Lagrange-Euler formulation, the dynamics equation of an N DOF 

robot manipulator in the absence of the actuator dynamics, friction and other 

disturbances can be described as (Osman, 1991):  

 

                      )T()),(()),(),(()()),(( ttGttDttM =++ ξθξθθθξθ &&&                        (1.1) 

 

where 

)),(( ξθ tM   : NN × inertia matrix 

 )),(),(( ξθθ ttD &  : 1×N  vector of coriolis and centrifugal forces 

)),(( ξθ tG   : 1×N  vector of gravitational forces 

)T(t                          : 1×N  vector of generalized driving forces/ torques 

applied by the actuators at the drive points on each 

link of the manipulator 

)(),(),( ttt θθθ &&&  : 1×N vector of generalized joint displacements, 

velocities and accelerations respectively 

ξ  : a vector (with appropriate dimension) of parameters 

of the mechanism such as payload 

 

 

The manipulator dynamic equation (1.1) describes the effect and importance 

of each term on the system dynamics in certain conditions.  In the absence of gravity, 
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such as in space, the gravity terms may be omitted, but the inertia terms are critical.  

In the case where the robot moves slowly, the centrifugal and coriolis force terms 

may be negligible.  For hydraulic manipulators, every term of the equation is 

significant in designing and controlling the robot to ensure satisfactory system 

performance. 

 

 

From equation (1.1), it can also be seen that the actuator torque needed to 

drive the robot manipulator depends not only on the instantaneous joint acceleration, 

but also the inertia, centrifugal, coriolis and gravitational forces.  The inertia, 

centrifugal, coriolis and gravitational forces, in turn, are functions of the dynamic 

parameters of the manipulator as well as the instantaneous position and velocity of 

the links and uncertain payload mass.  Therefore, it can be deduced that the dynamics 

model describing the manipulator system is strongly time varying, nonlinear and 

contains uncertainty.  It also suffers from of coupling effect, resulting from the 

dynamic interactions among the links of the manipulator arm.   

 

 

Majority of earlier work in the synthesis of control law for manipulators deal 

with electrically actuated manipulators.  In terms of hydraulic robots, comparatively 

less work has been done (Sirouspour and Salcudean, 2001).  Previous research has 

spanned both modeling and control of general hydraulic servo systems with no 

robotic manipulator dynamics considered in the model.  For example, Zhu and 

Piedbouf (2005) proposed Adaptive Control Technique to control hydraulic cylinders 

with the application to robot manipulators, but none of the mechanical linkage 

dynamics are incorporated in the modeling.  Chern and Wu (1991) provide a more 

closely behaviour of a real hydraulic motor representation in which more parameters 

of the actuator such as the motor inertia, damping coefficient and spring stiffness are 

taken into account.  However, instead of incorporating the manipulator dynamics in 

the proposed mathematical model, the design just assumed the load torque as a 

function dependent upon the shaft velocity, which is frequently found in industrial 

process.  The same situation can be found in Kim (2000), where the load torque is 

not formulated by using the mathematical representation of the robot manipulator, 

but rather estimated by utilizing the output signal of piston displacement.   
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However, the dynamics of the actuator alone is not sufficient to represent the 

hydraulic manipulator, since it does not include the arm dynamic forces such as 

inertia forces and gravity effects that the controller needs to compensate.  Tracking 

performance of the system may be improved by incorporating the robot dynamic 

model in the controller design since it is part of the hydraulic servo system.  This 

approach has been successfully shown in many electrical robots in the past 

(Honegger and Corke, 2001).   

 

 

There are actually some previous works that incorporates the manipulator 

dynamics in the modeling step but with limited number of hydraulic parameters 

being taken into consideration.  For example, in Habibi (1994) and Zhou (1995), 6 

DOF and 2 DOF hydraulic robot arm models are developed respectively.  The 

models incorporate manipulator dynamics, but the hydraulic motor nonlinear spring 

stiffness, viscous damping and inertia are not taken into account in the design.   

 

 

Therefore, in terms of modeling, this study presented a mathematical 

formulation of an integrated dynamic model for an N DOF hydraulically driven robot 

manipulator that integrated both the actuator dynamics and the mechanical arm 

dynamics, and at the same time considered the hydraulic motor nonlinear spring 

stiffness, viscous damping and inertia.  The proposed model is believed to provide a 

better and much more suitable mathematical representation for the hydraulic robot 

for the purpose of controller synthesis and analysis. A 3 DOF electrohydraulic 

robotic manipulator is used in the formulation as an example. 

 

 

 

 

1.4        Electrohydraulic Manipulator Control Strategies 

 

 

Control strategies for robotic control system are of great interest for both 

industrial and academic fields.  Various advanced and sophisticated methods have 
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been proposed by numerous researchers in providing the tracking control of robot 

manipulator such that it follows a prescribed trajectory as closely as possible and at 

the same time guarantees the system stability.    

 

 

Early investigations on hydraulically driven robot arm are based on a 

linearised model as can be found in Hoffman (1979) and Sepehri (1990).  Since 

many assumptions are made as to eliminate the nonlinearities present in the system, 

the proposed algorithm is impractical due to the fact that the plant is highly 

nonlinear.  Also in the approach, the coupled and time-varying dynamics of the 

mechanical part of the robot manipulator system are ignored, or assumed as 

disturbances.  However, when the links are moving simultaneously and at high 

speed, the coupling effects and the interaction of forces between the manipulator 

links may decrease the performance of the overall system and increase the tracking 

error (Osman, 1991).  The controller developed is also lack of g1obal stability proofs 

that are important from both theoretical and implementation points of view 

(Sirouspour and Salcudean, 2001).  The proofs are also missing in the decentralised 

control laws that are presented by Edge and DeAlmeida (1995).   

 

 

Zhou (1995) has carried out experimental evaluations on PID and Computed 

Torque Control (CTC) strategies for the hydraulic robot and has concluded that both 

methods give unsatisfactory performance.  The problem with PID controllers is that 

they are not adequate for the cases when the robot moves at high speed and in 

situations requiring a precise trajectory tracking.  On the other hand, the problem 

with CTC is that it can only be applied to robots allowing joint torque control.  

Furthermore, as the computed torque control is essentially based on exact robot arm 

dynamic model, the explicit use of an incorrect robot model will deteriorate the 

control performance.  He further developed the Kinematic Compensation Control 

incorporating a feedforward kinematic compensation and conventional regulatory 

control techniques.  The control input consists of two parts: a feedforward kinematics 

compensation and a conventional feedback control.  Although the system exhibits 

good experimental result, it still lack of mathematical stability proof. 
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Bu and Yao (2000) proposed a Lyapunov based Model-based Adaptive 

Control for controlling the hydraulic manipulator.  The design possesses 

mathematical stability proof but it needs persistent excitation and pressure feedback.  

A strategy based on Backstepping approach has been developed by Sirouspour 

(2001).  The design is said to be sensitive to sensor noise, therefore high-quality 

measurements are necessary.  One possibility to overcome this drawback is by 

introducing heuristic limitation of time derivatives in the control law.  This method 

reduces the influence of sensor noise in the simulations significantly, but leads to a 

slight reduction of the control performance (Becker et. al., 2003).    

 

 

Habibi (1994) developed Computed Torque Control and Sliding Mode 

Control technique with specific application to 6 DOF hydraulic manipulator model 

that he established earlier.  In contrast to the first control method, the latter approach 

gives satisfactory performance for that particular robot.  However, the controller is 

derived based conventional SMC algorithm; therefore the system has no insensitivity 

property during the reaching phase.   

 

 

The extended version of conventional SMC technique which is known as the 

Integral Sliding Mode Control (ISMC) or Proportional Integral Sliding Mode Control 

(PISMC) has emerged in the literature (Ahmad, 2003).  Similar to conventional 

SMC, it is suitable for complex systems and is insensitive to parameters variations 

and uncertainties.  However, it also overcomes the problem of reduced order 

dynamics.  Different from the conventional SMC design, the order of the motion 

equation in ISMC is equal to the order of the original system, rather than reduced by 

the number of dimension of the control input.  The method does not require the 

transformation of the original plant into the canonical form.  Moreover, by using this 

approach, the robustness of the system can be guaranteed throughout the entire 

response of the system starting from the initial time instance.  The method has been 

successfully applied in a variety of control systems (Ahmad, 2003).   
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The PISMC method has been successfully designed for electrically driven 

robot manipulator as presented in Ahmad (2003), Ibrahim (2004) and Karsa (2005).  

In Ahmad (2003) a three DOF revolute robot dynamics has been used in the 

simulations.  It is verified that the proposed control law is effective in providing the 

tracking control and efficient in compensating the nonlinear, coupled and time 

varying inertia, coriolis, centrifugal and gravitational forces of the mechanical 

manipulator linkage.  The stability proofs based on Lyapunov theory are also 

presented in this study.   

 

 

This project extends the control strategy proposed in controlling three DOF 

electrically driven robot manipulator of Ahmad (2003) in providing the trajectory 

tracking control of a hydraulically actuated robot manipulator.  The developed 

controller will not only consider the nonlinear property of both the hydraulic 

dynamics and the manipulator mechanical dynamics but also stable based on 

Lyapunov theory.  In evaluating the effectiveness of the control strategy, the 

controller will be applied to control a three DOF electrohydraulic robot manipulator.  

Rigorous simulations will be conducted to show that the proposed techniques is 

capable of successfully compensating the system’s nonlinearities, parameter 

variations, external uncertainties and coupled effect in providing the necessary 

position trajectory tracking control for the robotic system. 

 

 

 

 

1.5      Objective 

 

 

The objectives of this project are:   

 

i) To give a mathematical formulation in deriving the integrated model of an 

electrohydraulic robot manipulator in state space representation taking into 

consideration both the manipulator and actuator dynamics, 
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ii) To adopt a robust control strategy based on Proportional Integral Sliding 

Mode Control (PISMC) technique to control the position trajectory of the 

electrohydraulic manipulator so that it tracks the desired trajectory as closely 

as possible for all times in spite of parameter variation, uncertainties and 

nonlinearities present in the system, 

 

iii) To investigate the performance of the proposed approach compared to 

existing Independent Linear Joint Control Technique in controlling the 

eletrohydraulic robotic manipulator system through computer simulations. 

 

 

From the study performed, it will be shown that the proposed technique will 

efficiently force and control the hydraulic manipulator to follow the desired position 

trajectory for all times in spite of the nonlinearities and uncertainties present in the 

system.   

 

 

 

 

1.6 Scope of Project 

 

 

The scope of work for this project includes: 

 

i) Formulating of an integrated dynamic model for an N DOF hydraulic 

robot in state space representation and deriving a mathematical model 

for a 3 DOF revolute electrohydraulic robot manipulator in state space 

representation, which involves the: 

                              a)       Robot manipulator dynamics as described in Osman (1991). 

                  b)     Electrohydraulic actuator dynamics as described in Chern  

                             and Wu (1991).  

 

ii) Designing of the Proportional Integral Sliding Mode Controller 

(PISMC) as described in Ahmad (2003) and its application to the 
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plant as described in part (i) in controlling the system tracking 

trajectory. 

 

iii) Designing of the Independent Linear Joint Controller (IJC) which is 

used as a comparison in analyzing the performance of the controller in 

part (ii) 

 

iv) Simulation study conducted in SIMULINK, MATLAB 7.0 to 

investigate the effectiveness of the approach in part (ii)  in providing 

the necessary control for the system in part (i)  

 

 

 

 

1.7 Research Methodology 

 

 

The research work is undertaken in the following six developmental stages: 

 

i) Development of an integrated mathematical model of an N DOF revolute 

hydraulic robot manipulator.  The steps taken in this stage are: 

a) Conduct literature review on the existing robot manipulator 

mechanical linkage mathematical model 

b) Conduct literature review on the existing hydraulic actuator 

mathematical model 

c) Conduct literature review on the existing electrohydraulic robot 

manipulator mathematical model 

d) Integrate the robot manipulator mechanical linkage mathematical 

model found in Osman (1991) and hydraulic actuator mathematical 

representation presented by Chern and Wu (1991) based on the 

procedure outlined in Osman (1991) in state space representation 

e) Determine the complete mathematical model of a 3 DOF revolute 

electrohydraulic robot manipulator. 
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ii) Application of a robust controller based on PISMC technique to the robotic 

system.  The steps taken in this stage are: 

a) Conduct literature review on the existing control technique for robotic 

systems 

b) Conduct literature review on the existing robust control technique 

based on Proportional Integral Sliding Mode Control algorithm 

c) Implement PISMC technique cited from Ahmad (2003) to the 

hydraulically actuated robotic system.  The procedures performed in 

this stage are: 

• Decomposing the complete model into an uncertain model 

• Defining the sliding surface  

• Determination of the system dynamics during Sliding Mode 

• Application of the established final control law to the 

electrohydraulic robot. 

 

iii)  Perform various simulation of the proposed controller on MATLAB platform  

       with SIMULINK as its user interface.  The simulation performance of  

       the PISMC is compared to the IJC and analysed. 

 

 

     
 

1.8        Structure and Layout of Thesis 

 

 

This thesis is organized into five chapters.  Chapter 2 deals with the 

formulation of the mathematical modeling of the integrated N DOF electrohydraulic 

robot manipulator, in which, firstly a general dynamic model of a rigid manipulator 

link and the hydraulic actuator dynamics are described separately.  Then, based on 

these equations, an integrated model formulated in state space representation is 

presented. Finally, a complete integrated dynamic model for a three DOF revolute 

electrohydraulic robot is determined. 
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In Chapter 3, the controller design using proportional integral sliding mode 

control technique with specific application to the plant as described in Chapter 2 is 

presented.  A systematic approach and basic assumptions taken while establishing 

the control law are outlined in this chapter.    

 

 

Chapter 4 discusses the performance evaluation of the control system by 

means of computer simulation using MATLAB/ SIMULINK.  The simulation begins 

with a pre-specified desired trajectory for each of the manipulator joints.  In order to 

clearly analyze the performance of the proposed controller, Independent Joint Linear 

Control (IJC) technique is used as a mean of comparison.  Conclusion on the 

effectiveness of the approach in handling the parameter variations, nonlinearities, 

uncertainties and couplings present in the plant and thus providing the necessary 

tracking control for the system is also made and discussed based on the results 

obtained in this chapter.   

 

 

The thesis ends with Chapter 5, where the summary of the approach adopted 

while undertaking this project is described.  Recommendations for future work are 

also presented in this final chapter. 
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