DESIGN AND OPTIMIZATION OF THE SCAVENGING SYSTEM OF A MULTI-CYLINDER TWO-STROKE *SCOTCH-YOKE* ENGINE

NG TEE NENG

UNIVERSITI TEKNOLOGI MALAYSIA

DESIGN AND OPTIMIZATION OF THE SCAVENGING SYSTEM OF A MULTI-CYLINDER TWO-STROKE *SCOTCH-YOKE* ENGINE

NG TEE NENG

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

APRIL 2006

ABSTRACT

A two-stroke engine complete with a scavenging system, operating with external pumping mechanism is being developed. The engine comprises of two pair of combustion chambers and a pair of piston pumps that are integrated onto the *Scotch-Yoke* crank mechanism. The *Schnurle* type loop scavenging arrangement was selected for the scavenging arrangement for the engine port design. The pump was to be driven by the engine's pistons linkages. The significant advantages of this opposed piston-driven pump concept is the double action of air pumping at every 180° interval of crankshaft revolution. In addition, extensive work using Computational Fluid Dynamic code simulation tools were applied throughout the project to ensure that the scavenging port geometry is optimized. Also developed was a scavenging test rig specifically to verify the simulation results. The unfired tracer gas sampling method was developed for the scavenging measurement purposes. The experimental testing was carried out successfully with the use of instrumentations such as Dewetron High Speed Data Acquisition and crank encoder. Both the simulation results and experimental results showed good scavenging characteristic, where the scavenging efficiency is closed to the perfect mixing scavenging model. The development of the scavenging system will allow for the reduction of the pollutant emission, and the overcome short-circuiting problem of the two-stroke engine.

ABSTRAK

Rekabentuk enjin dua lejang telah dibangunakan dengan sistem hapus-sisa lengkap, di mana ia beroperasi dengan pengepaman udara dari luar. Rekabentuk enjin ini adalah berpandukan mekanisme Scotch-Yoke yang beroperasi dengan dua pasang kebuk pembakaran dan sepasang pemampat piston. Susunan sistem hapussisa jenis "Schnurle" telah dipilih untuk mereka pembukaan udara dalam enjin. Pam ini dipandu secara terus oleh penyambungan omboh yang bersalingan. Kelebihan mekanisme yang ketara ialah ia dapat menghasilkan dua kali kerja pengepaman pada setiap 180° putaran aci engkol. Tambahan lagi, kajian yang mendalam pada bahagian penukaran udara telah dijalankan dengan kod program computer Computational Fluid Dynamic untuk memastikan rekabentuk pembukaan udara dalam keadaan yang memuaskan. Sementara itu, rangka uji-kaji sistem hapus-sisa telah dibangunkan untuk mengesahkan nilai keputusan daripada simulasi komputer. Teknik pengambilan jenis gas dalam keadaan tanpa bakar, telah dijalankan dengan kelengkapan alat pengukuran seperti Dewetron High Speed Data Acquisition dan pengecod engkol. Kedua-dua keputusan daripada simulasi komputer dan ujikaji telah menunjukkan kecekapan hapus-sisa dalam keadaan yang baik, di mana nilainya adalah menghampiri model hapus-sisa yang sempurna. Pembangunan sistem hapussisa ini telah menjamin keberkesanannya dalam mengurangkan hasil kotoran daripadan pembakaran dalam enjin dan juga menyelesaikan masalah short-circuiting rekabentuk enjin jenis dua lejang.

TABLE OF CONTENT

CHAPTER	CON	TENT		PAGE
	ABSTRACT		V	
	ABS'	TRAK		vi
	TAB	LE OF	CONTENT	vii
	LIST	OF FI	GURES	xi
	LIST	OF TA	BLES	XV
	LIST	T OF AP	PPENDICES	xix
1	INTI	RODUC	TION	
	1.1	Prefac	ce	1
	1.2	Objec	tives	2
	1.3	Staten	nent of Problem	2
	1.4	Hypot	heses	2
	1.5	Scope	s	3
	1.6	Metho	odology	4
		1.6.1	Literature Review	5
		1.6.2	Design Concept	5
		1.6.3	Calculations and Analysis	5
		1.6.4	CFD Simulations	6
		1.6.5	Development of a Scavenging system	
			Test Rig	6
	1.7	The G	antt Chart	7

2 LITERATURE STUDY

2.1 Internal Combustion Engines	8
---------------------------------	---

2.2	Two Stroke Engine1		10
2.3	The S	cotch-Yoke Mechanism	12
	2.3.1	The Differences between Scotch-Yoke	
		Engine and Conventional Engine	13
	2.3.2	Advantages of Scotch-Yoke Engine	15
		2.3.2.1 Size Reduction	15
		2.3.2.2 Engine Balance	17
		2.3.2.3 Noise, Vibration and Harshness	
		(NVH)	18
		2.3.2.4 Emission	19
		2.3.2.5 Efficiency	20
		2.3.2.6 Cost	21
2.4	Scave	nging Process	22
	2.4.1	Cross-Scavenged	23
	2.4.2	Loop-Scavenged	24
	2.4.3	Uniflow-Scavenged	26
2.5	Scave	nging Parametric	28
2.6	Scave	nging Mathematical Models	31
2.7	Scave	nging Measurement Methods	33
	2.7.1	The Global Parameters Measurement	
		Method	34
	2.7.2	The Running Engine Parameter	
		Measurement Method	35
	2.7.3	The Computer Simulation Method	36
2.8	Super	charger	38
2.9	Future	e Challenges of Two-Stroke Gasoline engine	39
ENG	INE DE	SIGN CONCEPT	
3.1	Introd	uction	42
3.2	Scave	nging System Design	43
	3.2.1	Scavenging Arrangement	45

3

CALCULATIONS AND ANALYSIS

4

4.1	Engine	e Component Design	50
		Crankcase and Cylinder Block	51
		Cylinder Liners	53
	4.1.3	Cylinder Head	56
4.1.5		Chamber	56
		The Intake and Exhaust Manifold	58
		Reed Valves	59
	4.1.7	Piston Pump Design	60

4.2 The <i>S</i>		cotch-Yoke Crank mechanism	62
	4.2.1	Sliders	62
	4.2.2	C-plates	65
	4.2.3	Piston Heads	66
	4.2.4	Crankshaft	67

5 FLOW SIMULATION AND ANALYSIS

5.1	Introduction		71
5.2	Flow I	Pattern Static Condition Analysis	73
	5.2.1	The Main Port Design	75
		5.2.1.1 The Simulation Results	78
		5.2.1.2 Conclusion of the Main Port	
		Design Simulation results	88
	5.2.2	The Upsweep Design	88
		5.2.2.1 The Simulation Results	90
		5.2.2.2 Conclusion of the Upsweep Angle	
		Design Simulation results	100
5.3	Analy	sis of the Simulated Scavenging Process	100
	5.3.1	The Simulation Results	107
		5.3.1.1. Velocity distribution	107
		5.3.1.2. Species Transport Mass Fraction	
		Distribution	112
	5.3.2	Discussion on the Dynamic Simulation	
		Results	117

6	FAB	RICATION OF A SCAVENGING SYSTEM TES	T RIG
	6.1	Introduction	121
	6.2	The Test Rig Components	122
	6.3	The Test Rig Set-Up	129
		6.3.1 The Scavenging Measurement Results	134
	6.4	The Pressure Inside Cylinder	140
		6.4.1 Results of Pressure-In-Cylinder Analysis	141
	6.5	Scavenging Performance Analysis	147
7	CON	CLUSIONS & RECOMMENDATIONS	
	FOR	FURTHER WORK	

7.1	Conclusions	149
7.2	Recommendation for Further Works	151

REFERENCES	152
------------	-----

APPENDICES

156

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
FIGURE NO.		IAUE

1.0	Flow chart of project implementation	4
2.1	The different types of reciprocating engine	9
2.2	The two-stroke SI engine operating cycle with crankcase	
	compression	11
2.3	The gas exchanges process of the crankcase compression	
	Two Stroke Engine	11
2.4	The crank mechanism of a Scotch-Yoke engine	12
2.5	The application of the SYTech Engine	14
2.6	The comparison of the Scotch-Yoke engine with the	
	conventional horizontal opposed cylinder engine	17
2.7	The 2 nd order noise level of the CMC 422 SYTech engine	
	at WOT acceleration Cabin Noise	19
2.8	The results of SYTech Fuel consumption and NOx	
	Emissions advantages compare to conventional engine	20
2.9	The comparison of mechanical losses of the CMC 422	
	Scotch-Yoke and the conventional boxer engine	21
2.10	The comparison percentage of total Engine costs between	
	the CMC 422 SYTech and conventional engine	22
2.11	Scavenging arrangements	24
2.12	Various port plan layout of Schnurle type loop scavenging	26
2.13	Physical representation of isothermal scavenge model	28
2.14	a) Perfect displacements scavenging;	
	b) Perfect mixing scavenging	31

2.15	Benson-Brandham model of trapping characteristic	33
2.16	Schematic diagram of single-cycle scavenge rig with	
	cylinder block for externally scavenged three cylinders	
	engine in place	35
2.17	The <i>PIV</i> on the two-stroke engine	36
2.18	The 3D mesh with inlet and exhaust ducts	37
2.19	A supercharged and turbocharged fuel injected	
	two-stroke engines	38
2.20	The Piston pumps	39
2.21	The future development of a two-stroke engine	40
3.1	Design of a Two-stroke Horizontal Opposed	
	Scotch-Yoke Engine	44
3.2	The Schnurle loop scavenging	46
3.3	The Piston pump mechanism design	48
3.4	The scavenging process	49
4.1	The cylinders arrangement	52
4.2	The main cylinder block design	52
4.3	Cylinder liner design	53
4.4	Port openings timing	54
4.5	The height of the transfer ports and exhaust port	55
4.6	The cylinder head design	56
4.7	The detail of the hemi-spherical chamber design	57
4.8	The intake manifold design	58
4.9	The exhaust manifold design	59
4.10	The overview of the reed valve assembly	60
4.11	The two ways control by the reed valve design	60
4.12	The piston pump liner design	61
4.13	The volume A and B inside the piston pump	63
4.14	The rotational motion of the slider	64
4.15	The assembly of a pair of the slider and bearings	64
4.16	The C-plate design	65
4.17	The assembly of slider bearing with C-plate	66
4.18	The piston head for combustion process	67
4.19	The piston head for piston pump	67

4.20	The Crankshaft design	68
4.21	The analysis of the crankshaft balancing	69
5.1	Flowchart of the flow pattern static state analysis.	74
5.2	Schnurle type loop scavenging design	76
5.3	The simulation results of sample A	79
5.4	The simulation results of sample B	81
5.5	The simulation results of sample C	82
5.6	The simulation results of sample D	84
5.7	The simulation results of sample E	85
5.8	The simulation results of sample F	87
5.9	The sweep port design	89
5.10	The design of the upsweep degree of the port	89
5.11	The simulation results of the sample 1	91
5.12	The simulation results of the sample 2	93
5.13	The simulation results of the sample 3	94
5.14	The simulation results of the sample 4	96
5.15	The simulation results of the sample 5	97
5.16	The simulation results of the sample 6	99
5.17	Flow chart for flow simulation in <i>Fluent v 6.1</i>	100
5.18	The engine computational symmetrical domain	102
5.19	The piston surface (moving wall) of the scavenging	
	process	103
5.20	The convergence of the simulation Work	106
5.21	Velocity contour at 111.6° ATDC and at 136.6° ATDC	108
5.22	Velocity contour at 161.6° ATDC and at 186.6° ATDC	109
5.23	Velocity contour at 211.6° ATDC and at 236.6° ATDC	110
5.24	Velocity contour at 261.6° ATDC and at 271.6° ATDC	111
5.25	Mass Fraction at 111.6° ATDC and at 136.6° ATDC	113
5.26	Mass Fraction at 161.6° ATDC and at 1866° ATDC	114
5.27	Mass Fraction at 211.6° ATDC and at 26.6° ATDC	115
5.28	Mass Fraction at 261.6° ATDC and at 271.6° ATDC	116
5.29	The Mass fraction gas O_2 versus crank angle	118
5.30	The Scavenging efficiency versus scavenging ratio	120
5.31	The trapping ratio versus scavenging ratio	120

6.1	The gasket sealing and leakage inspection	122
6.2	Leakage inspection with soap bubble	123
6.3	The machined items of the engine crank mechanism	125
6.4	The perspex material representing the intake manifold	125
6.5	The associated reed valves and cylinder head section	126
6.6	The overview of the motorized scavenging test rig	126
6.7	The gas analyzer probe and Oliver IGD gas analyzer	128
6.8	The Dewetron signal display and crank angle sensor	128
6.9	Digital manometer and Tachometer	129
6.10	Schematic diagram of the scavenging test rig set up	130
6.11	The scavenging measurement arrangement	131
6.12	The gas analyzer probe on the outflow of the system	132
6.13	The illustration of the scavenging measurement	133
6.14	The pressure inlet, P ₁ versus Engine speed, (rpm)	134
6.15	The Inlet velocity, V1 versus Engine Speed (rpm)	136
6.16	The pumping manifold Pressure, P2 versus Engine Speed	137
6.17	The pumping manifold velocity, V_2 versus Engine Speed	138
6.18	The trapped volume ratio of Gas O2 versus Engine Speed	139
6.19	Schematic diagram of the pressure in-cylinder	
	measurement	140
6.20	The location of the mounting of the pressure transducer	141
6.21	Pressure Variation in chamber A versus crank Angle	143
6.22	Pressure Variation in chamber B versus crank angle	145
6.23	Pressure Variation in piston pump chamber versus crank	
	angle	146
6.24	The scavenging efficiency versus scavenging ratio	148
6.25	The trapping ratio versus scavenging ratio	148

LIST OF TABLES

TABLE NO.

TITLE

PAGE

1.1	The Gantt Chart	7
2.1	The dynamic mechanism equation differences	
	between Conventional and Scotch-Yoke engine	15
2.2	The Packing Advantages between SYTech and	
	Conventional engine	16
2.3	Classification of different scavenging methods	
	and their applications	27
2.4	The typical values for the scavenging performance	30
2.5	The fields of application of spark ignition	
	two-stroke and four-stroke engine	41
3.1	Typical engine specifications	43
3.2	Prediction performance for 4 cylinders 500cc	
	Scotch-Yoke Engine	43
5.1	The several viscosity model application in the	
	CFD simulations	72
5.2	The Engine Computation Domain Detail	74
5.3	The Operation parameters for the Cosmos	
	FloWork 2004	75
5.4	Several samples of the main ports design	77
5.5	The study of the upsweep angle, (°) of the	
	transfer port	90
5.6	Specification of the optimized Schnurle loop	
	scavenging design.	100

5.7	The set up parameters when using Fluent v6.1	104
5.8	The simulation conditions for the scavenging	
	process analysis	105
5.9	Results of mass fraction	117
5.10	The dynamic results for the scavenging parameter	118
5.11	The standard data for the perfect mixing and	
	displacement scavenging model	119
6.1	Bill of Material for the engine model design	124
6.2	Specification of the instrumentations	127
6.3	The experimental results for volume A and	
	volume B	147

LIST OF SYMBOLS

Y _{conv}	=	Piston replacement for conventional engine, m
Y_{sy}	=	Piston replacement for Scotch-Yoke engine, m
V _{conv}	=	Piston Velocity for conventional engine, m
V _{sy}	=	Piston Velocity for Scotch-Yoke engine
a_{conv}	=	Piston acceleration for conventional engine, m/s ²
a_{sy}	=	Piston acceleration for <i>Scotch-Yoke</i> engine, m/s ²
r	=	Crank radius, m
L	=	Conrod length, m
α	=	Crank angle after top dead center (TDC)
ω	=	Angular speed of the crankshaft, $^{\circ}$
SE	=	Scavenging Efficiency
TE	=	Trapping Efficiency
CE	=	Charging Efficiency
SR	=	Scavenging Ratio
V_i	=	Intake velocity, m/s
d	=	Cylinder bore, mm
<i>l</i> , <i>s</i>	=	Stroke, mm
V_{et}	=	Swept volume from TDC to exhaust opening, mm ³
V_{to}	=	Total volume in the engine cylinder, mm ³
$V_{ m tr}$	=	Trapped volume during TDC, mm ³
t_l	=	Liner thickness, mm
Ν	=	Engine speed, rpm
σ_{c}	=	Permissible value of tension, 200 kgcm ² , Cast Iron
P_m	=	Maximum combustion pressure, 49.07 kg.cm ²
D_l	=	Inner liner diameter, mm

xviii

n	=	1 for two stroke engine
Q	=	Capacity/cylinder, mm ³
η_{v}	=	Volumetric efficiency
A	=	area, mm ²
h	=	Height, mm
F_i	=	Inertia Force, N
M_i	=	Moment Inertia, Nm
m_u	=	Unbalanced mass, g
r_m	=	Radius of unbalanced mass from center, mm
L_d	=	The distance from center, mm
r_b	=	The distance of mass gravity of counterweight, mm
M_{ref}	=	The unbalance Moment Inertial System, Nm
AM	=	Angle for main port, °
MT	=	Target point for main point, mm
UPM	=	Upsweep angle of main port, $^{\circ}$
UPR	=	Upsweep angle of rear port, $^{\circ}$
UPS	=	Upsweep angle of side port, °
DPE	=	Downsweep angle of exhaust port, $^{\circ}$
ρ	=	Density, g/ml
TDC	=	Top Dead Center
BDC	=	Bottom Dead Center
ATDC	=	After Top Dead Center, °
γ	=	Specific heat ratio
σ	=	Turbulent Prandtl numbers
k	=	Turbulent kinetic energy
ε	=	Dissipation rate of turbulent kinetic energy
atm	=	Pressure at atmosphere condition
CA	=	Crank angle, °

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

Α	Balance Shaft Design	157
B1	Orthographic view	158
B2	Exploded View of Engine Model	159
B3.1	Slider R	160
B3.2	Slider L	161
B3.3	Slider Bearing	162
B3.4	Slider Bearing 2	163
B3.5	Crankshaft bearing with thrust	164
B3.6	Crank Bearing M	165
B3.7	Crankshaft	166
B3.8	Crankcase	167
B3.9	Exhaust Manifold	168
B3.10	Crankshaft Bearing	169
B3.11	Intake manifold	170
B3.12	C-platrigmodel1	171
B3.13	C-platrigmodel2	172
B3.14	Piston55K	173
B3.15	Compression rig2	174
B3.16	Piston pump	175
B3.17	Sleeve test	176
B3.18	Reed main body	177
B3.19	Cylinder head	178
B3.20	Block	179

B3.21	Linearslide	180
B3.22	Adapter block	181
С	Dynamic Mesh Option Set Up	182
D	Scavenging Rig Experimental Data	184
Ε	Dewetron Signal Display Setting	188
F	Pressure In-cylinder Data	189
G	Tube Adaptor Specifications	194

CHAPTER 1

INTRODUCTION

1.1 Preface

The emphasis of the research project is to design a scavenging system for a newly conceptualized small capacity (500 cc), multi-cylinder, two-stroke engine based on the *Scotch-Yoke* mechanism. The research work on the *Scotch-Yoke* engine concept was attempted by *CMC SYTECH Corp. of Australia* [2] and was proven to have several advantages i.e. small size, perfect balance, reduction of the engine weight compare to the conventional reciprocating engine of a same displacement.

The scavenging process in the two-stroke cycle engine has direct influent on the performance of their combustion processes and remains one of the fundamental important strategies towards improvement of fuel utilization efficiency and the reduction of pollutant.

Several *CFD* simulation analyses have been done to characterize the scavenging process for the port geometry optimization. In addition, an unfired test rig for scavenging system measurement has been developed in conjunction with this research work.

1.2 Objectives

The objectives of the research project are:

- i. To design an external scavenging system of a two stroke *Scotch-Yoke* multicylinder engine
- ii. To develop a scavenging system test rig to optimize the scavenging process.
- iii. To reduce fresh charge short-circuiting problem in the two-stroke engine.

1.3 Statement of Problem

Scavenging process is required in two-stroke engines in assuring the appropriateness of combustion. However it will also result in the short-circuiting of fresh charge (flow directly from the engine's transfer to the exhaust port). The short-circuiting phenomenon is responsible for the low fuel economy/efficiency and high-unburned hydrocarbons emission.

1.4 Hypothesis

An external scavenging system is required to retrofit the small capacity multicylinder, two-stroke horizontally opposed *Scotch-Yoke* engine to improve its scavenging efficiency and overcome the mixture short-circuiting problem.

1.5 Scope

The scopes of work prescribed are as follows:

- i. Literature reviews on the two-stroke engine, scavenging systems and *Scotch-Yoke* engine concept
- ii. Design of a scavenging system for the two-stroke *Scotch-Yoke* engine.
- iii. Computational Fluid Dynamic(CFD) code simulation for the scavenging flow analysis
- iv. Development of an unfired scavenging system test rig
- v. Validation of the hypotheses

1.6 Methodology

The methodology applied in the implementation of this project was as follows:

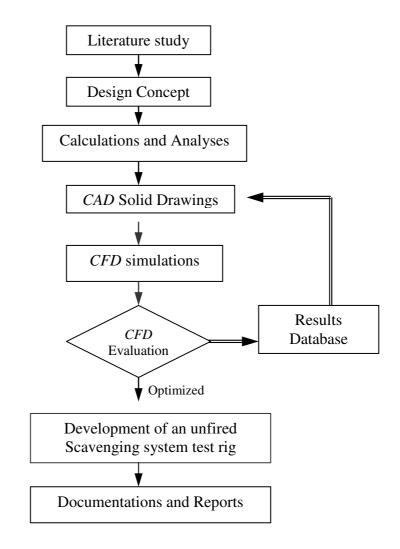


Figure 1.0: Flow chart of project implementation.

1.6.1 Literature Review

The review of recent works is important to provide the understanding of the advancements of two-stroke technologies such as the scavenging systems and *Scotch-Yoke* engine design itself. The previous technical references which are published in the reputable journals such as *Engineering Society for Advancing mobility Land Sea, Air and Space (SAE)* Technical Paper Series, will assist the author in providing new research methods for the scavenging system development. Besides, there are several books and publications on two-stroke engines which will provide first hand knowledge on approaches to engine design and analysis.

1.6.2 Design Concept

With the knowledge obtained from literature study, a design concept of an external scavenging system which is suited to the design of *Scotch-Yoke* mechanism, as well as piston pumps design will be proposed. The loop scavenging arrangement, which is suitable for small capacity gasoline type two-stroke engine, will then be applied for the scavenging port geometry design work.

1.6.3 CAD Solid Drawings

It is in the opinion of the author that *Computer-Aided Design* (*CAD*) software, (e.g. *SolidWorks 2004*) is suitable tool to enable engine parts be designed and eventually developed. The specification of the engine parts will be shown in intricate details in finalizing engineering drawings.

1.6.4 CFD Simulations

The *Computational Fluid Dynamic (CFD)* simulation work is an important approach to predict the characteristic of the gas exchange processes particularly during the scavenging process. The design of the porting will be improved through the analysis of a series of simulation results.

1.6.5 Development of an Unfired Scavenging System Test Rig

The fabrication works of the unfired scavenging system test rig was done with the assistance of a local engineering company. Prior to this, the engine components detail drawings are prepared for the fabrication works. However, the assembly of the components into a complete unit was not made by the said company, but was made by the author in *UTM*, specifically at the *Automotive Development Center* (ADC).

After the engine model was completely assembled, it was simulated for motion analysis using a specially designed motorized control system. The instrumentations for the scavenging measurement were installed at the engine model. A technique call gas sampling method was applied to evaluate for the engine's overall scavenging system efficiency.

1.7 Gantt Chart

Planning and execution of the project indicates the milestone of the progress of the design and development work within 5 semesters.

Table 1.1: The Gantt chart

Planning and Execution			S	Semesters			
		1	2	3	4	5	
1. Literature Review	Study on the previous technical paper						
2. Design Concept	Develop the design concept						
3. Calculations and Analyses	1. Engine geometry design						
	2. External pump design						
4. CAD Solid Drawings	<i>3D</i> model drawing for the system						
5. <i>CFD</i> simulations	<i>CFD</i> code simulation for the design optimization						
6. Fabrication works	Fabrication of the engine model						
7. Test Rig Setting Up	1. Setting up the test rig						
8. Experimental data analysis	Investigation on the Scavenging efficiency						
9. Documentations and Reports	Summary of the Project						

Extend For Execution

REFERENCES

- [1] Geoffrey, C., Robert J.K., Robert G.K. and William, J.S. Development of a Stratified Scavenging System for Small Capacity Two-Stroke Engines. SAE1999-01-3270 / JSAE 9938025.1999.
- [2] Rosennkranz, H.G. Simple Harmonic Piston Motion of CMCR's SYTECH Engines – Influence on Design and Operation. Paper number 99007. 1999.
- [3] Rosenkranze, H.G, *Why Change to CMC Scotch-yoke Engine technology* (*SYTECH*), CMCR report:, Melbourne, September 1998.
- [4] Heywood, J.B and Sher, E. *The Two-Stroke Cycle Engine Its Development, Operation and Design, SAE international*, Taylor & Francis. 1998.
- [5] Fleck, R. and Thornhill, D. Single Cycle Scavenge Testing a Multi-Cylinder, Externally Scavenged, Two-Stroke Engine with a Log Intake Manifold. SAE technical paper 941684. 1994.
- [6] Blair,G.P. Design and Simulation of Two-Stroke Engines. Warrendle, USA, Society of Automotive Engineers, Inc. 1994.
- [7] Durret,P. A new generation of two-stroke Engine for the future?: Contribution of Scientific Tool and computer modeling to the understanding of two-stroke engine aerodynamic and direct fuel injection behavior. France, Editions Technip. 1993.
- [8] Pulkrabek, W.W. Engineering Fundamental of the Internal Combustion Engine.United State of America, Prentice-Hall International, Inc. 1997.
- [9] Foudray, H.Z.and Ghandhi,J.B. *Scavenging measurements in a Direct-Injection two stroke engine*. SAE technical paper 2003-32-0081. 2003.
- [10] Crouse, W.H. and Anglin, D.L. Automotive Mechanics, tenth edition. New York, McGraw Hill. 1993.
- [11] Setright. LJK. *Turbocharging and Supercharging for maximum power and Torque*. Sparkford Yeovil Somerset, Foulis Motoring Book. 1976.
- [12] Cross, N. Engineering Design Methods, strategy for product design third edition. Chichester, John Wiley & Sons, LTD. 2000.
- [13] Heywood, J.B. Internal Combustion Engine Fundamentals. Singapore. McGraw-Hill Book Company. 1988.

- [14] Heisler, H. Vehicle and Engine Technology: Second Edition, Great Britain, Butterworth-Heinemann. 2001.
- [15] Ravi, M.R., Effect of Port Sizes and Timings on the Scavenging Characteristics of a Uniflow Scavenged Engine, SAE 920782. 1992.
- [16] Franz J. L, CFD Application in Compact Engine Development, SAE 982016.1998.
- [17] Richard,S. Introduction to Internal Combustion Engines. Warrendle, USA, Society of Automotive Engineers, Inc. 1999.
- [18] Buckland, J., Cook, J., Kolmanovsky and Sun, J. Technology Assessment of Boosted Direct Injection Stratified Charge Gasoline Engines, SAE 2000-01-0249, 2000.
- [19] Yoshida,Y., Uenoyama,K., Kawahara,Y. and Kudo,K. Development of Stratified Scavenging Two-Stroke Cycle Engine for Emission Reduction, SAE1999-01-3269/JSAE 9938024, 1999.
- [20] Fluent Inc. Fluent vs 6.1 User's guide manual, 2003.
- [21] Fluent Inc. *Scavenging in a Two-Stroke IC engine*, Application Brief from Fluent, EX204.2003.
- [22] Bergman,M., Gustafsson,R.U.K, Jonsson, B.I.R., and Husqvarna,A.B. Scavenging System Layout of A 25cc Two-Stroke Engine Intended for Stratified Scavenging. SAE2002-32-1840/ JSAE 20024333. 2002.
- [23] Chiatti,G. and Chiavola,O. Scavenge Stream Analysis in High Speed 2T Gasoline Engine. SAE2002-01-2180. 2002.
- [24] Mitianiec, W. Analysis of Loop Scavenging Process in A Small Power SI Two-Stroke Engine. SAE2002-01-2181. 2002.
- [25] Zeng, Yangbing and Strauss, S. Modeling of Scavenging and Plugging in a Twin-Cylinder Two-Stroke Engine Using CFD. SAE 2003-32-0020/JSAE 20034320. 2003.
- [26] Ghiatti,G. and Chiavola,O. Scavenging Efficiency and Combustion Performance in 2T Gasoline Engine. SAE 2003-32-0030/JSAE 20034330. 2003.
- [27] Bergman,M. Gustafsson,R.U.K and Jonsson, B.I.R. Emmission and Performance Evaluation of A 25cc Stratified Scavenging Two-Stroke engine. SAE 2003-32-0047/JSAE 20034347. 2003.

- [28] Raghunathan,B.D. and Kenny,R.G. CFD Simulation and Validation of The Flow within a Motored Two-Stroke Engine. SAE 970359.
- [29] Elligott, S.M., Douglas, R. and Kenny, R.G. An Assessment of A Stratified Scavenging Process Applied to A Loop Scavenged Two-Stroke Engine. SAE 1999-01-3272/ JSAE 9938027. 1999.
- [30] Laurine, J.L., Gary, S.S., Vladimir, L.G., Subrata, S., Abdreas, M.B. and Juergen, Meyer. CFD Investigation of the Scavenging Process In A Two-Stroke Engine. SAE 941929. 1994.
- [31] Cheang, Louis. Small Engine That Packs a Punch. 22 September 2002. Sunday Star, Malaysia, Page 18.
- [32] SAE International. Automotive Handbook 5th Edition. Bosch. Germany. 2002
- [33] Fenton, F. Gasoline Engine Analysis For Computer Aided Design. Mechanical Engineering Publication LTD. London. 1986.
- [34] Bailey, J.M. Engine Components New Materials And Manufacturing Processes, ICE Vol.1. The American Society of Mechanical Engineers. New York. 1986.
- [35] Goldsborough, S.S. Optimizing the Scavenging System for High Efficiency And Low Emission: A Computational Approach. Ph.D. Dissertation. Colorado State University; 2002.
- [36] Rosenkranze, H.G, *Why Change to CMC Scotch-yoke Engine technology* (*SYTECH*), CMCR report:, Melbourne, September 1998.
- [37] Duret, P. A New Generation of Two-Stroke Engines for the Year 2000. International Seminar "A new generation of two-stroke Engine for the future?".November 29-30, 1993.Rueil-Malmaison, France. Editions Technip. 1993. Pages 181-194.
- [38] Plint,M. and Martyr,A. *Engine Testing Theory and Practice second edition*. Warrendale, SAE International. 2001.
- [39] Andeson, J.D. Computational Fluid Dynamic The Basic with Applications. New York, McGraw Hill. 1995.
- [40] Shames, I.H. Mechanics of Fluids, Fourth Edition. New York, McGraw Hill. 2003.
- [41] Schuster, W.A. Small Engine Technology, Second Edition. United State of America, Delmar Publishers, 1999.

- [42] Keribin, P.H. Contribution of Scientific Tools and Computer Modeling to the Understanding of Two-Stroke Engine Aerodynamics and Direct Fuel Injection Behaviour. International Seminar. A new generation of two-stroke Engine for the future? November 29-30, 1993.Rueil-Malmaison, France. Editions Technip. 1993. Pages 9-16.
- [43] Yu,L., Campbell,T., Pollock,L and Marconi,P. Lean Burn Combustion Engine. IMechE Seminar Publication 1996-20. *Exhaust Emission Control with Direct Multi-point Fuel-injection of a Small Two-stroke Engine*. 3-4November 1996. Bury St.Edmund, London. Mechanical Enginnering Publication.1996.Pages 165-185.]
- [44] Warhaft,Z. An Introduction to Thermal-Fluid Engineering The Engine and The Atmosphere. United Kingdom, The Press Syndicate of The University of Cambridge. 1997.
- [45] Ravi, M.R, Marathe, A.G. Effect of Port Sizes and Timings on the Scavenging Characteristics of a Uniflow Scavenged Engine. SAE 920782. 1992.
- [46] Wallesten, J, Lipatnikov, A and Chomiak, J. Simulations of Fuel/Air Mixing, Combustion, and Pollutant Formation in a Direct Injection Gasoline Engine. SAE 2002-01-0835. 2002.
- [47] Joseph,M.B. A Simple High Efficiency S.I. Engine Design. SAE 2003-01-0923. 2003.
- [48] Vita,A.D. Experimental Analysis and CFD Simulation of GDI Sprays. SAE 2003-01-0004. 2003.
- [49] Norihiko,W., Shinya,M., Masayuki, K. and Junichi, N. The CFD Application for Efficient Designing in the Automotive Engineering. SAE 2003-01-1335. 2003.
- [50] Yoshida, Kazuyuki, U., Yoshitaka, K. and Kazunori, K. Development of Stratified Scavenging Two-Stroke Cycle Engine for Emission Reduction. SAE 1999-01-3269. 1999.
- [51] Azhar, A.A, Fong, K.W., Ng,T.N. Design Concept for a Boosted Small Capacity Multi-Cylinder Two-stroke Horizontal Opposed Scotch-Yoke Engine.
 Conference NAME '05 UITM. 2005.