IMPLEMENTATION OF COMPUTER SIMULATION IN RUBBER ASSEMBLY LINE: A CASE STUDY (RUBBER RESEARCH INSTITUTE OF MALAYSIA)

MOHD FAHMI BIN MOHAMAD AMRAN

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Information Technology – Manufacturing)

Faculty of Computer Science and Information System Universiti Teknologi Malaysia

JUNE 2006

Abstract

Simulation is one of the modeling techniques in solving industrial problem that can imitate the real system through model development. In Rubber Research Institute of Malaysia (RRIM), assembly line of Deproteinised Natural Rubber (DPNR) that has been operating since 1994 had never been modeled through simulation method in improving and solving the production problem. Therefore, the implementation of computer simulation in the DPNR assembly line at RRIM is appropriate to solve two main problems namely increasing production capacity, and ineffective production line. In order to achieve the objective, facilities layout, automating the process of assembly line and increase the conveyor speeds were proposed as a method to improve the current system. In this project, the simulation modeling was applied discrete event simulation and the flow manufacturing simulation as a methodology. The simulation model was developed and tested using ProModel 6.0 Network Version software. The data analysis was carried out using Stat::Fit of ProModel software. Data was collected and evaluated to determine the necessary parameters that are used in the simulation model. This project is wished to be implemented as solutions to the problem faced by the current system.

Abstrak

Simulasi merupakan teknik pemodelan dalam menyelesaikan masalah industri yang dapat meniru sistem sebenar menerusi pembinaan sebuah model. Di Institut Penyelidikan Getah Malaysia (RRIM), baris pengeluaran bagi Deproteinised Natural Rubber (DPNR) yang telah mula beroperasi sejak tahun 1994 tidak pernah dimodelkan melalui kaedah simulasi yang dapat menyelesaikan masalah pengeluaran. Oleh itu, pengimplementasian komputer simulasi untuk baris pengeluaran bagi DPNR di RRIM adalah kaedah yang sesuai untuk menyelesaikan dua masalah utama iaitu peningkatan jumlah pengeluaran dan baris pengeluaran yang tidak efektif. Untuk mencapai objektif, layout fasiliti, pengautomasian proses baris pengeluaran dan meningkatkan kadar kelajuan konveyor telah dicadangkan sebagai kaedah dalam meningkatkan keupayaan sistem semasa. Dalam projek ini, pemodelan simulasi menggunakan simulasi peristiwa diskrit dan simulasi pembuatan aliran sebagai metodologi. Model simulasi dibangunkan dan diuji menggunakan perisian ProModel 6.0 Network Version. Analisa data pula menggunakan Stat::Fit yang terdapat dalam perisian ProModel. Data telah dikumpul dan dinilai untuk menentukan parameter yang digunakan dalam pemodelan simulasi. Adalah diharapkan semoga projek ini dapat digunakan untuk menyelesaikan masalah yang dihadapi sistem semasa.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xiii
	LIST OF FIGURES	XV
	LIST OF APPENDICES	xvii
	LIST OF ABBREVIATION	xviii

1	PROJ	ECT OVERVIEW	1
	1.1	Introduction	1
	1.2	Background of Problem	3
	1.3	Statement of the Problem	3
	1.4	Project Objectives	4
	1.5	Scope of Project	4
	1.6	Importance of Project	5
	1.7	Chapter Summary	5

2	LITE	LITERATURE REVIEW		
	2.1	Introduction	6	
	2.2	What is Simulation	6	

	2.2.1	Discrete and Continuous Systems	8
	2.2.2	Continuous Simulation	9
	2.2.3	Combined Discrete-Continuous Simulation	9
	2.2.4	Systems and System Environment	9
	2.2.5	Components of a System	11
	2.2.6	Advantages of Simulation	12
2.3	Simulat	tion Modeling Tools	13
2.4	Simulat	tor Tools	14
	2.4.1	Witness	15
	2.4.2	ProModel	15
	2.4.3	SIMSMART	17
	2.4.4	Arena	17
2.5	Assemb	bly Line	19
2.6	Use of a	Simulation in Solving Manufacturing	
	Industri	al Problems	19
2.7	Using I	Discrete Event Simulation in Solving	
	Continu	ious Processes	20
2.8	Selectin	ng ProModel as Method and Tools	21
2.9	Researc	ch Study in Rubber Industry	23
2.10	Researc	ch Trend in Simulation	24
	2.10.1	Facilities Planning	24
	2.10.2	Process Automation	25
2.11	Chapter	Summary	26
MET	HODOL	OGY	28
3.1	Introdu	ction	28
3.2	Project	methodology and flow chart	28
	3.2.1	Problem Formulation	30
	3.2.2	Setting of Objectives and Overall Project	
		Plan	30
	3.2.3	Model Conceptualization	30
	3.2.4	Data Collection	31
	3.2.5	Model Translation	31

		3.2.6	Verification	32
		3.2.7	Validation	32
		3.2.8	Experimental design	32
		3.2.9	Production runs and analysis	33
		3.2.10	Replication	33
		3.2.11	Documentation and reporting	33
	3.3	Project	Schedule	33
		3.3.1	Project 1	34
		3.3.2	Project 2	34
	3.4	Chapter	r Summary	35
4	INIT	TIAL SYS	TEM CHARACTERISTIC	36
	4.1	Introdu	ction	36
	4.2	Organiz	zational Analysis	36
		4.2.1	Malaysian Rubber Board	36
		4.2.2	Vision	37
		4.2.3	Mission	37
		4.2.4	Objective	37
		4.2.5	Dry Rubber Products Unit	38
		4.2.6	Engineering Applications	38
		4.2.7	Adhesion and Adhesives	38
		4.2.8	Physics and Chemistry	39
	4.3	Current	Manufacturing Process	39
		4.3.1	Deproteinised Natural Rubber (DPNR)	40
		4.3.2	DPNR Grades	40
		4.3.3	DPNR-CV Production Flow Chart	40
		4.3.4	Potential Areas of Application	42
		4.3.5	Characteristics of DPNR	42
		4.3.6	Specifications	43
		4.3.7	Packaging	43
		4.3.8	DPNR Layout Design	44
	4.4	User Re	equirement	46
		4.4.1	ProModel 6.0 (Network Version)	46

ix

	4.4.1 <i>Stat::Fit</i>	47
4.5	Chapter Summary	47

5

6

х

DAT	A COLLI	ECTION AND ANALYSIS OF INPUT	
DAT	A		48
5.1	Introdu	ction	48
5.2	Data Co	ollection	48
5.3	Data A1	nalysis	49
5.4	Generat	ting Continuous Random Distributions	49
5.5	Distribu	ution Data Testing	50
	5.5.1	Time Processing at Steam Coagulation	50
	5.5.2	Time Processing at Steam Line	51
	5.5.3	Time Processing at Creeper 1	52
	5.5.4	Time Processing at Creeper 2	52
	5.5.5	Time Processing at Creeper 3	53
	5.5.6	Time Processing at Creeper 4	53
	5.5.7	Time Processing at Creeper 5	54
	5.5.8	Time Processing at Piping Line	55
	5.5.9	Time Processing at Soak Machine	55
	5.5.10	Time Processing at Wash	56
	5.5.11	Time Processing at Packing	56
5.6	Chapter	Summary	57
SIMU	ULATION	N MODEL DEVELOPMENT	59
6.1	Introdu	ction	59
6.2	Simulat	tion Model	59
	6.2.1	Declaration of the Entity	60
	6.2.2	Location of the Workstations	61
	6.2.3	Generate Path Network and Resources	63

	6.2.4	Arrival Declaration	64
	6.2.5	Processing Programming	64
6.3	Assum	ption of the Model	66
6.4	Input S	Specification	66

	6.5	Output	Specification	67
	6.6	Chapte	r Summary	67
7	VER	IFICATI	ON AND VALIDATION	68
	7.1	Introdu	ction	68
	7.2	Termin	ating Simulations	68
	7.3	Verific	ation	69
	7.4	Numbe	r of Replication	69
	7.5	Validat	ion	72
		7.5.1	Validation of Finish Product	72
		7.5.2	Validation of Left Product	74
	7.6	Chapter	r Summary	75
0				76
8	001	PUI DA		/0
	8.1 8.2	Introdu	tion Deput and Analysis	/0
	8.2		A value of Finish Droduct	/0
		8.2.1	Analysis of Finish Product	/8
		8.2.2	Analysis of Workstations Utilization	/8
	0.2	8.2.3	Analysis of System Time	/9
	8.3	Chapte	r Summary	80
9	ALT	ERNATI	VE MODELS	81
	9.1	Introdu	ction	81
	9.2	Concep	ot of the Alternative Models	81
		9.2.1	1 st Alternative Model	82
		9.2.2	2 nd Alternative Model	84
		9.2.3	3 rd Alternative Model	86
	0.2	Compa	rison Between the Initial Model and	
	9.5	Alterna	tive Models	88
		9.3.1	Finish Product	88
		9.3.2	Left Product	90
		9.3.3	System Time	91
		9.3.4	Performance Improvement Significance	92

xi

		Determination	
	9.4	Chapter Summary	97
10	DISC	USSION AND CONCLUSIONS	98
	10.1	Conclusions	98
	10.2	Achievements	99
	10.3	Constraints & Challenges	99
	10.4	Aspirations	100
	10.5	Chapter summary	100
REFERENC	ES		101
APPENDICE	S		106-114

xii

LIST OF TABLES

TABLES NO.	TITLE	PAGE
2.1	Four classes of simulation tools	13
4.1	Areas of applications	42
4.2	Specification of DPNR CV and DPNR S	43
4.3	The standard packaging for DPNR	44
5.1	Auto Fit Distribution for steam coagulation workstation	51
5.2	Auto Fit Distribution for steam line	51
5.3	Auto Fit Distribution for creeper 1 workstation	52
5.4	Auto Fit Distribution for creeper 2 workstation	52
5.5	Auto Fit Distribution for creeper 3 workstation	53
5.6	Auto Fit Distribution for creeper 4 workstation	54
5.7	Auto Fit Distribution for creeper 5 workstation	54
5.8	Auto Fit Distribution for piping line	55
5.9	Auto Fit Distribution for soak machine workstation	55
5.10	Auto Fit Distribution for wash workstation	56
5.11	Auto Fit Distribution for packing workstation	57
5.12	Outline of data collection and analysis of input data	57
6.1	The length and conveyor speeds for each conveyor	65
7.1	Finish Product in 26 initial replications	70
7.2	Inequality test on number of replication, R	71

7.3	Average number of finish product in 26 replications	73
7.4	Average number of left product in 26 replications	75
8.1	Initial model simulation result with 95% confident interval	77
8.2	95% confident interval of workstation utilization	77
9.1	95% confident interval of finish product between 4 models	89
9.2	95% confident interval of left product between 4 models	90
9.3	95% confident interval of system time between 4 models	92
9.4	System improvement significance determination using Bonferroni paired-t confidence interval method for finish product	94
9.5	Individual 95 % confidence intervals for all pairwise comparison $\bar{x}_{(2-1)}$ for finish product	95
9.6	System improvement significance determination using Bonferroni paired-t confidence interval method for system time	96
9.7	Individual 95 % confidence intervals for all pairwise comparison $\overline{x}_{(2-1)}$ for system time	97

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Ways to study a system	11
2.2	Visualization of <i>Witness</i>	15
2.3	Visualization of <i>ProModel</i>	16
2.4	Visualization of Arena	18
2.5	ProModel example of a beverage production system	22
2.6	Integrated facilities design	25
3.1	Steps in a simulation study	29
4.1	DPNR-CV production flow chart	41
6.1	Rubber Entity	60
6.2	Entity declaration in <i>ProModel</i> software	61
6.3	Overall view of the DPNR assembly line	62
6.4	Declaration procedure of Location in ProModel	62
6.5	Path Network declaration in ProModel software	63
6.6	Resources declaration in ProModel software	63
6.7	Operator at soak machine workstation	64
6.8	Arrival declaration of simulation model	64
8.1	Differences between finish product and cumulative average finish product	78
8.2	The percentage of workstations utilization	79
8.3	Differences between system time and cumulative average system time	80

9.1	Overall view of the 1 st alternative model DPNR assembly line	83
9.2	Trolley transfers the rubber from <i>soak machine</i> workstation to <i>wash</i> workstation.	83
9.3	Overall view of the 2 nd alternative model DPNR assembly line	85
9.4	Parallel line from <i>piping line</i> workstation to <i>wash</i> workstation	86
9.5	Overall view of the 3 rd alternative model DPNR assembly line	87
9.6	Comparison of average number of finish product in each model	88
9.7	Comparison of average number of left product in each model	90
9.8	Comparison of average seconds system time in each model	91

LIST OF APPENDICES

TITLE

PAGE

А	Poject 1 antt hart	106	
В	Poject 2 antt hart	107	
С	DN Layout Design	108	
D	Data Glection for Each Wakstation	109	
E	Godness of Fit Test Result for the Westations	110	
	Pocessing Time	110	
F	We kstations tilization in 26 Rens	113	
G	DReoduct & ample Poduct	114	

LIST OF ABBREVIATION

C	Celcius
DPNR	Deproteinised Natural Rubber
GOF	Goodness of Fit
HNS	Hydroxylamine Neutral Sulphate
kg	kilogram
łS	Kolmogrov-Smirnov
mpm	meter per minute
MRB	Malaysian Rubber Board
NR	natural rubber
R &	research and development
UM	Universiti Teknologi Malaysia

CHAPTER 1

INTRODUCTION

1.1 Introduction

Simulation is one of the most powerful analysis tools available to those responsible for the design and operation of complex processes or systems. It is heavily based upon computer science, mathematics, probability theory and statistics. The use of simulation as a problem solving tool continues to expand.

Deproteinised Natural Rubber (DPNR) is a purified form of natural rubber (NR) in which most of the ash and protein components have been removed. It is specially rubber intended for use in special engineering applications. It contains about 96% rubber hydrocarbons compared to about 93% for normal natural rubber grades. The removal of these non-rubber components confers special attributes to the rubber which enhance its value in certain specialized applications.

Deproteinisation Natural Rubber (DPNR), whether in dry rubber or latex form, or products generates a lot of interests in the past and at present. The numerous publications available attest to the great interest in this topic.

Some consumers of dry natural rubber are interested too because of the special attributes that come along with the deproteinisation of natural rubber. Many attempts have been made in the past to produce commercial quantities of Deproteinisation Natural Rubber (DPNR) at a reasonable price and quality to meet the needs of such consumers.

The Malaysian Rubber Board (MRB) has been successful in this respect and has developed a new and improved method for its production. The DPNR thus produced is actually a purified form of natural rubber with very low nitrogen and ash contents. When compounded using the soluble efficient vulcanization system, DPNR has low creep and stress relaxation, low water absorption, low compression set and a more consistent modulus when subjected to conditions of variable humidity. DPNR is therefore suitable for a niche market where the requirements for such properties are very stringent.

One application for DPNR is in the manufacture of hydromounts for the automobile industry. The main advantages of hydromounts are that the automobile engine is so gently supported that there is negligible vibration transfer to the main body compartment even when the road surface is poor.

Another application is in large shock absorbers for Deltawerken in the Netherlands. These large shock absorbers have to withstand prolonged contact with seawater and yet must not absorb too much seawater to cause corrosion in the embedded steel plates. In addition, the creep of the rubber should be minimal because of the very long expected service life. For both these reasons, DPNR is preferred over normal NP in this application.

The MRB has taken serious note of the requirements of the industry for DPNR and has purposely built a special plant solely for its production. The plant has been in operation for 9 years already and has supplied commercial quantities to various customers as well as for promotional purposes.

This project presents a study on simulation of assembly line at Rubber Research Institute of Malaysia in Sungai Buloh, Selangor. Generally this study analyses the data and of rubber assembly line and try to simulate it to make the alternative model that would give benefits to manufacturer. Simulation was applied to rubber assembly line to investigate system parameters and to test various hypotheses.

1.2 Background of Problem

As the twenty first century begins, the global marketplace continues to grow stronger. To stay competitiveness, factories need to make long as well as short term capacity decision with proper planning. This project is about simulation study in rubber assembly line. The preliminary study at the factory revealed that they have a problem in the current system of assembly line.

The implementation of assembly line in manufacturing system can optimize and increases the productivity. In this study, the current assembly line could not manufacture and distribute the DPNR as schedule by the factory. Furthermore, the demand from customers is increasing and the factory has to increase their monthly production rate. The manufacturing lead time is one of the problems that industry expertise has to accomplish.

The material handling system that factory applied now is not fully optimized. They still use a man power to organize and transfer the raw material and product from one workstation to another workstation. This could cause a problem to operators who are highly exposed to chemical effects. Raw materials are mix with chemical content during early stage of manufacturing the DPNR.

1.3 Statement of the Problem

Below are some statements of the problem:

- i. How to improve the production capacity and assembly line productivity using based simulation model?
- ii. How to developed valid simulation model that suits with the scenario?
- iii. How the performance of assembly line managed with the current system?

1.4 **Project Objectives**

Below are some objectives of the project:

- i. To design and develop a simulation model of assembly line based on real system using *ProModel* software.
- ii. To propose what are the possible manufacturing improvement design which is able to significantly increase the manufacturing performances and production capacity using valid simulation model.

1.5 Scope of Project

Below are some scopes of the project:

- i. This project focuses on Deproteinised Natural Rubber (DPNR) assembly line in Rubber Research Institute of Malaysia.
- The project cover operation process from *steam coagulation* workstation to *wash* workstation of manufacture the DPNR which is consists of 9 workstations.
- iii. Collect and analyze the input and output data in order to develop the simulation assembly line.
- iv. To develop a simulation model using *ProModel 6.0, Network Version* meanwhile *Stat::Fit* and *Microsoft Excel* software were used for statistical analysis.
- v. This project recommendation only based on manufacturing variable aspect and assume that the real system have no constraint about anything outside the analytical manufacturing aspect (*e.g financial limitation, land, workforce and technology*).

1.6 Importance of Project

From this project it can helps Rubber Research Institute of Malaysia as a manufacturer and manufacturing industry in Malaysia. Rubber Research Institute of Malaysia can increase their production rate and improve the efficiency of the line production. Beside that, the total time and manufacturing lead time can even faster by simulate the current system. When the system have been automated, numbers of workers can reduced to cut the production costs and also to avoid accident that can occur during manufacturing process.

Manufacturing industry in Malaysia can get a benefit with this project indirectly. Because not many company or researchers in Malaysia involve in the rubber industry, this project can give a knowledge and information with the simulation of the rubber.

Hopefully with the efforts in doing this project it can helps other researchers in guiding and solving the problems related with rubber industry in Malaysia especially in modeling and simulation of assembly line.

1.7 Chapter Summary

In this introductory chapter, the outline of the whole project have been presented and tried to bring to the fore why this project is necessary at this time. The prevailing problems that necessitate the study have been discussed and the project problems highlighted. The objective, scope and the importance of this project have also been pointed out.

REFERENCES

- B. Gopalakrishnan *et al.* Computer Integrated Facilities Planning and Design. *Facilities*. Vol. 22. 2004. 199-209.
- Banks, J, Carson, J.S, Nelson, B.L and Nicol, D.M (2001). *Discrete-Event System Simulation*. 3rd ed. Prentice Hall, New Jersey.
- Charles Harrell, Biman K. Ghosh and Royce O. Bowden (2004). *Simulation Using ProModel*. 2nd ed. McGraw-Hill.
- Charles Mclean And Swee Leong. A Framework for Standard Modular Simulation. Proceedings Of The 2002 Winter Simulation Conference. 2002. 1613-1618.
- Charles R. Harrell and Rochelle N. Price. Simulation Modeling Using ProModel Technology. *Proceedings of the 2003 Winter Simulation Conference*. 1993. 175-180.
- Charles R. Harrell. Modeling Beverage Processing using Discrete Event Simulation Proceedings of the 1993 Winter Simulation Conference. 1993. 845-850.
- Chi Leung Patrick Hui and Sau Fun Frency Ng. A Study Of The Effect Of Time Variations For Assembly Line Balancing In The Clothing. *International Journal of Clothing Science and Technology*. Vol. 11 No. 4, 1999. 181-188.
- Chin Soon Chong and Appa Iyer Sivakumar. Simulation-Based Scheduling For Dynamic Discrete Manufacturing. *Proceedings of the 2003 Winter Simulation Conference*. 2003. 1465-1473.
- Choi, S. D. et al. A Simulation Study of Automotive Foundry Plant Manufacturing Engine Blocks. Proceedings of the 2002 Winter Simulation Conference. 2002.1035-1040.

- Danny S.K. Chan. Simulation Modeling In Virtual Manufacturing Analysis for Product and Process Design. Assembly Automation, Volume 23. Number 1, 2003. 69–74.
- Debora A. Ajenblit and Roger L. Wainwright. Applying Genetic Algorithms to the U Shaped Assembly Line Balancing Problem. *Proc. IEEE*, 1996. 96-101.
- Delaney, W and Vaccari, E (1989). *Dynamic Models and Discrete Event Simulation*. Marcel Dekker Inc., New York and Basel.
- Elzas, M.S, Ören, T.I and Zeigler, B.P (1989). *Modeling and Simulation Methodology: Knowledge Systems' Paradigms*. Elsevier, North-Holland.
- Emmanual S. Eneyo and Gertrude P. Pannirselvam. The Use Simulation in Facility Layout Design: A Practical Consulting Experience. *Proceedings of the 1998 Winter Simulation Conference*. 1998. 1527-1532.
- Eneyo, E. S. and Pannirselvam, G. P. The Use of Simulation in Facility Layout Design: A Practical Consulting Experience. *Proceedings of the 1998 Winter Simulation Conference*. 1998. 1527-1532.
- Gordon, G. (1975). *System Simulation*. 2nd ed. Prentice-Hall, Upper Saddle River, NJ.
- Gujarathi et al. Production Capacity Analysis of a Shock Absorber Assembly Line using Simulation. Proceedings of the 2004 Winter Simulation Conference. 2004. 1213-1217.

James A. Tompkins et al. (2003). Facilities Planning. 3rd ed. John Wiley & Sons, Inc.

- Jay Heizer and Barry Render (2000). *Operations Management*. 6th. ed. Upper Saddle River, New Jersey: Prentice Hall.
- John E. Bolton. Simulation Analysis of a Steelmaking Facility. *Winter Simulation Conference*. 1979. 93-97.

- Kuo et al. Modeling Continuous Flow with Discrete-Event Simulation. Proceedings of the 2001 Winter Simulation Conference. 2001. 1099-1103.
- Law, A.M and Kelton, W.D (1991). Simulation Modeling & Analysis. 6th. ed. McGraw-Hill.
- Lykourgos Petropoulakis and Luisa Giacomini. A Hybrid Simulation System for Manufacturing Processes. *Integrated Manufacturing System*, Vol. 8/4. 1997. 189–194.
- Macro, j. G, Salmi, R. E. A Simulation Tool to Determine Warehouse Efficiencies and Storage Allocations. *Proceedings of the 2002 Winter Simulation Conference*. 1274-1281.
- Mert Altinkilinc. Simulation-Based Layout Planning of a Production Plant, Proceedings of the 2004 Winter Simulation Conference. 2004. 1079-1084.
- Michel Fabre and Daniel Leblanc. Monitoring Manufacturing System Behavior By Continuous Discrete-Event Simulation. *Proceedings of the 1993 Winter Simulation Conference*. 1993. 1339-1345.
- Mihram, G.A (1972). Simulation: Statistical Foundation and Methodology. Academic Press, New York.
- Mikell P. Groover (2001). *Automation, Production Systems, and Computer-Integrated Manufacturing*. 2nd ed. Prentice Hall.
- Minegishi, S. and Thiel, D. System Dynamics Modeling and Simulation of a Particular Food Supply Chain. Simulation Practice and Theory. 2000. 321-339.

Neelamkavil, F (1987). Computer Simulation and Modelling. John Wiley & Sons.

Nogic, D. and Nowatkowski, M. Simulation Analysis of the Us Military Academy Reception Day. *Proceedings of the 2002 Winter Simulation Conference*. 2002. 967-974.

- Onur M. Ulgen and Pankaj Kedia. Using Simulation In Design Of A Cellular Assembly Plant With Automatic Guided Vehicles. *Proceedings of the 1990 Winter Simulation Conference*. 1990. 683-691.
- Osman Balci. A Methodology for Certification of Modeling and Simulation. *ACM Transactions on Modeling and Computer Simulation*. Vol. 11, No. 4. October 2001. 352–377.
- Par Klingstam and Bengt-Goran Olsson. Using Simulation Techniques for Process Verification in Industrial System Development. *Proceedings of the 2000 Winter Simulation Conference*. 2000. 1315-1321.
- Patrick R. Mcmullen. Using Simulation and Data Envelopment Analysis to Compare Assembly Line Balancing Solutions. *Journal of Productivity Analysis*, Vol. 11. 1998. 149–168.
- Payne, J.A (1982). Introduction to Simulation: Programming Techniques and Method of Analysis. McGraw-Hill.
- Ping, Y. et al. Measurement, Simulation on Dynamic Characteristics of a Wire Gauze–Fluid Damping Shock Absorber. Mechanical Systems and Signal Processing. 2005.
- Qi, C. and Tang, T. K. Simulation based Cause and Effect Analysis of Cycle Time and WIP in Semiconductor Wafer Fabrication. *Proceedings of the 2002 Winter Simulation Conference*. 2002. 1423-1430.
- Robert E. Shannon. Simulation and Modeling Methodology. *Winter Simulation Conference*. December 6-8 1976. 9-14.
- Royce O. Bowden and John D. Hall. Simulation Optimization Research and Development. *Proceedings of the 1998 Winter Simulation Conference*. 1998. 1693-1698.
- Sadowski, D. et al. The Arena Product Family: Enterprise Modeling Solutions. Proceedings of the 1999 Winter Simulation Conference. 1999. 159-166.

- Schmidt, J. W. and Taylor, R. E. (1970). *Simulation and Analysis of Industrial Systems*. Homewood, Illinois.
- Schriber, T.J (1974). Simulation Using GPSS. John Wiley, New York.
- Shannon, R. E. (1975). *Systems Simulation: The Art and Science*. Prentice-Hall, Upper Saddle River, NJ.
- Thomas, J et al. Optimization of Operations in Steel Wire Manufacturing Company. Proceedings of the 2002 Winter Simulation Conference. 2002. 1151-1156.

Zeigler, B.P (1976). Theory of Modeling and Simulation. John Wiley & Sons.