MODELLING AND SIMULATION OF MAGNETICALLY SUSPENDED BALANCE BEAM SYSTEM

FIJAY BIN FAUZI

This thesis is submitted in partial fulfilment in the requirements for the award of the degree of Master of Engineering (Electrical-Mechatronic and Automatic Control)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MAY 2006

ABSTRACT

Magnetically Suspended Balance Beam (MSBB) system is a balancing system that uses two magnetic coils to balance the beam. The use of magnetic coils, introduce the nonlinearities which is very difficult to control with conventional controllers such as Proportional Integral Derivative (PID) controller. To overcome this problem various controllers have been put into trial. In this project, Integral Sliding Mode Controller (ISMC) is used to control the balance beam. The integral compensator is used for achieving a zero steady-state error under an external step disturbance force. Lastly, using a computer simulation, the performance of designed ISMC is evaluated and compared with pole placement technique. The result shows that, ISMC can perform better compare to pole placement technique in controlling the balanced beam.

ABSTRAK

Sistem Gantungan Rasuk Secara Magnetik (MSBB) adalah sejenis sistem gantungan yang menggunakan dua lilitan gegelung magnetik untuk mengimbangi rasuk yang hendak dikawal tadi. Oleh kerana sistem ini menggunakan lilitan gegelung magnetik, maka akan wujudlah masalah ketidaklinearan pada keseluruhan sistem ini. Oleh sebab masalah ini timbul, maka system ini sukar untuk dikawal dengan menggunakan pengawal-pengawal yang agak konventional, contohnya Pengawal Kamiran Berkadaran (PID). Untuk mengatasi masalah ini, berbagai jenis pengawal pernah dicuba. Dalam projek ini, pengawal jenis Pengawal Ragam Menggelungsur-Kamiran (ISMC) digunakan untuk mengawal rasuk tersebut. Penggunaan pemampas kamiran adalah untuk menghasilkan keadaan yang bebas dari ralat keadaan mantap walaupun rasuk tadi telah diganggu dengan gangguan jenis fungsi langkah. Akhir sekali, dengan menggunakan simulasi komputer, prestasi ISMC dinilai dan bandingkan dengan teknik pengaturan kutub. Melalui keputusan yang diperolehi, adalah didapati ISMC telah menunjukkan prestasi yang lebih baik daripada teknik pengaturan kutub dalam mengawal rasuk tersebut.

TABLE OF CONTENTS

CHAPTER

I

SUBJECT

PAGE

TITLE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	xvi
LIST OF ABBREVIATIONS	xvii
INTRODUCTION	1
1.1 Introduction	1

1.1	Introduction	I
1.2	Objective	2
1.3	Scope of Project	3
1.4	Research Methodology	3
1.5	Literature Review	4
1.6	Layout of Thesis	5

Π	MAC	GNETICALLY SUSPENDED BALANCE SYSTEM	I 8
	2.1	Introduction	8
	2.2	Mathematical Model of Magnetically Suspended	9
		Balance Beam (MSBB)	
	2.3	State space Model	15
	2.4	Linearized Model	17
	2.5	Summary	18
III	POL	LE PLACEMENT CONTROLLER DESIGN	19
	3.1	Introduction	19
	3 .2	Pole Placement Technique with Integral Control	20
	3.3	Pole Placement Technique to Control MSBB	22
		3.2.1 CASE NO.1: Using Percentage	22
		Overshoot = 10% and $T_s = 0.1 s$	
		3.2.2 CASE NO.2: Using Percentage	27
		Overshoot = 10% and $T_s = 1$ s	
	3.3	Computer Simulation Using MATLAB/SIMULINK	31
		3.3.1 For CASE NO.1	31
		3.3.2 For CASE NO.2	33
	3.4	Summary	35
IV	INT	EGRAL SLIDING MODE CONTROLLER	36
	DES	SIGN	
	4.1	Introduction	36
	4.2	Integral Sliding Mode Controller Design	37
		4.2.1 CASE NO.3: Using Percentage	41
		Overshoot = 10% and $T_s = 0.1$ s	

viii

		4.2.2 CASE NO.3: Using Percentage	43
		Overshoot = 10% and $T_s = 0.1$ s	
	4.3	Selection of design parameter σ	46
	4.4	Computer Simulation Using MATLAB/SIMULINK	47
		for CASE NO.3 and CASE NO.4	
	4.5	Summary	53
V	SIM	ULATION RESULTS	54
	5.1	Introduction	54
	5.2	Results for CASE NO.1	56
	5.3	Results for CASE NO.2	58
	5.4	Results for CASE NO.3 (A)	59
	5.5	Results for CASE NO.3 (B)	60
	5.6	Results for CASE NO.4 (A)	61
	5.7	Results for CASE NO.4 (B)	62
	5.8	Comparison between Various Results	63
		5.8.1 Comparison between CASE NO.3 (A)	64
		and CASE NO.3 (B)	
		5.8.2 Comparison between CASE NO.4 (A)	65
		and CASE NO.4 (B)	
		5.8.3 Comparison between Pole Placement	66
		Technique and ISMC	
	5.9	Summary	68
VI	ANA	ALYSIS AND DISCUSSIONS	70
	6.1	Introduction	70
	6.2	Input Voltage Chattering Elimination	71
	6.3	Stability and Disturbance Rejection Analysis	74
	6.4	Ripple in CASE NO.3 (A)	78

	6.5	Effect of dominant poles in det	termines the gap 81
		displacement after disturbance	enters.
	6.6	Comparison between Pole Plac	cement Technique 86
		and Sliding Mode Controller -	Which one is better?
		6.6.1 Disturbance Rejection	86
		6.6.2 The input voltage	88
	6.7	Summary	88
VII	CON	LUSIONS AND SUGGESTI	ONS 89
	7.1	Conclusions	89
	7.2	Suggestions	92
REFERENC	ES		93

Х

LIST OF TABLES

TABLE NU	MBER TITLE	PAGE
2.1	Balance beam parameter	17
5.1	Descriptions for each case	54
5.2	Comparison of various cases	68
6.1	Poles location for each case	82
6.2	Comparison of gap displacement between two controllers	87

LIST OF FIGURES

FIGURE NU	MBER TITLE	PAGE
2.1	Symmetric balance beam on two magnetic bearings	9
3.1	Pole Placement Technique with Integral Control	20
3.2	SIMULINK implementation of equation (3.45)	31
	(for CASE NO.1)	
3.3	SIMULINK implementation of equation (3.46)	32
	(for CASE NO.1)	
3.4	SIMULINK implementation of equation (3.47)	32
	(for CASE NO.1)	
3.5	Complete simulation diagram of pole placement	33
	technique (for CASE NO.1)	
3.6	SIMULINK implementation of equation (3.48)	34
	(for CASE NO.2)	
3.7	Complete simulation diagram of pole placement technique	34
	(for CASE NO.2)	
4.1	MATLAB programming for CASE NO.3	41
4.2	MATLAB programming for CASE NO.4	43
4.3	Block diagram of an ISMC controlling the balanced beam	46
4.4	Simulation diagram for MSBB	48
4.5	Simulation diagram for computation of σ	49
4.6	Simulation diagram for computation of nonlinear input, u_{nl}	49
4.7	Simulation diagram for computation of $-(SB)^{-1}$	49
4.8	Simulation diagram for computation of SAx	50

xii

4.9	The complete simulation diagram for ISMC	50
	using sgn function	
4.10	Comparison between sgn function and continuous function	51
4.11	Simulation diagram for continuous function	51
4.12	Complete simulation diagram for ISMC using continuous	52
	function	
4.13	Complete overall simulation diagram for ISMC	52
5.1	Displacement angle for CASE NO.1 with 1 N-m	57
	disturbance	
5.2	Input voltage for CASE NO.1 with 1 N-m	57
	disturbance	
5.2	Displacement angle for CASE NO.2 with 1 N-m	58
	disturbance	
5.4	Input voltage for CASE NO.2 with 1 N-m	58
	disturbance	
5.5	Gap displacement for CASE NO.3(A) with 1 N-m	59
	disturbance	
5.6	Input voltage for CASE NO.3 (A) with 1 N-m	59
	disturbance	
5.7	Gap displacement for CASE NO.3(B) with 1 N-m	60
	disturbance	
5.8	Input voltage for CASE NO.3 (B) with 1 N-m	60
	disturbance	
5.9	Gap displacement for CASE NO.4(A) with 1 N-m	61
	disturbance	
5.10	Input voltage for CASE NO.4(A) with 1 N-m	61
	disturbance	
5.11	Gap displacement for CASE NO.4(B) with 1 N-m	62
	disturbance	
5.12	Input voltage for CASE NO.4 (B) with 1 N-m	62

5.13	Comparison of displacement angle between	64
	CASE NO.3 (A) and CASE NO.3 (B)	
5.14	Comparison of input voltage between	64
	CASE NO.3 (A) and CASE NO.3 (B)	
5.15	Comparison of displacement angle between	65
	CASE NO.4 (A) and CASE NO.4 (B)	
5.16	Comparison of input voltage between	65
	CASE NO.4 (A) and CASE NO.4 (B)	
5.17	Comparison of displacement angle between	66
	CASE NO.1, CASE NO.3 (A) and CASE NO.3 (B)	
5.18	Comparison of displacement angle between	67
	CASE NO.2, CASE NO.4 (A) and CASE NO.4 (B)	
5.19	Step disturbance	67
6.1	Value of σ when $\rho = 2120$ and $\delta = 0.001$	72
	for CASE NO.4 (B)	
6.2	Value of σ when $\rho = 150,000$ and $\delta = 700$	73
	for CASE NO.4 (B)	
6.3	Voltage chattering elimination for CASE NO.4 (B)	73
6.4	Phase portrait of CASE NO.3 (B) with no presence of	74
	disturbance	
6.5	Phase portrait of CASE NO.3 (B) with 1 N-m disturbance	75
6.6	Phase portrait of CASE NO.3 (B) with 2 N-m disturbance	76
6.7	Gap displacement of CASE NO.3 (B) with 2 N-m disturbance	76
6.8	Phase portrait of CASE NO.3 (B) with 1, 2 and	77
	10 N-m disturbance	
6.9	Gap displacement of CASE NO.3 (B) with 1,2 and	78
	10 N-m disturbance	
6.10	Comparison between gap displacements for	79
	CASE NO.3 (A)	
6.11	Comparison between input voltages for CASE NO.3 (A)	79
6.12	The sliding surface, σ for CASE NO.3 (A)	80

xiv

6.13	The reach ability condition, $\sigma \sigma < 0$ for CASE NO.3 (A)	81
6.14	Location of the dominant poles are changed but the	84
	settling time are preserved	
6.15	MATLAB programming to proof equation (6.7)	84
6.16	Gap displacement when percentage overshoot = 10%	85
	and $T_s = 0.5$ s	
6.17	Gap displacement for CASE NO.1 with 1,2 and 10N-m	87
	disturbance	
7.1	Comparison between Fuzzy Control and PID controller	92
	in controlling servo motor.	

LIST OF SYMBOLS

-	N x N system matrix for the Magnetically Suspended Balanced Beam
-	N x 1 input matrix for the Magnetically Suspended Balanced Beam
-	1 x N ouput matrix for the Magnetically Suspended Balanced Beam
-	$N \ge 1$ disturbance matrix for the Magnetically Suspended Balanced Beam
-	Set point (radian)
-	State vectors
-	Disturbance of the system (N)
-	Gap displacement (radian)
-	Velocity of gap displacement(radian/second)
-	Acceleration of gap displacement (radian/seconds ²)
-	Ovearall instantaneous current (A)
-	Steady current (A)
-	Control voltage (V)
-	Magnetic bearing open loop stiffness (N/m)
-	Actuator current gain (N/A)
-	Half bearing span (m)
-	Mass moment of Inertia about the pivot point (kg/m ²)
-	Steady gap (m)
-	Sliding surface
-	Design parameter
	-

LIST OF ABBREVIATIONS

MSBB	Magnetically Suspended Balance Beam
SMC	Sliding Mode Controller
ISMC	Integral Sliding Mode Controller
PID	Proportional-Integral-Derivative
sgn	Signum

CHAPTER I

INTRODUCTION

1.1 Introduction

The magnetically suspended balance beam (MSBB) is a balancing system that used two magnetic coils to balance the beam. These two magnetic coils are placed at each end of the beam. One at the right hand side and one in the left hand side. It can be easily described as a small see-saw.

The whole system is needed to be modeled first by using a state space equation. It has been found that this system is having a non linear model. From this nonlinear model, the linearization process has to be done. After the linearized model has been acquired, the next task to do is to control the beam until it become stable.

In this project, the main task is to control the displacement angle of the beam. If the displacement angle is equal to the set point, it can be concluded that the designed controller is successful in controlling the angle and make the beam become stable. In this project, there are 2 types of controllers that have been used. First, it is the pole placement technique and another one is Integral Sliding Mode Controller (ISMC).

After the model has been acquired, the pole placement technique is first to be used to control the beam. Then followed by ISMC. In both evaluations, the presence of step disturbance is also included in the system.

The performance of both controllers in controlling the MSSB will be evaluated through extensive computer simulation using MATLAB/SIMULINK

1.2 Objective

The objectives of this project are as follows:

- To formulate the complete state-space presentation of Magnetically Suspended Balance Beam (MSBB).
- 2. To design a controller based on the Integral Sliding Mode Control (ISMC) technique.
- 3. To compare the performance of the ISMC with the pole placement technique via simulation result.

1.3 Scope of Project

The work undertaken in this project is limited to the following aspects:

- The nonlinear mathematical model of MSBB based on (Baloh *et al*, 1999), (Lee *et al*, 2001) and (Hu *et al*, 2002) of MSBB is studied and the linear mathematical model is derived afterwards
- 2. The controller based on pole placement technique to control the MSBB is designed.
- 3. The Integral Sliding Mode Controller (ISMC) is designed as described in (Lee *et al*,2001).
- 4. Simulation work using MATLAB/SIMULINK as a platform to prove the effectiveness of the both designed controller.
- 5. Comparative study between the ISMC and pole placement technique will be done.

1.4 Research Methodology

The research work undertaken in the following five development stages:

- 1. The development of linear mathematical model for MSBB.
- 2. The design of controller base on pole placement technique

- 3. The design of Integral Sliding Mode Controller
- 4. Perform simulation using MATLAB/SIMULINK for pole placement and ISMC
- 5. Comparative study of both controllers is done

1.5 Literature Review

An artificial heart pump which employs a hybrid bearing system has five degrees of freedom to be controlled. However, by the proper use of permanent magnets it is possible to reduce the degree of freedom to be controlled to one degree of freedom. Consequently the mathematical model of the artificial heart pump which is suspended by a hybrid system and has one degree of freedom to be controlled is schematically the same as the proposed single-input–single-output (SISO) balance beam mathematical model.

As magnetic bearing applications become more complicated, the need for accurate models of the controlled bearing systems becomes more important. (Baloh *et al*, 1999) in his initial research use an adaptive estimation to identify unknown parameters and disturbances for a simple one dimensional magnetic bearing system.

(Lee *et al.*,2001) in his latest development of a proper controller, use sliding mode control method to reduce the power consumption, a critical problem of the artificial heart pump. From this point of view, sliding mode controller gives a significant contribution in the test of magnetic bearing using a continuous function (Chern and Wu, 1992). It is experimentally evaluated for the reduction of chattering and power consumption, when studying control of the balance beam - a benchmark system for magnetic bearings. He first derived the mathematical model of the magnetically suspended balance beam, and then showed how to design a switching surface to guarantee the desired dynamic behavior of the nominal system. He also had employed an experimental evaluation rather than a complicated mathematical analysis to show the validation of the proposed continuous function. This work is a part of his long term project with his team in developing active magnetic bearings for artificial heart pumps and other applications. The balance beam used in the study is a benchmark system.

1.4 Layout of Thesis

This thesis contains six chapters. Chapter II contains a brief introduction of MSBB. In this chapter also, the mathematical model, which is a nonlinear model of the MSBB is presented. The linear mathematical model of the system is derived and then transforms into the state space representations.

Chapter III presents the brief introduction of pole placement technique. Then the controller is designed using pole placement technique plus integral control. The use of integral control is to eliminate the steady-state error. The controller is designed base on two cases. They are CASE NO.1 and CASE NO.2.

For CASE NO.1, the percentage overshoot, % OS and settling time, T_s that have been used are:

- i. %OS = 10%
- ii. $T_s = 0.1$ second.

FOR CASE NO.2, the percentage overshoot, % OS and settling time, T_s that have been used are:

- i. %OS = 10%
- ii. $T_s = 1$ second.

After all of the feedback vectors, K for both cases are calculated, the simulation diagram can be constructed. All of the simulation diagrams for pole placement technique are presented in this chapter.

Chapter IV presents the brief introduction of sliding mode controller (SMC). Then the controller is designed using the ISMC technique. The use of integral control is to eliminate the steady-state error. The sliding surface $\sigma = Sx$ is introduced. Then, using the MATLAB programming, the values of *S* are calculated. Same as in Chapter III, the ISMC is also designed base on two cases. They are CASE NO.3 and CASE NO.4.

For CASE NO.3, the percentage overshoot, % OS and settling time, T_s that have been used are:

- iii. %OS = 10%
- iv. $T_s = 0.1$ second.

FOR CASE NO.4, the percentage overshoot, % OS and settling time, T_s that have been used are:

- iii. %OS = 10%
- iv. $T_s = 1$ second.

After all of the values of *S* for both cases are obtained, the simulation diagram can be constructed. All of the simulation diagrams for ISMC are presented in this chapter.

Chapter V presents both the results of pole placement technique and ISMC. For every cases there will be two graph presented. The first one is a gap displacement's graph and another one is an input voltage's graph. At the end of this chapter, the comparison between the pole placement technique and ISMC is done.

Chapter VI presents the analysis and discussions about the results that had been obtained in Chapter V. There are six sub chapters in this chapter.

Chapter VII conclude the work undertaken, suggestions for future work are also presented in this chapter.