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Abstract  In general regression neural networks 

(GRNN), one drawback is that the number of 

training vectors is proportional to the number of 

hidden nodes, thus a large number of training 

vectors will produce a larger architecture, which 

is a major disadvantage for many applications.  In 

this paper we proposed an efficient clustering 

technique referred to as ‘similarity index fuzzy c-

means clustering’. This technique uses the 

conventional fuzzy c-means clustering preceded 

by a technique based on similarity indexing to 

automatically cluster input data which are 

relevant to the system. The technique employs a 

one-pass similarity measures on the data to 

calculate the similarity index. This index indicates 

the degree of similarity in which data will be 

clustered. Similar data then undergoes fuzzy c-

means iterative process to determine their cluster 

centers. We applied the technique for system 

identification and modeling and found the results 

to be encouraging and efficient. 

Index Terms  similarity measures, fuzzy c-

means, optimal clustering. 

I.    INTRODUCTION 

The generalized regression neural network or GRNN
was proposed by Donald Specht as an alternative to
the well-known back-error propagation training
algorithm for feedforward neural networks [1]. It is
closely related to the better-known probabilistic 
neural network (PNN) [2], which has been mainly
used for pattern recognition purposes. In the GRNN 
proposed by Specht in [3], the number of training
vectors is proportional to the number of hidden
nodes, thus a large number of training vectors will
produce a larger architecture, which is a major
disadvantage for many applications. One way of
reducing the hidden nodes in the GRNN is through
the use of clustering techniques, however, there has 
not been much attempt on such approach. Two of the
authors in this paper have attempted an alternative
approach in reducing the number of hidden nodes in

GRNN as described in [4], in which the hidden nodes
are added-on and pruned off during training,
however, this does not ensure a judicious structure
for many applications.

In this paper, we proposed an automatic clustering
technique which we referred to as the “similarity
index based fuzzy c-means clustering” technique that
can result in a more optimal GRNN structure. The 
strategy results in a smaller network even with a very
large training data. The optimized GRNN is
demonstrated on two commonly used benchmark
problems in dynamic system identification and 
modeling.

This paper has been organized as follows. In the next
section we briefly describe the original GRNN
approach. In Section III we discuss the proposed 
similarity index based fuzzy c-means clustering
technique. Simulation results show that the
performance of the proposed strategy applied on two
benchmark problems is better than two other existing
clustering techniques. This is discussed in Section
IV. We conclude the approach in the section that
follows.

II. GENERALIZED REGRESSION
   NEURAL NETWORK (GRNN) 

GRNN is based on the estimation of a probability
density function (PDF) from observed data samples
using Parzen window estimates [5].  Supposing
x(vector) and y(scalar) are random variables, and X
and Y are measured values, f(x,y) is defined as the
joint continuous probability density function. If f(x,y)
is known, it is easy to estimate the expected value of
y (the regression of y on X) such that:
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The estimated value Y  is an exponentially

weighted average value of all observed values Yi

given as:
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where Di is defined as

                (3) )iXX(T)iXX(iD2

The smoothing parameter,  controls the
generalization factor to determine how close the

estimate is made to fit the data. If  is large, the

estimates will be smooth while smaller , allows the
estimate to closely fit the data. 

Based on the original GRNN method, the number of 
hidden nodes is therefore proportional to the number
of observed data samples. A large X will result in a 
large number of hidden nodes. In this case, we 
identify a representative for a group of input-output
data that is necessary to optimize the GRNN.

Through clustering, Xi will then represent the values
of the kernel centers, Cj, where j=1,….,p and p is the
number of clusters. And thus substituting this into (3)
yields
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Therefore, by substituting (4) in (2), the estimate

output Y  is defined as )x(ˆ
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where Yj is the kernel centers for the output data.

III.     SIMILARITY INDEX FUZZY C-
MEANS CLUSTERINGTECHNIQUE 

Fuzzy C-means clustering technique in [6] has shown
that input-output data pair can be grouped into
clusters. A center of each cluster will then be
determined to represent a compact description of data
that constitute strong intrinsic similarity with 
partitioned samples in disjoint subset. However, the
selection of centers is restricted among densely
populated region while forfeiting the less populated
area.

In our approach, we first use a simple similarity
measurement to calculate the similarity index among
the input data. The index is compared to the

similarity threshold level, th to determine whether
the data is in the vicinity of each other. The data 
which are in the vicinity of each other will be
clustered and will be further trained using the
conventional fuzzy c-means method to select the
center for its cluster. This approach thus effectively 
reduces the training time compared to the
conventional fuzzy c-means method. Fuzzy c-means
method is considered because it shows good 
performance in reducing clustering problems such as 
local minima, center redundancy and dead center. Its
self-organizing capability to merge homogeneous
clusters gives an added advantage.

A.    Data Clustering using the Similarity Index
       Technique 

A simple one-pass similarity measure process is

carried out to indicate the similarity index, in

between the data. This index determines the degree
of similarity based on the neighborhood function
according to its Euclidean squared distance using the 
equation below

)xxexp( jiij
in

2

(6)

where x is the input vector, for i and j=1,2,…,m.

If in th, where th is the threshold level of
similarity index, it indicates that both data is not
within vicinity of each other and thus regarded as 
‘dissimilar’. If the similarity index of only one datum
lies above the threshold level, then it is unique. This
datum will be assigned as the representation of that
particular cluster.  Figure 1 illustrates how the
clustering algorithm is implemented.

Fig. 1.  Example of clustering using the similarity
index based fuzzy c-means clustering technique

The similarity indices of the first data and other
training vector are calculated. Indices higher than the

threshold level, th will be considered as similar and
thus forming Cluster 1 as shown in Fig. 1. Data p
belongs to Cluster 1 since it is recognized as being
similar to the first data. The center of the cluster is
then decided by using fuzzy c-means, which is
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discussed in the next section. The radius of the
cluster is inversely proportionate to the threshold
level; therefore the radius of the cluster can be
estimated by varying the threshold level.

B.    Fuzzy C-Means Algorithms (FCM)

Fuzzy c-means algorithm uses the reciprocal of
distances to decide the cluster centers and this 
representation reflects the distance of a feature vector 
from the cluster center and the similarities between
the data. It is an iterative algorithm used to divide N 
number of data xj into c cluster sets by finding the

degrees of membership jk  [0,1] and cluster centers 
vk to minimize the objective function J,

2

1 1

N

j

c

k
kvjxm
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where m>1 is the parameter that determines the
overlap factor of the clusters. The number of clusters,
c determines the number of rules that will be used to
form the premise part of the if-then rules in the fuzzy
system. xj for j= 1,2,..,N is the input-output training
data pairs and vk = [v1

k, v2
k, . . . , vn

k]T for k=1,2,..,c
are the cluster centers. jk for j= 1,2,..,N and 
k=1,2,..,c is the degrees of membership of xj in the

kth cluster while
2kj vx  is the Euclidean norm.

By minimizing the objective function, a more
optimal cluster centers will then be resulted. More
information on this technique can be found in [7].

III. SIMULATION EXAMPLES

In order to show the effectiveness of the proposed
technique, we simulated the technique on two
benchmark problems and compared it with two other
existing clustering techniques, namely, the
conventional fuzzy c-means clustering technique and 
the Kohonen self-organizing map clustering
algorithm [8]. All these techniques can be used to
determine the kernels of the GRNN. Two examples
are discussed as follows. 

A. Example 1 
The efficiency of the optimized GRNN is simulated
on the gas furnace data of Box and Jenkins [9]. This
data consists of 296 input-output measurements
where the input is the gas flow rate into the furnace 
and the output is the CO2 concentration in outlet gas.
It is frequently used as a benchmark example for 
testing identification algorithms.

The input variables are chosen as u(t), u(t-1), y(t) and 
y(t-1) while the output is y(t+1). All 296 of the
observed data samples were used to calculate the
centers and the number of clusters using the proposed

approach. Various similarity threshold values, th

resulting in various number of clusters were 
observed. The calculated centers and the number of 

clusters were used to define the parameters of
GRNN.

The result for GRNN-based modeling of Box-Jenkins
Furnace data using the three different clustering
techniques is shown in Figure 2 for 145 clusters.
Figure 2 (a) compares the observed output with the
output of the GRNN using the 3 clustering
techniques as mentioned and Figure 2 (b) shows the
modeling error of the trained data.

(a)

(b)

Fig. 2. Box-Jenkins Data  (a)  training results and (b)
modeling error based on the GRNN modeling using
                  the 3 clustering techniques. 

Table 1 compares the mean squared error of the 
GRNN modeling performance based on the 3
clustering techniques identified.

Table 1.    MSE results based on three different
clustering techniques

Compression Methods MSE

Proposed 0.0703

Conventional Fuzzy C-means 0.4358

Self-Organizing Map 0.5740

B. Example 2 
Another commonly used benchmark problem in
testing identification algorithm is the Mackey-Glass
delay differential equation. The equation was 
proposed as a model for the production of white
blood cells (WBC) [10] that produces a chaotically
evolving continuous dynamic system. The Mackey-
Glass model for the production of WBC is given by
the following equations

)t(x.
)t(x

)t(x.Bx)x(F
dt
dx

10
1

20
10

    (8) 

where x is the density of the circulating WBC, B=0.1
is the random WBC destruction rate and the function
F is the current flux of new WBC into the blood in
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response to the demand created at a time  in the past
(Note, the notation x  stands for x(t - ), that is, the x
value  unit time in the past).

Based on the time series data generated for 1000 data
points in [10], 500 is used as training (for data
compression process) while another 500 is used for
testing. The input variables are chosen as [x(t-18),
x(t-12), x(t-6) and x(t)] while the output is x(t+6).

Various similarity threshold values, th resulting in
various number of hidden nodes is observed. The
MSE for the GRNN using all observed samples as 

the hidden nodes is 0.005 for smoothing factor,
=0.1.

The result for the prediction of 500 test data for
Mackey-Glass WBC production with chaotic
behavior is shown in Figure 3.  Figure 3 (a) compares
the observed output with the output of GRNN with
various data compression techniques while Figure 3 
(b) shows the modeling error of the tested data.

(a)

(b)

       Fig. 3.   Mackey-Glass  Time Series Data
(a)  training results  (b)  modeling error 

Table 2 shows the mean squared error of the
proposed method in comparison with the
conventional fuzzy c-means and self-organizing
clustering for 121 hidden nodes.

Table 2.    Results based on three different clustering
techniques used on the GRNN.

Compression Methods MSE

SIFC 0.0062

FCM 0.0077

SOFM 0.0084

IV. CONCLUSIONS 

We proposed a more efficient clustering technique to
determine a more optimal GRNN structure. This 

rapid learning algorithm is suitable for on-line
dynamic GRNN-based modeling. Compared to the
clustering strategies based on fuzzy c-means and self-
organizing map, the proposed technique is able to
model more accurately as shown in the simulated
results on two dynamic time series.
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