APPLICATION OF FIBER BRAGG GRATING SENSORS IN MONITORING CIVIL ENGINEERING STRUCTURES

CHIN KAI SAN

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil-Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JUNE 2006

ABSTRACT

Fiber Bragg grating (FBG) is finding increasing usage in aerospace guidance, marine structures and civil engineering applications. This is due to their lightweight, non-obtrusive, immunity to electromagnetic interference, high bandwidth and sensitivity, and solid-state properties. Analysis of case studies is carried out to study the applications of Fiber Bragg grating sensors in civil engineering structures. In this research, a fiber Bragg grating sensing system for strain measurement is being described. Low cost and simple grating-based FBG has been used to produce the strain and induce Bragg wavelength shifts. A brief experimental testing on an instrumented metal plate showed that the proposed system is able to perform strain measurements with linear response. A general guideline is proposed on the fabrication and installation of fiber Bragg gratings for structural monitoring in local conditions.

ABSTRAK

Gentian optik parutan *Bragg* semakin banyak digunakan dalam bidang aerospace, struktur marine dan juga bidang kejuruteraan awam. Ini adalah disebabkan oleh ciri gentian optik yang ringan, kurang kelihatan, terjamin selamat daripada gangguan elektromagnet dan mempunyai sensitiviti yang tinggi. Analisa ke atas beberapa kes telah dijalankan untuk menyelidik aplikasi gentian optik parutan *Bragg* dalam struktur kejuruteraan awam. Dalam penyelidikan ini, sistem pengesan gentian optik parutan *Bragg* untuk mengukur terikan telah digambarkan. Gentian optik *Bragg* harga rendah telah digunakan untuk menghasilkan terikan dan menyebabkan perubahan panjang gelombang *Bragg*. Kajian yang ringkas telah dijalankan ke atas plat aluminium dan menunjukkan sistem pengesan terikan yang dicadangkan berupaya mungukur terikan. Panduan umum mengenai pemprosesan dan pemasangan gentian optik parutan *Bragg* telah dicadangkan untuk penggunaan dalam keadaan tempatan.

TABLE OF CONTENTS

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENT	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF GRAPHS	xvii
LIST OF SYMBOLS	xviii

CHAPTER		TITLE	PAGE
1	INTI	RODUCTION	
	1.1	General	1
	1.2	Significance of Research	2
	1.3	Objectives and Scope of Study	3
	1.4	Methodology	4

LITERATURE REVIEW2.1Introduction to Fiber Optic Sensors2.1.1General2.1.2Fiber Optic Sensors vs. Conventional

5 5

2

		Strain Gauges	6
	2.1.3	Applications of Fiber Bragg Gratings	
		sensors	7
		2.1.3.1 Applications to Civil Engineering	
		Structures	7
		2.1.3.2 Applications to Marine Structures	8
		2.1.3.3 Aerospace Applications	9
2.2	Types	of Fiber Bragg Gratings	10
	2.2.1	Common Bragg Reflector	11
	2.2.2	Blazed Bragg Grating	12
	2.2.3	Chirped Bragg Grating	14
2.3	Photo	sensitivity Types of Fiber Bragg Gratings	15
2.4	Measu	arement Parameters of Fiber Bragg Gratings	16
	2.4.1	Strain Measurements	17
	2.4.2	Temperature Measurements	17
	2.4.3	Damage Detection	18
	2.4.4	Acoustic Detection	18
2.5	Advar	ntages of Fiber Bragg Gratings	19
2.6	Limita	ations of Fiber Bragg Gratings	20
	2.6.1	Temperature Compensation and Thermal	
		Strain	20
	2.6.2	Signal Conditioning	21
	2.6.3	Referencing Errors	21
	2.6.4	Packaging	22
2.7	Preser	nt State of Art	23
	2.7.1	Meissner et. al. (1997)	23
	2.7.2	Storoy and Saether (1997)	25
	2.7.3	Davis et. al. (1997)	27

3 MATERIAL, FABRICATION AND OPERATION OF FIBER BRAGG GRATING SENSORS

3.1	Optical Fiber Material	29

3.3	Fabric	ation of Fiber Bragg Grating Sensors	32
	3.3.1	Splicing of Optical Fiber	33
	3.3.2	Strain-Temperature Discrimination	34
3.4	Fiber 1	Bragg Grating Interrogation Techniques	37
3.5	Multip	plexing of Optic Sensors	38
	3.5.1	Time Division Multiplexing-TDM	39
	3.5.2	Frequency Division Multiplexing-FDM	40
	3.5.3	Wave Length Division Multiplexing-WDM	41

4 CASE STUDIES

4.1	General	43
4.2	Beddington Trail Bridge, Calgary, Canada	44
	4.2.1 Additional Findings	53
4.3	Taylor Bridge, Winnipeg, Canada	55
	4.3.1 Additional Findings	59
4.4	Storck's Bridge, Winterthur, Switzerland	60

5 EXPERIMENTAL STUDY OF STRAIN MEASUREMENT

5.1	Objectives	
5.2	Experimental Programme	
	5.2.1 Fiber Optic Cable (FO)	67
	5.2.2 Optical Spectrum Analyzer (OSA)	68
	5.2.3 Tunable Laser Source	69
	5.2.4 Fiber Bragg Grating	70
	5.2.5 Test procedure	70
5.3	Experimental Test Result	72
5.4	Theoretical Result	74
5.5	Discussion of the Results	75

6 PROPOSED GENERAL GUIDELINE FOR THE

6.1	Genera	al	79
6.2	Selecti	ion Criteria of Fiber Optic Structural Sensors	80
6.3	Compa	arative Advantages of Fiber Optic Structural	
	Sensor	-s	81
6.4	Tempe	erature Compensation of Fiber Optic Sensors	82
6.5	Installa	ation of Fiber Bragg grating Sensors	84
	6.5.1	Surface installation on metal structures	85
	6.5.2	Installation on or within concrete structures	88
		6.5.2.1 Installation on existing concrete	
		structure	88
		6.5.2.2 Installation in new concrete	
		structure	88
6.6	Workn	nanship	89

7 CONCLUSION AND RECOMMENDATIONS

7.1	Conclusion	91
7.2	Recommendations	92

REFERENCES

93

LIST OF TABLES

TABLE NO.

TITLE

2.1	Key differences between Type I, IIA and II Bragg gratings	16
2.2	Major Load States in Destructive Bridge Test	26
5.1	Calculation of Bending Strain	73
5.2	Results of the experiment	73
5.3	Results of calculations for theoretical values	75
5.4	Discrepancies between theoretical and experimental results	76

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1	Illustration of common Bragg reflector	11
2.2	Band-pass filters	12
2.3	Blazed Bragg grating	13
2.4	Vector diagram of the Bragg condition for the blazed grating	13
2.5	Chirped Bragg grating	14
2.6	Special FBG sensor frame used for monitoring the traffic response	
	of a bridge crossing the A4 motorway near Dresden	23
2.7	Photograph of the FBG sensor frame shown in Figure 7, at its site	
	location on the bridge	24
2.8	Demodulation system for the FBG sensor employing a long-period	l
	grating as the wavelength-dependent filter for the passive spectral	
	ratiometric system	24
2.9	Scanning DFB laser demodulation system for one of the FBG	
	sensors installed on the Smedstua Bridge	26
2.10	Fiber laser sensor demodulation scheme used for two of the three	
	FBG sensors	26
2.11	Variation of the strain measured by the FBG sensor read by the	
	tunable DFB laser, and a reference foil strain gauge, during various	S
	load states of the Smedstua Bridge	27

TITLE

2.12	Schematic illustration of the FBG sensor demodulation system			
	used for monitoring the sensor array installed on the bridge	28		
2.13	Dynamic response of the sensors in response o the traffic shown			
	in the video clip insets	28		
3.1	Structure of an optical fiber	30		
3.2(a)	Extrinsic fiber optic sensors	31		
3.2(b)	Intrinsic fiber optic sensors	31		
3.3	Partial listing of extrinsic fiber optic sensors application	31		
3.4	Partial listing of intrinsic fiber optic sensors and typical			
	environments sensing applications	32		
3.5	Point-by-point technique for fabricating Bragg gratings	33		
3.6	Optical splice connection	34		
3.7	A temperature-compensated FBG strain sensor in which half of			
	the FBG is strain free and respond only to the local temperature	35		
3.8	Double-peaked reflection spectrum from the FBG that is partially			
	bonded to host structure as indicated in Figure 3.7.	36		
3.9	A fiber optic temperature-compensated strain measuring approach			
	using two collocated FBGs operating at two different wavelengths,			
	850 and 1300 nm	36		
3.10	Basic "broadband illumination" fiber Bragg grating-sensor system	37		
3.11	Basic filter approach to grating wavelength shift detection	38		
3.12	Basic time division multiplexing sensor array	40		
3.13	Forward-coupled array concept	40		
3.14	FMCW interferometric sensor multiplexing	41		
3.15	Wavelength division multiplexed sensor array	42		
3.16	FBG reflectometric WDM	42		
4.1	Beddington Trail Bridge in Calgary during construction and when			
	open to the public in 1993	45		
4.2	Representative samples of (a) Tokyo Rope's CFCC and			
	(b) Mitsubishi Kasei's Leadline	45		

TITLE

4.3	Variation of the Bragg wavelength for an FBG sensor attached to	
	a concrete beam with the load applied to that beam in a failure test	46
4.4	Variation of the Bragg wavelength of an FBG sensor attached to	
	a carbon fiber/PEEK specimen as it is loaded through 320,000	
	cycles of 0 to -2000 microstrain. The two small insets compare the	•
	FBG transmission spectrumbefore and after fatigue cyclic loading	47
4.5	Careful routing of an optical fiber cable in one of the Beddington	
	Trail Bridge girders prior to pouring of the concrete	48
4.6	Diagram showing the placement of FBG sensors and prestressing	
	tendons in one of the tee-bulb precast girders used in the	
	Beddington Trail Bridge	48
4.7	One of the recessed metal outlet boxes used to house and protect	
	the optical fiber leads during concrete pour for one of the	
	Beddington Trail Bridge girders	49
4.8	Testing of the embedded FBG sensor after fabrication of the hot	
	girder for the Beddingotn Trail Bridge	50
4.9	Two views of the junction box for the fiber optic sensor array of	
	the Beddington Trail Bridge	50
4.10	Placement of FBG sensor in the Beddington Trail Bridge	51
4.11	Thermally corrected strain relief for the steel(SS), Tokyo Rope	
	(TR), and Leadline (LL) prestressing tendons used in the	
	Beddington Trail Bridge and observed over a 18 months period	
	by the embedded FBG sensors	52
4.12	Temporal variation of the strain measurements presented in	
	Figure 4.11	53
4.13	Dynamic response of one of the FBG sensors embedded within	
	a girder of the Beddington Trail Bridge to the passage of a truck	
	over the bridge	54
4.14	Precast Taylor Bridge I-beam girder, (below) schematic of the	
	girder and its reinforcement design	55

TITLE

4.15	Schematic of the fiber optic sensing system incorporated into	
	the Taylor Bridge	56
4.16	Installation of FBG sensors into the CFRP shear reinforcement	
	frame for one of the precast concrete girders for Taylor Bridge	57
4.17	Installation of FBG sensors into Taylor Bridge barrier wall	
	Reinforcement frames	57
4.18	Schematic of the 66-FBG sensing system installed in the	
	Taylor Bridge, its demodulation system, and the communication	
	system linking it to the ISIS Central Office	58
4.19	Taylor Bridge in Winnepig	59
4.20	Temporal response of one FBG sensor embedded within the	
	Taylor Bridge to several passes of a truck over the bridge	60
4.21	Storck's Bridge in Winterthur, Switzerland	61
4.22	Cross section of one of the two 35m CFRP stay cables used on	
	the Storck's Bridge	62
4.23	Variation in the strain as measured by several of the FBG sensors	
	attached to one of the CFRP stay cables of the Storck's Bridge	
	during different phases of construction and loading of the bridge	64
4.24	Variation in the strain experienced by one of the CFRP stay cables	5
	of the Storck's Bridge as measured by a number of sensor during	
	a period of the day where there is a gradual rise in temperature	65
4.25	Variation in the strain measured by a number of the FBG sensors	
	attached to one of the CFRP stay cables of the Storck's Bridge	
	during hydraulic loading and unloading	65
5.1	Schematic of the experiment setup	67
5.2	Fiber Optic Cable with Connectors to FBG	68
5.3	Optical Spectrum Analyzer	69
5.4	Tunable Laser Source	69
5.5	Fiber Bragg Grating attached on metal plate	70
5.6	Test setup used for the experiment	71

TITLE

6.1	Temperature compensation FBG strain sensor installed on the		
	surface of a metal	83	
6.2	Environment parameters of storage and operating temperature		
	range	84	
6.3	Fiber optic cable		
6.4	Weldable fiber optic Bragg grating strain sensor		
6.5	FBG sensors mounted onto small metal plate welded to a steel rod 8		
6.6	Schematic illustration of the six steps described in the text for		
	Surface installation of a fiber optic strain sensor	87	

LIST OF GRAPHS

GRAPH NO.		TITLE	PAGE
1	Wavelength, λ_B vs Strain, ϵ		77
2	$\Delta\lambda\!/\lambda_B$ vs Strain, ϵ		78

LIST OF SYMBOLS

С	-	Celcius
cm	-	centimeters
CW	-	continuous wave
DFB	-	Distributed FeedBack
FBG	-	Fiber Bragg Gratings
FRC	-	Fiber-reinforced concrete
J	-	Joule
K	-	wave vector
kN	-	kilo Newton
m	-	meters
MCMV	-	Mine Counters Measures Vessel
MHz	-	Mega Hertz
nm	-	nanometers
OTDR	-	Optical Time Domain Reflector
RNN	-	Royal Norwegian Navy
Т	-	temperature
UV	-	ultraviolet
3	-	strain
π	-	Pie
Λ	-	period of the grating
λ_B	-	Bragg wavelength
Λ_0	-	starting period
Λ_1	-	linear change (slope) along the length of the grating
Δ n	-	Ct^{b} ($C = 4.3x10^{-5}$, $b = 0.32$, t is in minutes)

με	-	micro strain
0	-	degree
Vi	-	magnitudes of the incident
Vs	-	magnitudes of the scattered
θb	-	angle with respect to the fiber axis

CHAPTER 1

INTRODUCTION

1.1 General

Strain gauges are important for their ability to measure mechanical strain in materials and structures. A wide variety of existing methods are used and being developed for measuring strain and in many situations there is a need to make contact strain measurements at high temperature.

A number of researchers have developed fiber-optic strain measurement methods using a wide variety of optical sensor concepts since the late 1970s which includes fiber Bragg gratings. Fiber Bragg gratings have a potential to operate in high temperature environments, provided the fiber is suitably protected. Several different optical sensing techniques have found their way into the market place but fiber Bragg gratings (FBGs) are commercially one of the most successful. It is finding increase usage in aerospace guidance, marine structures and civil engineering applications. This is due to their lightweight, non-obtrusive, immunity to electromagnetic interference, high bandwidth and sensitivity, and solid-state.

The usage of fiber Bragg gratings in civil engineering applications include vibrations sensors, damage detection, and strain, temperature and electromagnetic field sensors.

The development of modern optical-based sensors like fiber Bragg gratings sensors and its usage can lead to real time measurements, monitoring the formation and growth of defects. Optical fiber sensors also allow for data to be transmitted over long distances to a central monitoring location. The main advantage of optical fiber in civil engineering applications is that they may either be attached to an existing structure or embedded into concrete decks and supports.

There are several types of fiber Bragg gratings which includes common Bragg reflector, the blazed Bragg grating, and the chirped Bragg grating. Different types of Bragg gratings show different characteristics and provide different applications to civil engineering structures.

1.2 Significance of Research

There is a growing concern over the state of civil infrastructure in countries over the world. High fraction of infrastructure is deficient and deteriorating which leads to a high demand of maintenance and rehabilitation in civil engineering structure. Owing to the harsh environment found in the construction industry and the large size of civil structures, conventional methods like electrical strain gauges have found to be less efficient in real time measurement. Therefore, techniques have recently been researched that allow the benefits of optical precision while minimizing the disadvantages of conventional instruments. Fiber optic based sensors especially fiber Bragg gratings offers excellent means of a stable strain measurement for long term monitoring. However, there are little knowledge and applications of fiber Bragg grating sensors in civil engineering in this region. Fiber Bragg gratings base sensors are expected to be of significant influence on the development of structural health monitoring techniques.

1.3 Objectives and Scope of Study

The objectives and scope of the study are:

- 1. To study the material properties, working principles and instrumentation requirements of fiber Bragg gratings sensors.
- 2. To study the applications of fiber Bragg gratings in structural monitoring.
- To carry out comparison study of different application of fiber Bragg gratings in bridge structures.
- 4. To propose a general guidelines on application of fiber Bragg gratings for structural monitoring in local conditions.

1.4 Methodology

Step 1: Search for literature review to study on fiber Bragg grating in details. Step 2: Identify the suitable case studies which involved the applications of fiber Bragg grating sensors in civil engineering structures. Step 3: Analyze the selected case studies on the advantages, technical issues and selection criteria of the use of fiber Bragg grating sensors. Step 4: Compare each selected cases and evaluate the results obtained. Step 5:

Propose a guideline on application of fiber Bragg

gratings for structural monitoring in local conditions.

REFERENCES

- 1. A. Othonos, *Bragg Gratings in Optical Fibers: Fundamentals and Applications*, City University, London, U.K.
- Measures, R.M. (1995). Fiber Optic Strain Sensing. In Fiber Optic Smart Structures. New York: John Willey & Sons, Inc.
- 3. Newhook, J.P. and Mufti, A. A. (1996). A Reinforcing Steel-Free Concrete Deck Slab for the Salmon River Bridge, Concrete International.
- Raymond M. Measures, (2001). Structural Monitoring with Fiber Optic Technology, University of Toronto, Downsview, Ontario, Canada.
- Eric Udd, Fiber and Integrated Optics, Volume II, Number 4 1992, Optical Fiber Sensors, Mcdonnell Douglas Electronic Systems Company, Santa Ana, CA 92705.
- 6. John W. Berthold, Babcock and Wilcox, U.S.A., Sensors in Industrial Systems, Aretch House, Boston, London.
- 7. http://www.wipo.int/ipdl/IPDL-CIMAGES/view/pct/getbykey5?KEY=01/38838.010531

- Brian Culshaw, Peter T.Gardiner, Smart Structures The Relevance of Fiber Optics, Smart Structures Research Institute, University of Strathclyde, Scotland United Kingdom.
- Conte, J.P., M. Liu, T. Hatada and A. Kodo (2000). Use of Long Gage Fiber Optic Sensors for Earthquake Response Monitoring and Non-Destructive Evaluation of Structures. Kalima-CUREa Joint Research Program Phase III, California Universities for Research in Earthquake Engineering, April 2000.
- Whitten L. Schulz, Joel P. Conte, Eric Udd, Long Gage Fiber Optic Bragg Grating Strain Sensors to Monitor Civil Structures, Dept. of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095-1593.
- 11. Ignacio Perez¹, Hong Liang Cui², Eric Udd³, Acoustic Emission Detection Using Fiber Bragg Gratings, Naval Air Warfare Center Patuxent River, MD 20670¹, Stevens Institute of Technology, Hobken, NJ 07030², Blue Road Research, Fairview OR 97024³.
- Meissner, J., Nowak, W., Solwik, V., and Klin, T. (1997). Strain Monitoring at a Prestressed Concrete Bridge, OSA, 12th Int. Conf. on Optical Fiber Sensors, Williamburg.
- 13. Storoy, H., and Seather, J., (1997). Fiber Optic Condition Monitoring during a Full Scale Destructive Bridge Test, Fiber Bragg Gratings and Fiber Optic Structural Strain Sensing, Doctoral Thesis Storoy, H., Published by Norwegian University of Science and Technology.
- 14. Davis, M.A., Kersey, A.D., Berkoff, T.A. Jones, R.T., Idris, R.L., and Kodinduma, M. (1997). *Dynamic Strain Monitoring of*

an In-use Interstate Bridge Using Fiber Bragg Grating Sensors, SPIE.

- 15. Grattan, K.T.V. and Meggit, B.T. (1995). *Optical Fiber Sensor Technology*. New York: Chapman & Hall.
- 16. Malo, B., Hill, K.O., Bilodeau, F., Johnson, D.C., Albert, J., (1993). Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques, Electronics Letters.
- Harmer, A.L. (1982). Principles of Optical Fiber Sensors and Instrumentation, Journal of Measurement and Control 15:143-51.
- 18. Lo, Y.L., and Sirkis, J.S. (1997). Simple Method to Measure Temperature and Axial Strain Simultaneously Using One In-Fiber Bragg Grating Sensor, Smart Structure. Mat. 1997, SPIE.
- 19. Xu, M.G., Archambault, J.L., Reekie, L., and Dakin, J.P. (1994a). Discrimination between Strain and Temperature Effects Using Dual-Wavelength Fiber Grating Sensors, Electron.Lett.
- 20. Alan D. Kersey, *Multiplexing Techniques for Fiber Optic Sensors*, Naval Research Laboratory, U.S.A.
- 21. Melle, S.M., Liu, K., and Measures, R.M., (1992). A Passive Wavelength Demodulation System for Guided-Wave Bragg Grating Sensors, IEEE Photonics Technol. Lett., 4.
- 22. Udd, E., Schultz, W., Seim, W., Haugse, E., Trego, A., Johnson, P., Bennet, T.E., Nelson, D. and Makino, A. (2000).

Multidimensional strain field measurement using fiber optic grating sensors. Journal of SPIE 3986:254-262.

- Nelson, A.R., et.al, (1980). Passive Multiplexing System for Fiber Optic Sensors, Appl. Optics, 19.
- 24. Daniele Inaudi, State of the Art in Fiber Optic Sensing Technology and EU Structural Health Monitoring Projects.
- 25. Rizkalla, S. and Tadros, G. (1994). *First Smart Bridge in Canada*, ACI Concrete Internat.
- 26. Abdelrahman, A. A., Tadros, G., and Rizkalla, S.H. (1995). Test Model for the First Canadian Smart Highway Bridge, ACI Struct. J.
- 27. Alavie, A.T., Maaskant, R., Ohn, M. M., Glennie, D., and Measures,
 R.M. (1994c). Application and Characterization of Intracore Grating Sensors in a CFRP Prestressed Concrete Girder, SPIE.
- 28. Nellen, P.M., Anderegg, P., Bronnimann, R., and Sennhauser, U.(1997). Application of Fiber Optical and Resistance Strain Gauges for Long Term Surveillance of Civil Engineering Structures, SPIE
- 29. Nellen, Ph. M., Frank, A. Mauron, P., and Sennhauser, U. (1998). Lifetime and Reliability of Embedded Optical Sensor Fibers, in Fiber Optic Sensors for Construction Materials and Bridges (Farhad Ansari, Ed.)
- 30. Turner, R.D., Valis, T., Hogg, W.D., and Measures, R.M. (1990). *Fiber Optic Sensors for Smart Structures*, J.Intell. Mater Syst. Struct.

- 31. Kersey, A.D., Davis, M.A., Patrick, H.J., LeBlanc, M., Koo, K.P., Askins, C.G., Putnam, M,A., and Friebele, E.J. (1997b). *Fiber Grating Sensors*, J.Lightwave Technol.
- 32. Masskant, R., Alavie, A.T., Measures, R.M. (1998). A Recent Experience in Bridge Strain Monitoring with Fiber Grating Sensors, in Fiber Optic Sensors for Constructional Materials and Bridges (Farhad Ansari, Ed.)
- 33. Bashir Ahmad Tahir, Jalil Ali, Rosly Abdul Rahman. (2005). Strain Measurement Using Fiber Bragg Grating Sensors, Journal from Faculty of Science, University Technology Malaysia.
- 34. Masskant, R.T. Alavie, R.M., Measures, G. Tadros, S.H. Rizkalla, A. Guhathakurta (1997). Fiber optic Bragg Grating Sensors for Bridge Monitoring, J. Cement Concrete Compos.
- 35. Meltz, G. and W.W. Morey, (1991). Bragg Grating Formation and Germanosilsicate Fiber Photosenstivity. Intl. Workshop on Photoinduced Self Organization Effects in Optical Fiber, Quebec City, Quebec, May 10-11, Proc. SPIE.