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ABSTRACT 

The application of the ionic liquids in the palladium catalyzed Heck reactions 
have been reported extensively, however, without proper evidence addressing the 
role of ionic liquids in the catalytic process. In this thesis, a new series of N-alkyl-N-
methylpyrrolidinium trifluoromethanesulfonate salts (46-52) have been synthesized 
to study their potential as the alternative solvents for the Heck reaction, instead of 
using conventional molecular solvents. These salts were synthesized through 
quaternization reaction between N-methylpyrrolidine (38) with several alkyl iodides, 
followed by metathesis reaction with silver trifluoromethanesulfonate, to give the 
desired products (46-52) (yield: 72-96%) with melting points ranging from room 
temperature to 300°C. All the salts obtained were characterized by using 1H and 13C-
NMR spectroscopies, CHN elemental analysis, melting point, density and molar 
conductivity. The effects of alkyl chains towards the melting points and molar 
conductivities of these salts (46-52) have been investigated. The N-butyl-N-
methylpyrrolidinium trifluoromethanesulfonate, [Bmplim]CF3SO3 (49), has been 
chosen as the solvent in the Heck reactions between methyl acrylate (61) and several 
types of aryl bromides (56-60) to give Heck adducts (62-66) with satisfactory yield 
between 37 to 97%. Parameters such as the types of bases, the amount of Pd catalyst 
loadings and the reaction temperatures were also studied in order to optimize the 
percentage conversion of respective Heck adducts (62-66). Results show that, the 
optimum condition to enhance the percentage conversion for this catalytic system is 
by using Et3N as base, Pd catalysts loading at 1.5mmol% and reaction temperature at 
120°C, to achieve the calculated TONs of ~6667. With these conditions, the Heck 
adducts of reactive aryl bromides; 4-bromonitrobenzene (56), 4-bromoacetophenone 
(57) and bromobenzene (58) have achieved an extremely high percentage conversion 
(~100%). As for the unreactive aryl bromides; 4-bromoanisole (59) and 4-
bromoaniline (60), the addition of PPh3 was proved to be useful; however, leads to 
contamination from the by-product which results to problematical separation of the 
desired products (62-66). The ionic liquid of [Bmplim]CF3SO3 (49), can be recycled 
up to three runs, without showing any distinct losses in its activities. 
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ABSTRAK 

Penggunaan cecair ionik dalam tindak balas Heck bermangkinkan paladium 
telah dilaporkan secara meluas, namun ianya tidak disertakan dengan bukti yang 
jelas tentang peranan cecair ionik dalam proses tindak balas pemangkinan ini. Tesis 
ini melaporkan sintesis garam ionik baru bagi siri N-alkil-N-metilpirolidinium 
triflorometanasulfonat (46-52) untuk dikaji potensinya sebagai pelarut alternatif di 
dalam tindak balas Heck, selain daripada penggunaan pelarut molekul konvensional. 
Garam-garam ini disintesis melalui tindak balas pengkuateneran antara sebatian N-
metilpirolidina (38) dengan beberapa alkil halida, diikuti dengan tindak balas 
metatesis dengan argentum triflorometanasulfonat, untuk memberikan hasil yang 
dikehendaki (46-52) (hasil: 72-96%), dengan takat lebur dalam julat suhu bilik ke 
300°C. Kesemua garam ini kemudiannya dicirikan dengan menggunakan 
spektroskopi RMN 1H and 13C, analisis unsur CHN, takat lebur, ketumpatan dan 
kekonduksian molar. Kesan panjang rantai alkil terhadap takat lebur dan 
kekonduksian molar bagi garam-garam ini telah dikaji. Cecair ionik N-butil-N-
metilpirolidinium triflorometanasulfonat [Bmplim]CF3SO3 (49), telah dipilih sebagai 
pelarut dalam tindak balas Heck di antara metil akrilat (61) dengan beberapa jenis 
aril bromida (56-60) untuk memberikan aduk Heck (62-66) dengan perolehan hasil 
yang memuaskan, berjulat di antara 37 hingga 97%. Parameter seperti jenis bes, 
amaun mangkin Pd yang digunakan, dan suhu tindak balas turut dikaji bagi 
mengoptimumkan peratusan pertukaran bagi aduk Heck (62-66) terbabit. Keputusan 
menunjukkan bahawa keadaan paling optimum bagi meningkatkan peratusan 
pertukaran dalam sistem pemangkinan bagi tindakbalas ini adalah dengan 
penggunaan Et3N sebagai bes, amaun Pd sebanyak 1.5mmol% dan suhu tindak balas 
pada 120°C bagi mencapai kiraan TONs sebanyak ~6667. Dengan menggunakan 
parameter-parameter ini, kesemua aduk Heck bagi aril bromida yang reaktif; 4-
bromonitrobenzena (56), 4-bromoasetofenon (57) dan bromobenzena (58) telah 
berjaya mencapai peratusan pertukaran yang sangat tinggi (~100%). Bagi sebatian 
aril bromida yang tidak reaktif pula; 4-bromoanisol (59) dan 4-bromoanilina (60),
penambahan PPh3 didapati membantu meningkatkan peratusan pertukaran hasil, 
tetapi, pada masa yang sama, ia menyebabkan kehadiran bendasing yang membawa 
kepada masalah pengasingan aduk-aduk Heck (62-66) yang dikehendaki. Cecair 
ionik [Bmplim]CF3SO3 (49) didapati boleh dikitar semula sehingga tiga kali 
penggunaan tanpa menunjukkan kehilangan yang jelas dalam aktivitinya. 
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CHAPTER 1 

INTRODUCTION

1.1 General Introduction 

The design of chemical products and processes that reduce or eliminate the 

use and generation of hazardous substances is the main goal of green chemistry [1].

The identification of environmentally benign solvents and separation processes is 

one of the most active research areas in this field today. Most traditional chemical 

processes use large quantities of organic solvents, because of their volatility, 

flammability and toxicity are incompatible with the aims of green chemistry. An 

ideal solvent for green chemistry should have low volatility, be chemically and 

physically stable, easy to handle, recyclable and reusable. Recently, possible 

replacements for traditional solvents that are more compatible with the aims of green 

chemistry are ionic liquids. 

Ionic liquids are simply liquids composed entirely of ions [2]. They have 

garnered increasing interest in the last few years as novel solvents for synthesis, 

separations, electrochemistry and process chemistry. Organic ionic liquids were 

known for almost a century, but it was only during the last decade or so that they 
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emerged as important materials with a growing application base sufficient to sustain 

interest in their development. 

1.2 Background of Research and Problem Statement 

The Heck reaction has been studied intensively and numerous excellent 

surveys on a wide variety of different aspects of this reaction have been published 

[3], including; i) the development of ligands for this reaction, ii) advances in 

mechanistic studies, iii) the reactivity and the selectivity of the reactions, and iv) 

application in natural products synthesis. This thesis will discuss the latter topic, in 

which the use of ionic liquids as the solvent in the Heck reactions of aryl bromides. 

Although there have been numerous reports on the use of ionic liquids in the 

Heck reactions [4-6], the fundamental studies of the relationship between the 

properties of ionic liquids and the improved performance compared to the 

conventional solvents are still rare. For example, many studies have found that the 

reaction rates, conversions and selectivities are enhanced to different degrees, though 

the reason why the ionic liquids show higher efficiency or specificity in the reaction 

is still an open question. 

Moreover, there appears to be some confusion concerning the reactivity of 

aryl halides. In many studies, reactive aryl iodides substrates are routinely used to 

test the efficiency of a novel catalytic system, when it has been clearly demonstrated 

that even unliganted palladium precursors can easily achieved extremely high 

turnover numbers (TONs), where most of them were up to millions [7]. Furthermore, 

the couplings of different types of aryl halides with methyl acrylate have very 

different rate-determining steps. This has important implication for the development 

of catalysts for the activation of unreactive aryl halides such as bromides and 
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chlorides. Despite numerous reports of catalytic systems with impressive TONs, the 

majority of these studies were performed using electron-poor aryl halides, typically 

4-bromoacetophenone and electron-poor olefins such as acrylates and styrenes. 

The current challenge lies in the development of catalytic systems that will 

activate unreactive aryl halides towards Heck catalysis, especially aryl bromides and 

chlorides where the TONs still remain in the lower hundreds. Although certain 

aspects of this thesis have been covered by previous researchers [8, 9], a study 

addressing the Heck reactions of aryl bromides is considered to be particularly 

timely. 

Homogeneous catalysis offers many advantages such as high selectivity, low 

investment cost and flexible operations under mild condition with easy mixing and 

heat removal. The quests for new catalyst immobilization or recovery strategies to 

facilitate its reuse are incessant. An approach which has been industrially applied is 

the use of liquid-liquid two-phase systems wherein the catalyst is immobilized in a 

polar liquid phase, and water operates as the second phase [10]. This approach is 

effective towards organic products, which are poorly miscible. Although the use of 

water has been largely developed, it still has some limitations; it may be coordinating 

towards the active metal centre, react with the metal-carbon bond or low solubility 

for some reactants [11]. Moreover, the high consumption of the expensive palladium 

catalyst makes it a relatively impractical process on an industrial scale. Therefore, 

recycling the catalyst is a key objective. 

To overcome these problems, this research is intended to answer some 

curiosities, if not all, regarding the application of ionic liquids in the Heck reaction 

by introducing a new series of ionic liquids of N-alkyl-N-methylpyrrolidinium 

trifluoromethanesulfonate salts, R[Mplim]CF3SO3 (Figure 1.1), as the solvent for this 

fascinating reaction. Furthermore, the discussion will be based on the optimization of 

the ionic liquids system rather than modification of the complicated catalyst 

precursors. The purpose of this thesis is therefore to present the underlying principles 
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and outcomes of the latest efforts to activate these more difficult substrates for Heck 

catalysis, thus highlighting the challenges in this highly competitive area. 

N
+

H3C R

1

23

4

5

CF3SO3̄

Figure 1.1 General structure of the N-alkyl-N-methylpyrrolidinium trifluoro 

methanesulfonate salts 

1.3 Objectives of Research 

There are three key objectives of this research. Firstly, to synthesize a new 

series of room temperature ionic liquids (RTILs) derived from the N-alkyl-N-methyl 

pyrrolidinium cation, R[Mplim]+ and the trifluoromethanesulfonate anion, CF3SO3¯ .

Secondly, to apply these ionic liquids as the solvents to replace the conventional 

organic solvent in the Heck reactions of several aryl bromides with different 

reactivities. Finally, to determine the optimum conditions for the reaction to proceed 

in the ionic liquid mediums by varying the parameters of the reaction; the bases, 

palladium catalyst loadings, reaction temperatures and addition of co-ligand. 
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1.4 Scope of Research 

The first objective was achieved by reacting N-methylpyrrolidine (38) with 

several alkyl iodides through the quaternization process to produce a series of iodide 

salts (39-45). Next, these iodide salts (39-45) underwent anion-exchange with silver 

trifluoromethanesulfonate through the metathesis reaction to obtain the desired ionic 

liquids (46-52). These ionic liquids (46-52) were then characterized by using the 

digital melting point apparatus, the conductivity meter, the proton and carbon NMR 

spectroscopies and the CHN elemental analysis. 

For the second objective, the ionic liquid which gave the highest yield and 

purity was chosen as the solvent in the palladium-catalyzed Heck reactions. In this 

reaction, methyl acrylate (61) was reacted with five aryl bromides with different 

reactivity; 4-bromonitrobenzene (56), 4-bromoacetophenone (57), bromobenzene 

(58), 4-bromoanisole (59) and 4-bromoaniline (60), respectively. The Heck adducts 

(62-66) were then characterized by using the digital melting point apparatus, the 

proton and carbon NMR spectroscopies and the CHN elemental analysis. 

Finally, the third objective was achieved by conducting all the experiments in 

various combination of the reaction components; bases (Et3N, NaHCO3, Na2CO3 and 

NaOAc), Pd catalyst loadings (1.0, 1.5 and 2.0 mmol%) and reaction temperatures 

(80, 100 and 120°C). The percentage conversion rate of the Heck adducts (62-66)

were determined from the proton NMR spectra. The system which gave the highest 

conversion rate for the entire Heck adducts (62-66) was considered as the optimum 

reaction conditions. 
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1.5 Thesis Outline 

This thesis is divided into 5 main chapters. The main idea and objectives of 

this thesis are described in Chapter 1, followed by a concise discussion on literature 

reviews in Chapter 2. Chapter 3 provides the discussion on the findings of the 

experiments, while the experimental methods were described in Chapter 4. Finally, 

Chapter 5 provides the summary of all the chapters and suggestions for the future 

works.
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