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ABSTRACT 

 

 

 

This thesis presents a resolved acceleration control (RAC) and intelligent 

schemes of active force control (AFC) as approaches for the robust motion control of a 

mobile manipulator (MM) comprising a differentially driven wheeled mobile platform 

with a two-link planar arm mounted on top of the platform. The study emphasizes on the 

integrated kinematic and dynamic control strategy in which the RAC is used to 

manipulate the kinematic component while the intelligent schemes are implemented to 

compensate the dynamic effects including the bounded known/unknown disturbances 

and uncertainties. The proposed intelligent schemes are based on iterative learning 

control (ILC) and knowledge-based fuzzy (KBF) strategies. The effectiveness and 

robustness of the proposed schemes are investigated through a rigorous simulation study 

and later complemented with experimental results obtained through a number of 

experiments performed on a fully developed working prototype in a laboratory 

environment. A number of disturbances in the form of applied constant, vibratory and 

impact forces are deliberately introduced into the system to evaluate the system 

performances. The investigation clearly demonstrates the extreme robustness feature of 

the proposed control schemes compared to other systems considered in the study. 
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ABSTRAK 

 

 

 

Tesis ini membincangkan suatu kaedah kawalan pelerai pecutan (RAC) dan 

kawalan pintar daya aktif (AFC) yang lasak terhadap sebuah robot pengolah mudah 

gerak (MM) melibatkan sebuah pelantar beroda yang dipacu pacu secara pembezaan dan 

mudah alih bersama dengan sebuah pengolah lengan planar dua-sendi yang dipasang di 

atas pelantar. Kajian ini mengutamakan gabungan strategi kawalan kinematik dan 

dinamik yang mana RAC digunakan untuk mengolah komponen kinematik manakala 

skema AFC diterapkan untuk memampas kesan dinamik termasuk gangguan dan 

keadaan tak menentu. Skema pintar yang dicadangkan adalah berasaskan strategi 

kawalan pembelajaran berlelaran (ILC) dan kaedah logik kabur berasaskan pengetahuan. 

Kebolehan dan kelasakan skema yang dicadangkan dikaji dan diuji melalui kaedah 

simulasi dan seterusnya ditentusahkan melalui hasil eksperimen yang dibuat 

menggunakan sebuah prototaip robot pengolah mudah gerak yang dibina di dalam 

makmal. Sejumlah gangguan berupa daya malar, getaran dan dedenyut dikenakan 

kepada sistem robot untuk meneroka kebolehan dan keberkesanan sistem. Hasil simulasi 

dan eksperimen menunjukkan kelasakan dan keberkesanan skema kawalan yang 

dicadangkan berbanding dengan sistem lain. 
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CHAPTER   1 

 

 

 

INTRODUCTION 

 

 

 

1.1 General Introduction 

 

Mobile manipulator is basically a conventional robotic arm mounted on a 

moving base. It is analogous to a human being with respect to the body and arm 

sections. He or she must control these parts integrally when performing a dynamic 

task to achieve the desired performance. As an example, a welder carrying out a 

welding operation needs to carry out the task by coordinating (control) 

simultaneously and continuously both the arm and body movements so that a 

favourable effect could be obtained from executing such task. It is indeed more 

challenging when human operators are replaced by robots or automated machines. 

Comprehensive analytical studies on the kinematics, dynamics and control aspects of 

the physical system should be carefully carried out in order to come up with an 

alternative system that produces results comparable with those of human operators.  

 

The main subject of this thesis is the control of a mobile manipulator. As can 

be found in common industrial plants, robotic manipulators are conventionally bolted 

onto the floor, implying that the tasks involving a ground-fixed manipulator must be 

carefully configured within a limited volume of the workspace so that they (the 

tasks) can be executed in an efficient way. It is a well-known fact that the 

configuration is even more restrictive when a dextrous manipulation is required 

because the manipulator workspace is only a small part of the whole workspace. 
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Thus, attaching the manipulator onto a mobile platform offers the distinct advantages 

of dextrous manipulation and considerably larger workspace than the fixed-platform. 

 

In recent years, there has been a great deal of interest in research on mobile 

manipulator (Yamamoto and Yun, 1996; Lin and Goldenberg, 2001; Umeda and 

Yakoh, 2002; and Tanner et al., 2003). The study of mobile manipulator is mostly 

concentrated on the following main question: how to move, navigate or manoeuvre 

the system efficiently from one location to another in a structured or unstructured 

environment. The study normally focuses on two aspects, i.e., the kinematics and the 

dynamics of the system. Each has a different domain of analytical study with 

different goal setting, but the final or ultimate goal should be clearly defined in terms 

of the robot’s capability to operate effectively within the specified workspace and 

environment with an additional feature – robustness, as a key factor in the 

development of the robotic system. The kinematic analysis is particularly useful to 

describe the robot’s workspace and motion path planning tasks including obstacles 

avoidance, collision free moving capability and manoeuvrability, while the dynamic 

analysis deals with robustness in actual implementations. 

 

Intelligent Active Force Control (AFC) combined with a resolved 

acceleration control (RAC) applied to the motion control of a mobile manipulator is 

the central theme of the proposed study. The work on AFC that was initiated by 

Hewit and Burdess (1981) can be regarded as one of the potentially robust force 

control schemes. A main feature of AFC is that the scheme is theoretically viable and 

can be practically implemented to the control of dynamical systems including robots 

(Hewit and Burdess, 1986, Hewit and Morris, 1996, Mailah, 1998). The AFC method 

involves a direct measurement of the acceleration and force quantities plus the 

appropriate estimation of the inertia (or mass) matrix to trigger its control strategy. 

The RAC part that was initially proposed by Luh et al. (1980) is a powerful 

acceleration mode control method that is still considered as one of the best control 

options due to its simplicity in real-time implementation. In the study, the RAC was 

designed as the basic kinematic controller while the AFC was applied as the dynamic 

counterpart. 
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1.2 Research Background 

 

The study of motion control of mobile manipulators spans several different 

research domains and that it usually focuses on the kinematic and/or dynamic 

analyses. Research on kinematic analysis and dynamic analysis as two separate 

subjects have been extensively studied, but a study on integrating both the kinematics 

and dynamics is fairly new and relatively little research has been done.  

 

In terms of its movement, a mobile manipulator can be classified as either 

holonomic or nonholonomic. The former can be simply described as one that can 

move in all directions without restriction. In classical mechanics, a nonholonomic 

system can be described as a rigid disk rolling on a horizontal plane without slippage 

(Goldstein, 1980) which in the control perspective is equivalent to a wheeled mobile 

robot driven by two wheels differentially. Theoretically, if a mechanical system 

exhibits certain symmetry properties, it is well known that there exist conserved 

quantities. If these conserved quantities are not integrable, then a class of 

nonholonomic systems is thereby obtained (Kolmanovsky, 1995). The kinematic 

control of mobile manipulators which the moving base subjects to these constraints 

had been widely investigated in the last decade, such as using Jacobian Transpose 

Control (Hootsmans et al., 1992), adaptive stabilization (Colbaugh, 1998), genetic 

algorithm (Sakka and Chocron, 2001), repeatability analysis of Jacobian inverse 

kinematics (Tchon, 2002), readhesion control using external sensors (Umeda and 

Yakoh, 2002), and cooperative mobile manipulators (Tanner et al., 2003). From the 

literatures reviewed, the kinematic control problem on mobile manipulators had been 

well established. 

 

On the contrary, research that deals with both integrating kinematic and 

dynamic control is fairly new, especially on issue related to real-time implementation 

that directly involves computational costs and feasibility in hardware design. In this 

case, only a limited number of works can be found in the last decade, such as 

dynamics interaction (Yamamoto and Yun, 1996), and neural networks-based robust 

control (Lin and Goldenberg, 2001).  
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It is therefore proposed that the performed study dwells on the kinematic and 

dynamic control through the effective integration of RAC and AFC which is thought 

to be the main contribution of the thesis. The RAC deals with the kinematics while 

the AFC deals with the dynamics of the system. The RAC scheme is a powerful 

acceleration mode control method that could improve the performance of the existing 

conventional servo control as reported in a number of studies (Muir and Neuman, 

1990; Kircanski and Kircanski, 1998; and Campa et al., 2001). However, basically 

RAC is equivalent to a proportional-derivative control that cannot be classified as a 

robust control without additional robust control schemes. The AFC method has been 

rigorously studied by a number of researchers particularly in areas related to robotic 

control applications (Hewit and Burdess, 1981; Uchiyama, 1989; Hewit and Marouf, 

1996; Mailah, 1998; and Kwek et al., 2003). The AFC strategy is one of the practical 

force control methods that can be implemented in encountering the robot force 

control problems. The advantage of AFC method is that it has the ability to 

compensate the unpredictable external (and internal) forces effectively and reliably 

without rigorous mathematical computation. The capability of AFC method lies on 

how efficient the real-time inertia matrix of the robot could be estimated. Thus, the 

estimation technique of the inertia matrix is central to the implementation of the AFC 

strategy. More specifically, in the case of mobile manipulators, the AFC 

implementation has not been found in the literatures so that there exists possible 

research propositions that ought to be investigated and resolved particularly on the 

implementation of the AFC to the nonholonomic mobile manipulator system and the 

appropriate acquisition and estimation of the inertia matrix as duly described in the 

thesis. 

 

 

 

1.3 Problem Statements and Formulation 

 

In the study the RAC was developed as the integrated simplified mobile 

platform coordinate and heading angle, (xv, yv, φ) control   and   the   XY   Cartesian   

planar manipulator’s tip position coordinate, (xm, ym) control. By using this RAC-

based x, y, and heading angle control instead of the velocity and heading angle 
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control as suggested by Umeda and Yakoh (2002), the proposed control scheme 

would have a more flexible position, velocity and acceleration control. This 

flexibility is gained by the use of simultaneous input reference position, velocity and 

acceleration parameters. To tackle the robot’s dynamic problem particularly those 

involving disturbances and uncertainties, the AFC schemes were incorporated into 

the control scheme. In general, the total control scheme was RACAFC. 

 

An extension of an AFC by using an integral control to the existing pure 

(crude) AFC was proposed and investigated. Based on classical feedback control 

theories,  by considering the fixed  inertia matrix estimator  as a proportional (P) 

term in the acceleration control mode, an integral (I) term can then be incorporated to 

the proportional control as a steady-state error refinement. The scheme was 

RACPIAFC. 

 

As one of the proposed intelligent mechanisms, an iterative learning-based 

AFC was also designed, namely RACILAFC. The iterative learning method that was 

first introduced by Arimoto (1984) has been extensively developed by researchers in 

the case of robotics (Liang and Looze, 1993; Moon et al., 1997; and Norrlof, 2002). 

The iterative learning method is known as one of the effective adaptation methods 

that can iteratively seek the optimum value of the control parameters. As an 

extension, a combination of the RACPIAFC and RACILAFC was also proposed, 

namely RACILPIAFC. In this case, the iterative learning procedure was used to 

optimise the proportional and integral parameters of the PIAFC.  

 

A hybrid method namely Knowledge-Based Fuzzy (KBF) AFC was also 

proposed in the study. The concept of this scheme is to estimate the inertia matrix of 

the system using fuzzy logic (FL) system. The inference mechanism is based on a 

prior knowledge investigation of the system operations. For uncertain dynamic 

problems, it is usual to combine FL with online learning algorithms, such as 

Adaptive Network-based Fuzzy Inference System (Jang, 1993; Mar and Lin, 2001; 

and Hassanzadeh et al., 2002). An example of knowledge-based fuzzy method 

applied to a feedback control can be found in Rhee et al. (1990). The KBF concept 

has mostly been found in system identification and data retrieval system, such as 
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dynamic voltage security (Tso et al., 1996), classification and rule generation (Mitra 

et al., 1997), heuristic learning-based KBF (Ouchi and Tazaki, 1998), and automatic 

model-based image segmentation system (Nanayakkara and Samarabandu, 2003). In 

this study, the KBFAFC was proposed as an alternative robust motion control of the 

mobile manipulator. 

 

From the proposed schemes mentioned above, the problem formulation of the 

study can be summarised as follows:  

 

1. In a continuous mobile manipulator motion with a continuous trajectory 

tracking the kinematic control should be integrated with the dynamic 

control effectively to perform the proper robust motion control. In this 

case, the combination of RAC and AFC scheme would satisfy the 

robustness requirements of the motion control. 

2. In a continuous mobile manipulator operation with known/unknown 

disturbances the multiplication of the inertia matrix in the AFC scheme 

should be estimated correctly and in real-time due to the non-linear 

characteristics of the robot and its environment. 

3. It is therefore necessary to implement the proper estimation techniques 

namely PIAFC, ILAFC, ILPIAFC, and KBFAFC. 

4. An experimental investigation is then important to validate the 

feasibility for real implementation. 

 

 

 

1.4 Research Objectives 

 

The objectives of the research are as follows: 

 

1. To investigate theoretically the feasibility of implementing the concept 

of proportional-integral (PI), IL, and KBF methods to the RACAFC 
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scheme applied to the mobile manipulator in the form of a detailed 

simulation study. 

2. To evaluate the systems’ performance in terms of its robustness and 

effectiveness.  

3. To integrate the hardware and software in the form of an experimental 

mobile manipulator with the implementation of the proposed schemes.  

 

 

 

1.5 Research Scope, Strategy and Methodology  

 

The scope of the project encompasses both theoretical and experimental 

aspects of the proposed mobile manipulator control strategies. The study focused on 

the implementation of the RACPIAFC, RACILAFC, RACILPIAFC, and 

RACKBFAFC in conjunction with the RACAFC scheme. These were applied to a 

mobile manipulator system comprising a nonholonomic differentially-driven 

wheeled mobile platform with a rigid two-link planar manipulator mounted on top of 

the platform that was assumed to operate horizontally. The theoretical framework 

involves the study of various underlying principles related to the AFC methods, 

kinematics and dynamics of the system, proportional-integral and iterative learning 

control, and knowledge-based fuzzy technique. This was transformed into a rigorous 

modelling and simulation study of the integrated schemes assuming a number of 

prescribed conditions and limitations. The performances of the proposed systems 

were evaluated and consequently compared to RAC and/or RACAFC counterparts 

for the purpose of benchmarking. The design and development of the hardware in the 

form of an experimental mobile manipulator was envisaged using mechatronics 

approach; integrating mobile manipulator with sensors and actuators via a PC-based 

controller. In addition, a simple embedded controller system based on Microchip IC 

PIC16F877 was implemented and introduced as a prototype to exhibit the practical 

implementation of the RACAFC scheme in the form of an autonomous mobile 

manipulator. 
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The proposed research strategy in the form of a flow chart is graphically 

shown in Figure 1.1.   
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Figure 1.1: The research strategy in a flowchart. 
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From Figure 1.1, the research methodology pertaining to the project can be 

briefly described as follows:  

 
1. Review literatures on areas of mobile manipulator robot, force control 

and intelligent control.  

2. Study the AFC mechanism and related works applied to the control of 

mobile manipulator.  

3. Identify the problems of the existing AFC strategies and other related 

issues involving concepts of proportional-integral, iterative learning, and 

knowledge-based fuzzy control.  

4. Design and simulate the proposed basic RACAFC applied to the mobile 

manipulator. 

5. Design and simulate the proposed extended RACAFC scheme in the 

form of RACPIAFC, RACILAFC, and RACILPIAFC. 

6. Test and evaluate the robustness of the schemes by introducing 

disturbances. Investigate the knowledge generated from these simulation 

studies.  

7. Design and fully develop a laboratory scale mobile manipulator to verify 

the proposed methods.  This includes the development of the hardware 

and software (C program), electronic interfacing devices, motors, sensors 

and mechanical mobile manipulator robot. 

8. Perform an initial experimental investigation for the RAC and or 

RACAFC and investigate the knowledge from this experiment. 

9. Design the fuzzy reasoning and inference mechanisms for the KBF 

method. A suitable database from the simulation and experimental study 

should be gathered for the decision making process. 

10. Design the complete RACKBFAFC based on the previous knowledge 

investigation. 
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11. Simulate the proposed RACKBFAFC. Test and evaluate the robustness 

of the scheme by introducing disturbances. 

12. Analyze the results and compare the system performances among the 

proposed methods. 

13. Perform a series of experiments, analyze the results, discuss and compare 

them to those obtained theoretically. 

 

 

 

1.6 Research Contributions 

 

The main research contributions from this study are as follows: 

 

1. New approximation methods that could make decision to compute 

continuously and on-line the appropriate inertia matrix of the mobile 

manipulator in order to improve the AFC strategy in the form of PIAFC, 

ILPIAFC, and KBFAFC. 

2. New robust motion control schemes of the mobile manipulator in the 

form of the RACAFC, RACPIAFC, RACILAFC, RACILPIAFC, and 

RACKBFAFC. 

3. A PC-based controlled laboratory-scaled mobile manipulator comprising 

a differentially-driven (wheeled) mobile robot/platform and a two-link 

planar manipulator mounted on top of the platform with a vertical gripper 

at the tip end position. This includes the development of the system 

hardware (electronic interfacing devices, motors, sensors and mechanical 

mobile manipulator) and software (a graphical real-time monitor & 

mobile manipulator online control in C program). 

4. An autonomous mobile manipulator based on an embedded controller 

system. 
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1.7 Organization of Thesis 

 

The thesis is organized into nine chapters. In Chapter 2, the fundamental 

concepts, underlying theories and reviews of the main topics of research pertaining to 

kinematic and dynamic control of mobile manipulator, RAC, AFC, iterative learning 

control and knowledge-based fuzzy are described. The basic principles of the well 

known RAC and the pure AFC method is first discussed with special attention 

focused on the method to enhance the strategy using intelligent means such as the 

use of neural network, fuzzy logic, and KBS (knowledge-based system) methods. 

The KBS inference mechanism, i.e. knowledge investigation and validation, 

knowledge representation, knowledge acquisition and knowledge processing are 

discussed as well as the KBS procedures. A preliminary discussion on the use of 

knowledge-based method to a fuzzy system is also addressed.  

 

Chapter 3 describes a simulation study of the new proposed scheme of 

Resolved Acceleration Control combined with Active Force Control (RACAFC) 

which employs a crude approximation on the inertia matrix estimation. This 

proposed scheme is considered as the basic robust motion control using AFC applied 

to the mobile manipulator that deals with the kinematics and dynamics as well. 

Based on this the new AFC based on a proportional-integral approach and the 

intelligent control using iterative learning and knowledge-based fuzzy could be 

developed and realized as presented in Chapters 3, 4 and 5. The tuning procedures of 

the inertia matrix estimator of the mobile platform are rigorously discussed in this 

chapter as well as for the manipulator. Some disturbances introduced to test the 

robustness of the proposed scheme are also described. 

 

Chapter 4 presents a simulation study of the proposed extended version of the 

RACPIAFC (Resolved Acceleration Control and Proportional-Integral Active Force 

Control). This chapter provides a discussion on the advantages of using proportional 

and integral term to the existing AFC. Some results on the operation with 

disturbances are discussed by comparing the performances with pure AFC. 
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Chapter 5 discusses the next two proposed schemes, i.e., RACILAFC and 

RACILPIAFC. The first scheme incorporates a pure PD-type iterative learning 

control (ILC) to the AFC based on the tracking error. The second is a combination of 

the RACILAFC and RACPIAFC. The chapter provides alternative intelligent 

procedures applied to AFC, i.e. iterative learning, proportional-integral control, and 

the combination of both. A simulation study with the same parameters used in the 

previous scheme was performed.  

 

Chapter 6 presents a simulation study of the main proposed scheme, i.e., 

Resolved Acceleration Control and Knowledge-Based Fuzzy Active Force Control 

(RACKBFAFC). The complete procedure to realize the knowledge-based fuzzy 

including the procedures of knowledge investigation, validation, representation, 

acquisition and processing is discussed.  The procedure to investigate the knowledge 

is highlighted.  As the most important part of knowledge based fuzzy, i.e., how the 

knowledge can be used as the reasoning mechanism to design the proper fuzzy 

output function is then described. This chapter also presents the complete results of 

the simulation study subjected to several conditions of the kinematic and dynamic 

aspects including some disturbances effect.  

 

Chapter 7 discusses a comparative study of the RACAFC, RACPIAFC, 

RACILAFC, RACILPIAFC, and RACKBFAFC. The comparison is mainly focused 

on the generated track errors signal patterns, the computed estimated inertia matrix 

and the applied starting current and torques due to a number of varied external 

disturbances.  

 

Chapter 8 describes the design and development of the experimental mobile 

manipulator (a differentially driven mobile robot/platform with a two-link planar 

robot arm mounted on the top of the platform) with graphical and real-time monitor 

control-programming feature. This chapter also provides a programming and 

experimental procedure based on the RAC and RACAFC schemes. 

 

Finally, Chapter 9 concludes the research project. The directions and 

recommendations for future research works are also outlined. A list of publications 
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related to the study and some of the specifications and datasheet of components used 

for developing the experimental mobile manipulator are enclosed in the appendices.  
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