
Development of Run-Time UML for JAVA
Programming Language

Sulaiman Mohd Nor Mohamed Khalil Hani Mohsen Ashourian G o h Hock Ann
sulaiman@suria.fke.utm.my khalil@suria.fie.utm.my mohsena@ieee.org RunTimeUml@yahoo.com

MiCE Department,
Faculty of Electrical Engineering

Universiti Teknologi Malaysia
8 13 10 UTM Skudai, Johor, Malaysia.

Abstract: Run-time modeling is a method of using the
execution data for modeling the real process going on in a
program. This paper introduces a run-time modeling
scheme as a tool for software visualization and Unified
Modeling Language (UML) is selected to accomplish this
concept. To develop a Run-Time UML, it is necessary to
devise user-friendly methods for showing static and
dynamic modeling diagrams by mapping source codes
information and real time execution data to UML diagrams.
The proposed scheme is planned to be implemented into an
Integrated Development Environment (IDE) using Java
programming language.

Keywords: Software visualization, Unified Modeling
Language (UML), Java.

I. INTRODUCTION

Software industry is experiencing a shift from procedural
and linear paradigm into object-oriented. It could also say
that it has move from subroutines into subsystems [3] . The
shift is because the object-oriented approach promotes
better modularity and reusability. Many other technologies
also contribute to object-oriented software development.
They are Component-Based Software Engineering
(CBSE)[l], design pattern and the vast resource of
Application Program Interfaces (API) available as a tool to
assist the developers.

The fast growing of object-oriented software makes the
task of understanding and debugging become a
cumbersome if not impossible task. Furthermore, in order
to improve software development, it is necessary to
facilitating the process of comprehending existing
programs. Software comprehension is the stumbling block
that should be encountered in any effort to improve
software industry. [6]

As the demand for software comprehension has escalated,
many of the related fields such as software modeling,
software visualization has also gain considerable attention
from the developers. Software modeling is the field of
modeling software before the development stage whereas
software visualization is the discipline that makes use of
various forms of imagery to provide insights and
understanding and to reduce complexity of the existing
software system under consideration [4].

However, these fields are far from perfect. This is because
showing a thing that cannot be seen by the naked eye can
be a difficult task [2]. Despite the effort of many
developers, the problem still persists and lots of them
remain unsolved. Thus, software comprehension proves to
be a promising frontier to look into.

This paper centers on a run-time modeling scheme as a tool
for software visualization. Run-time modeling is a method
of using the execution data for modeling the real process
going on in a program. The final goal is to integrate Run-
time UML into an Integrated Design Environment (IDE)
for developer to use. This project is implemented using
UML and Java programming language.

11. ARCHITECTURE AND IMPLEMENTATION

The architecture of the proposed system was made to be as
simple as possible to avoid too much development time.
The project adopted the component based software
architecture, swing architecture and also Java Platform
Debugging Architecture (JPDA). JPDA provides a solution
to reach into the Java Virtual Machine and get the run-time
or execution information. A debugger implements this
architecture. These collected data will be used later to show
the dynamic execution of a program.

In order to jump-start the project the widely available open-
source software from the Internet was used. Their
implementation are studied and set as a guide to ensure
better quality software. Besides; this will give more focus
on the main objective of the project, which is to build a
Run-Time UML. The components considered for
development for are:

1. UML editor
2. Text editor
3 . Project navigator
4. Compiler and parser
5. Debugger
6. Run-Time UML viewer

Most of the above components are self-explainable.
However, further clarification is needed to differentiate
between data from UML editor and Run-Time UML
viewer. The UML editor contain UML diagram that will be
built by the user. The user draws the class diagram and key
in the necessary information. Another way to get the UML
diagram is to extract it from the source code.

0-7803-6355-8/00/$10.0002000 IEEE 111-86

mailto:mohsena@ieee.org
mailto:RunTimeUml@yahoo.com

On the other hand, the Run-Time UML fetches its
information during the execution of the source code. As to
the question of how it is rendered, static UML diagram will
be used to provide hints on how to draw the Run-Time
UML. This effort has been made so that the developer or
user would not be alienated by hisher own work.

Ill . CONSTRAINTS AND LIMITATION

A number of constraints have to be put in order to reduce
architecture complexity and to increase the feasibility of
implementation. These constraints are for reducing the size
of the Run-Time UML.

In this project, UML editor only have class diagram,
whereas Run-Time UML have object diagram and
collaboration diagram. However these diagrams may
be modified so that it can be more intuitive and adapt
better with the Java Programming Language.

Every source codes (*.java file) have a matching
UML diagram (*.UML file). This is to reduce
complexity. The architecture of the source code
directly mapped to the UML file. Only the class that
is implemented need to be drawn, while the ones that
are associated will be set as a hyperlink to another
UML where it is implemented.

The Run-Time UML may be queried at a certain level
of depth only. May be ten levels deep from the main
0 function will be enough. This means that X.YO is
one level deep while x . y (. z () is two levels deep. It
makes no sense to query so deep as it would not only
overload the program but may also interfere the
comprehension process of the developer that was
working with the software.

Another limitation is that only classes, which are
implemented, are queried for Run-Time UML. This
means that Java API will not be queried. An example
is System. out. println () in JAVA API examples.

Besides the above listed constraints and limitations, the
user is also urged to apply good programming practice that
facilitate comprehension. For example avoid long class or
method implementation. Furthermore, intuitive and
consistent names for fields are also encouraged. The
developers are also advised to draw the diagram in a nice
and intuitive way.

IV. BASIC WORKFLOW

This section discusses what would be the necessary actions
taken by user in order to be able to see the Run-Time UML.
The diagram (Fig 1) provides a summary of what will be
discussed.

(Start] pF----.F
Compiler
1

d f

Execute
program under

debug.

View
Run-time

df

Satisfied?
No, got error

[= I
Fig.1 Basic Workflow

A. Before dynamic compilation

As shown in the diagram, there are two primary source of
information that is needed before the user can move on to
do a dynamic compilation. One is the source code and the
other is UML diagram. The user can choose either one to
start with. However, it is recommended that the user start
with UML editor as it is a more rational choice, 'unless
circumstances force otherwise.

Case 1

In case 1, the user chooses to work with UML editor. The
user will need to draw all the class method, field and the
relationship between one class and another. However, the
user need not worry, as there will be drawing tools to help
user with this.

After the user is satisfied with the model, the user can
begin the programming stage. The programming stage will
be facilitated, as the skeleton of the program has been
generated. User only needs to insert the implementation
and also necessary documentation.

111-87

After finish inserting the implementation, the user could
compile the program. If error exists then the user is
required to perform the semantic debugging. If the
compilation is successful then it is possible to start dynamic
compilation.

Case 2

The user could have also started with programming first.
Usually this case happens when the source code has already
exist or readily available. Then UML diagram can be
generated from the source code. However, the user still
needs to f i l l in all the relationship and place the class
according to the user preference. Finally the user could
compile it and if successful, it will be ready for dynamic
compilation.

What needs to be noted here is that the text editor and
UML editor will always keep track of each other changes.
If the user changes one of them, this means the user will
change the other. The program here ought to be robust and
yet simple enough for the user to use.

Other features

Other interesting features that is in the plan, is that the
UML should be able to collapse selectively. This means
that it should be able to hide or collapse some of the fields
and methods and replace it with ellipses. It can also be
expanded if necessary.

Beside this, there should also be hyperlink to linkup
between one UML diagram and the other that it is
referencing. To get a bigger picture the user can also
choose to expand the hyperlink within the current diagram.

For the text editor, a number of features will be added.
Besides coloring and indentation, features like fast
navigation [5] between previous and last edited section and
also jumping between and to different declaration of
classes, methods and fields will be included. Text editor
should also have the capability of UML, which will enable
it not only to collapse methods but also part of the
implementation. This will not only save space but also
reveal to the user the essence of the model.

B. Dynamic compilation

Dynamic compilation is a compilation for run time UML
purposes. During the process, the user will be queried for
necessary information for debugger to fetch from Java
Virtual Machine during program execution. The
information fetched will be used for Run-Time UML. By
default, during dynamic compilation, it is based on the
previous UML diagram for hint on what class, methods and
fields that the user wishes to see during dynamic modeling.
Those fields that are collapsible will be ignored by default.
Moreover, handle name will also be ignored, as a run-time
handle will be queried.

C. Run-Time UML viewer

When all the above steps have been carried out, the user
could execute the program under the debugger. The
debugger will query for the information from the Java
Virtual Machine. The user could then end the program and
get ready for the Run-Time UML navigation.

Next, the information there is to see and the way to
navigate through the Run-Time UML will be described.

1. Information in Run-Time UML

In Run-Time UML the user not only see the classes that
have drawn previously but also the process that involved
them. Information that will be shown will be as follows.

1. Object creation and object deletion will be shown as
soon as it happens.

2. Object will expand only when it is one of its methods
or fields reached. If the object to be reach is in another
diagram, then that diagram will be expanded. This
means that at any one time only one class will be
expand and the method that was called will be
highlighted. At any other time the object will remain
collapsed.

3. Every object in Run-Time UML ought to be reference
by another object. If this is not the case the object that
is not referenced will likely be garbage collected. (This
is because an object that cannot be reach cannot be
use.) At both end of the link, there can be a reference
name or handle. These handles are use by the object at
the other end of the link to reference it. A sequence
number will appear in the middle if the link is use to
invoke a function in another object. This will be similar
to collaboration diagram, except that it is derive from
run-time data.

2 . Navigation in Run-Time UML

In Run-Time UML, the plan is to make it sort of tracing
program. However, the difference is that it graphical
representation is used in graphical form rather than text.
The process ought to be like watching a video clip. The
user will be able to move forward, backward, stop or pause.
Like debugger, the user can choose to step into or skip an
action or a function. This step will help user to navigate
faster to the next interesting section.

However, while programming and modeling, the user ought
to build up a mental model of what should be going on
during the execution of the program the user has developed
[7]. So during navigation, the user could check and see
whether his hypothesis is correct and the program executes
according to the requirement specification.

If the user detects any logic error or if it does not meet the
requirement then the user could go back and do necessary
amendment with the source code and diagrams, recompile
and view the Run-Time UML again.

Anyway the user could choose to be passive and just sit
back and leave the software to show the user what is going
on.

111-88

The nice thing about this project is that the Run-Time UML
is scalable to the user preference, and able to show only the
essential information and leave out the unnecessary detail
until queried. We hope this tool can become a media for
changing ideas, opinion and to be use as a teaching aid. The
help it can bring would be immense.

V. PROBLEMS AND DISCUSSION

Now to be realistic, problem exists in every field of studies.
There are two main categories of problems that are to be
solved. The first category is the problem of mapping the
source code into an UML diagram and the second category
would be to map the data collected during execution of the
program into the dynamic diagram.

A. Mapping from source code to UML diagram

Since UML is build as a common modeling language and
not for Java only, UML diagram doesn’t show everything
about the features of Java Programming Language. This
means, some slight problem will be inevitable. The
following list some of the problems.

It is difficult to show container and arrays. This
problem also brings forward to dynamic visualization
where size and content of a container may change
across time.

Beside this, there is the problem of nested class such
as inner class and anonymous inner class. These inner
class and anonymous inner class could appear almost
anywhere within a source code. Trying to draw this
can be difficult.

In Java architecture it has exception handler and
action handlers, which doesn’t map very well with
UML.

Because of the above problems the UML diagram should
be modified to suit our purpose.

B. Mapping from run-time data to Run-Time UML

Besides having the problem of showing something that
can’t be seen, we have the problem of size and complexity.
As we know the size and complexity of Run-Time UML
can varies a lot during the execution of a program. Our aim
is to reduce the size and decrease complexity. We wish to
convince the user and not to confuse them. Bellow is some
of the problem face.

It is hard to show the big picture in a small computer
screen. The screen and also the limited processing
power will constraints the performance of this project.

Showing more than one thread without confusing the
user is difficult. We got to realize that thread
programming itself is a complex task and showing it
in a simple way is not going to be easy.

Showing iterative call and interleaving code is not
easy either. This process could easily confuse the user.

There is also the problem of non-continuous method
call such as event and exception that is hard to show.
This is because it breaks the flow of comprehension.

It may also be hard for the user to imagine what is
happening by merely viewing at the Run-Time UML
without looking at the output pane. Action is going to
be taken to tackle this problem.

VI. CONCLUSION

The basic working mechanism and issues in the
development of Run-Time UML was discussed. The
methodology used will hope to enrich the field of software
Engineering. It is hoped that with this contribution,
development of object oriented based programs such as
java will be more efficient and reduce management and
debugging time.

VII. REFERENCE

M. Aoyama, “New Age Of Software
Development: How Component-Based Software
Engineering Changes The Way Of Software
Development?’ Proc. of International Workshop
on Component Based Software Engineering,
Kyoto, Japan, April 1998.

Byung-do Yoon and Oscar N. Garcia, “Cognitive
Activities And Support In Debugging”, Proc. of
the 4Ih Symposium On Human Interaction With
Complex Systems, pp. 160-169 1998.

P.C Clements, “From Subroutines To Subsystems:
Component-Based Software Development”,
America Programmer, VWI, Cutter Information
Corp. Nov. 1995.

C. Knight. “Visualization For Program
Comprehension: Information And Issues”.
University of Durham, computer Science
Technical Report 12/98 .
J.Singer, T.lethbridge, N.Vingan and N. Anquetil.
“An Examination Of Software Engineering Work
Practices”. In Proc. Of CASCON’97, pp 209-223.
Toronto Canada 1997

S R. Tilley, S Paul, D B. Smith, “Towards a
Framework for Program Understanding”. In 4‘h
Workshop On Program Comprehension pp 19-28.
IEEE. Comp. Soc. Press Mar 1996

T. Systa, “On The Relationships Between Static
And Dynamic Models In Reverse Engineering
Java Software”. Proc of the 6‘h Working
Conference On Reverse Engineering. pp 304-3 13.
1998.

111-89

