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Abstract- This 'paper presents the development of a 
Proportional-Integral sliding mode controller for 
tracking problem of robot manipulators. A robust 
sliding mode controller is derived so that the actual 
trajectory tracks the desired trajectory as closely as 
possible despite the highly non-linear and coupled 
dynamics. The proposed controller is designed using 
the centralized and decentralized approaches. The 
Proportional-Integral sliding mode is chosen to ensure 
the stability of overall dynamics during the entire 
period i.e. the reaching phase and the sliding phase. 
Application to a two-link planar robot manipulator is 
considered. 

Index TermsSliding mode control, robot tracking 
controller, robust proportional-integral sliding mode control. 

I. INTRODUCTION 
Variable Structure Control (VSC) with Sliding Mode 

Control (SMC) has been widely applied to system with 
uncertainties and/or input couplings [I] ,  [Z]. The design 
philosophy is to obtain a high-speed switching control law 
to drive the nonlinear plant's state trajectory onto a 
specified and user-chosen surface called the sliding 
surface. When a system is in .the sliding mode, its 
dynamics is strictly determined by the dynamics of the 
sliding surfaces and hence insensitive to parameter 
variations and system disturbances. Nevertheless, the 
system posses no such insensitivity property during the 
reaching phase. Therefore insensitivity cannot be ensured 
throughout the entire response and the robustness during 
the reaching phase is normally improved by designing the 
system in such a way that the reaching phase is as short as 
possible [3]. 

Recently, a variety of the SMC known as Integral 
Sliding Mode Control (ISMC) has surfaced in the literature 
[4], [5]. Different fiom the conventional SMC design 
approaches, the order of the motion equation in ISMC is 
equal to the order of the original system, rather than 
reduced by the number of dimension of the control input. 
Moreover, by using this approach, the robustness of the 
system can be guaranteed throughout the entire response of 
the system starting from the initial time instance. 

In this paper, the problem of robust tracking for robot 
manipulator is considered. On the basis of sliding mode 
control theory, a class of VSC controllers for robust 

This work WBS supported by Universiti Teknologi Malaysia in the form 
of a scholarship. 

The authors are with the Dept. of Mechatronics and Robotics, Faculty 
of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM 
Skudai, Malaysia (e-mail: noh~ruria.fke.utm.my). . .  

tracking of robot manipulators is proposed under 
centralized and decentralized approaches. It is shown 
theoretically that for system with matched uncertainties, the 
tracking error is guaranteed to decrease asymptotically to 
zero and the system dynamics during the sliding phase can 
easily be shaped up using any conventional pole placement 
method. 

11. PROBLEM FORMULATION 
Centralized Controller Design 

uncertain system described by [7] 
Consider the dynamics of the robot manipulator as an 

x ( t )  = [ A  + M(t ) ]X( t )+[B  +AB(t)]u(t)  (1) 
where x(t) E R",u( t )  E R" , represent the state and input 
vectors, respectively. A and B are constant matrices of 
appropriate dimensions while M and AB denote 
uncertainties present in the system and input matrices, 
respectively. 
Define the state vector of the system as 

Let a continuous function x, (I) E R" be the desired state 
trajectory, where&@ is defined as: 

Define the tracking error, Z(t) as 

In this study, the following assumptions are made: 
AI)  The state vectorX(t) can be fully observed; 
A2) There exist continuous functions H(t) and E(t) such 

xw = [ X ~ ( j ) , X * ( f ) , . . . , X ~ ( f ) ~  (2) 

X,/@) = G,, C t X X , , ( f ,  ,.....,col' 

Z ( t )  = X(t) - x, (1) 

(3) 

(4) 

that for all X ( t )  E R" and all I: 

AA@) = B H ( f )  ; 
AB@) = B W  ; 

integrable on bounded interval such that 

( 5 )  IIH(t]l< a 

ilE(t)li S P 
A3) There exist a 'Lebesgue function Q(r) E R ,  which is 

id ( t )  = AX, ( t )  + (6 )  
A4) The pair (A, B) is controllable. 
In view of equations (4), (5) and (6), equation ( I )  can be 
written as an error dynamic system: 

Z ( f )  = [ A  + BH(t) ]Z(t )  + BH(t)X, ( t )  (7) 
- E n ( / )  + [ E  + B E ( f ) ] u ( f )  

Define the Proportional-Integral (PI) sliding surface as 

o(f)  = C Z ( t ) -  j[CA +CBK]Z(r)dr (8) 
0 

where C E R""" and K E R""" are constant matrices. 
matrix K satisfies 

and C is chosen such that CB t R"'" is nonsingular. 
h,,(A + B K )  < 0 (9) 

The 
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The control problem is to design a controller u(t) such 
that the system state trajectory X(t) tracks the desired state 
trajectoryxdt) as closely as possible for all t in spite of the 
uncertainties and non-linearities present in the system and 
the system dynamics slide on the sliding surface as defined 
by equation (8) .  

Decentralized Controller Design 
The robot dynamics of equation ( I )  can also be 

represented as an uncertain composite system S defined by 
an N interconnected suh-systems s.  ,; = l:2, ..., N with 

each sub-system described by [XI 
S, : xi(f) = [A ,  + A A , ( O l x , ( C  + [B, + AB,(t)lu,(r) (10) 

+ [ A q  + A A 9 ( O - r , ( f ) +  $ LEv + AB9(Olu, ( t )  
,il.,l, , = , . , * a  

n .  m .  where x i ( ( ) €  R I ,U;(/)€ R I represent the state and 

input of sub-system SI, respectively. A,, B,, A, and E, are 
constant nominal matrices. AA,, AA!;, AB, and Ab, 
representing uncertainties present in the system, 
interconnection, input and coupling matrices, respectively 
The following assumptions are introduced 
(81) Every state vector x,@) can be locally observed; 
(82) There exist continuous functions H<(/), H,(t), $(t) 

and E,(t) such that for all X t R N  and all f: 
' A 4 ( 0 =  B , H , ( t )  ; ~ / ~ t ( ~ l ~ ~ ~ ~ r z  

(I I) 
A A ~ ( ~ ) =  B , H , ( ~ ) ;  ~ ~ ~ , ( ~ ) ~ ~ ~ a ,  

AB, (I )  = E,€ ,  ( 1 )  ; (t)lls P, 
A B ; ( t ) = B , E , ( t )  ; llEr(r)lls P,, 

(83) There exist a Lebesgue function ai(/) E R : 

Xdr  ( t )  = A , X ,  ( t ) +  B , a ,  ( t )  (12) 
where A, and B, are the i-th subsystem nominal 
system and input matrices, respectively; 

(84) The pair (Ai. Bi) is controllahle. 
The state vector of the composite system S is defined as 
x ( t j = [ x ~ ( ~ j  , x ~ ( t ) ~ . . . ,  x L ( t ) ] '  ; x , ( / )E  R"'  (13) 
Let X, ( t )  E R",N be the desired state trajectory: 

x,(t)= [ X ~ , ( f ) , X ~ * ( / ) , . . . , ~ ~ ( t ) ~ ;  xd(O R"' 

=, (0 = xi ( I )  - X d ,  (0 

(14) 

(15) 
Define the tracking error, z,(/) as 

In view of equations ( l l ) ,  (12) and (15), equation ( I O )  
can be written as 

z i  ( t )  = [ A i  + E ,  H . ( t ) ] z i ( t )  + BH . ( t ) x  

-B, .Q,( t )+[B,  + B,E,(f) lu , ( l )  

( I )  1 .  I di 

+ $ [ A . .  + B , H . . ( t ) ] x  . ( t )  
j = l , j # i  'J ' J J  

Define the local PI sliding surface for S, as 

o,( t )=C,=, ( / ) -  j [C,A,  + C , B , K , l z , ( ~ ) d r  ( I 7 )  
0 

where c ,  E R " ' " " ,  and K ,  E R " , " " .  are constant 
matrices. The matrix K, satisfies 

h,, ( A ,  + B , K , )  < 0 

0 (I) = 

(18) 
and C, is chosen such that C,B, is nonsingular. For this 
class of system, the sliding manifold can be described as 

(19) T I  T I  
I ,0 2 ,..., 0 N 1 

The control problem is to design a decentralized 
controller U!(/) for each sub-system such that the system 
state trajectory X,(/) tracks the desired state trajectory &(/) 
as closely as possible for all t in spite of the uncertainties 
and non-linearities present in the system, and each 
subsystem's dynamics approaches and remains on the PI 
sliding surface S, as defined by equation (17) thereafier. 

Ill. SYSTEM DYNAMICS DURING SLIDING MODE 
The concept of equivalent control was first mentioned 

in [ 6 ] .  The equivalent control is only a mathematically 
derived tool for the analysis of a sliding motion rather than 
a real control law generated in practical systems. In fact it 
is not realizable in the real controller. With the equivalent 
control, one can predict the system behaviour during the 
sliding mode. 

Centralized Control Sysrem 
The equivalent control of the error system (7) can be 

found by differentiating equation (8),  substituting equation 
(7) into it, and equating the resultant equation to zero. It 
can be shown that the equivalent control is [7]: 

(20) ue9(O = -[I?? + E(f)I-'{(wt) - K)Z( t )  

- W) + H ( W , ( O }  
The system dynamics during sliding mode can be found by 
substituting the equivalent control of equation (20) into the 
system error dynamics of equation (7): 

Z ( t )  = [ A  + BK]Z( t )  (21) 
Hence if the matching condition is satisfied (equation ( I  I) 
holds),.the system's error dynamics during sliding mode is 
independent of the system uncertainties and couplings 
between the inputs, and, insensitive to the parameter 
variations. 

Decentralized Conhol System 
Differentiating equation (17), substitute equation (16) 

into it, and equating the resulting equation to z e r q i v e s  the . 
equivalent control, uc,,,(f): 

U<,,, (1) = -[ln, + E ,  (f)I-' {(H! (0 - K, 12, (0 
- 0, (1) + H ,  (t)x,, (1) 



wherePS, 

following two equations [3]: 

In view of assumption (B2), then it follows that by the 
projection property, equation (14) can be reduced as 

is a projection operator and satisfies the 

C,P,, = 0  and P,,B, = O  (25)  

z r ( t ) = [ A ,  + B , K , ] z , ( t )  (26) 
Hence if the matching condition is satisfied, the system 

error dynamics during sliding mode are independent of the 
interconnection between the subsystems and couplings 
between the inputs, and, insensitive to the parameter 
variations. Equation (26) shows that the error dynamics 
during sliding mode can be specified by the designer 
through appropriate choice of the matrix K,. 

IV. SLIDING MODE TRACKING CONTROLLER 
DESIGN 

In the last section, the centralized and decentralized 
control systems have been shown to be stable during the 
sliding phase. It this section, it will be shown that the 
systems during the reaching phase are practically stable. 

Centralized Controller 

in the large, ifthe following hitting condition is held: 
The manifold of equation (8) is asymptotically stable 

( ~ T ( t ) / l / ~ ( t ) l l ) 4 t )  < 0 (27) 
As a proof, let the positive definite function be 

Differentiating equation (28) with respect to time, t yields 
V ( 0  = Il4t)ll (28) 

(29) ;(I) = (oT(t) :8 (1 ) )  /llo(OIl 

Following the Lyapunov stability theory, if equation (27) 
holds, then the sliding manifold o ( t )  is asymptotically 
stable in the large. 
Theorem 4.1: The hitting condition (27) of the manifold 
given by equation (8) is satisfied if the control u(t) of 
system (7) is given by : 

u(t)  = -(CB)-'[Y,llZ(f)II+ Y211Xd(f)ll (30) 

Y, > (allcBII +IICBKIJ) /(I+ P) (31) 

72 ' (aIlC@ 4 1  + P) 
Y, > (PIICBIl)/(l+8) (33) 

+ v , / l ~ ) l l ~ s ~ o ( O )  + W) 
where 

(32) 

See[7]. 

It is shown in [7] that the system ( I )  is stable in the sense of 
Lyapunov if the system is subjected to the control input 
(30). 

Decentralized Controller 
The composite manifold (19) is asymptotically stable in the 
large, if the following hitting condition is held [5]: 

,=I 

As a proof, let the positive definite Lyapunov function be 

Following the Lyapunov stability theory, if equation (34) 
holds, then the sliding manifold 4( t )  is asymptotically 
stable in the large. 
Theorem 4.2 The global hitting condition (34) of the 
composite manifold (19) is satisfied if every local control 
U&) of the error system (16) is given by : 

U,(O = -(c,~,)-'[r,,lJz,(~)ll +r& (011 +ur311doll 
+u,,llW)lllscN(a, (0) + Q, (0 

(37) 

where 

a,,llcB,ll+ IIC,B>K.II (38) 
Y,, > N 

{(I+ P,,)llC,Sli+ C&,B,j + D,,l~c,~,llll(cB,)-' 
,=I,,*, 

V. SIMULATION EXAMPLE 

Consider a two-link manipulator with rigid links of 
nominally equal length 1 and mass m shown in Figure I .  
The dynamics of the manipulator is [9]: 
** e, = 

. . .  
(++cosO,)sin B,.&++sin b',.(2&+ $ 2 ) .  82 

t - cos2 e, 
+ 7; ~ 2(+ + cos &)T2 

f - cos2 8, 

- 2($ + cos6,)sin $,.e, 

+ li 

** 
62 =  COS^ e? . . .  

- ($+cosB,)sin8,.(2BI+Bi).8* 
+ ~ cos2 e2 

2(+ + cos@,)? - 4($ + cos Q2)Ti - 
- e, 
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Define 

x(t)a[x,. 

W)&, .,I' =IT T211 

x3 .,I' =[e, 4, e2  e,]' 
Then the plant can be represented in the form of 

with 
X ( f )  = A ( t ) X ( t ) +  B( t )u ( t )  

ai* = ((213) + cosx,)sinx,. xi /((16/9) - cos2 x,) 

4, = (2/3)sinx, :(2x2 +x,).x,/((16/9)-cos2x,) 
= -2((5/3)+ cosx,)sinx, .xi /((1619) - cos'x,) 

au = -((2/3) + cosx3)sinx,(2x, + x4)/((16/9) - cos* x,) 

b2,:=:(4/3)/((16/9) - cos'x,) 

4, = -2((2/3) +cosx,)/((l6/9) - COS' xi) 
4; = 4 2  
b,; 

Suppose that the bounds of 6, (1) and e', ( I )  are: 

4((5/3) +cosx3)/((16/9) - cos' x3) 

~. 

-150 '<8 ,  5150', Vs- ' i 81  iWs- ' ,  

-35~i8,6100' ,0's- laO,a30's~'  
;It is assumed that each sub-system is required to track a 
pre-specified cycloidal function of the form: 

7 6f 

where A, =e, (T)-e , (O) ,  i = 1,2. In this example, the input 
trajehory data used areas follows: 

.~ 

Start time, (0) = 0.0 s 
Final, time, T = 10.0 s 
Start positions, 6,(0) = I O "  ; 6,(0) = 15" 

- Final positions, e,(7) = 50" ; e,(.r) = 60" 

~. 

With the given bounds, the plant can be represented in 
. .  the form of equation (1) with the nominal value of A and B 

Centralized PI Sliding Mode Control 

calculated as: 
10 I o 0 1  r 0 . 0 1  
0 1.169 0 0.972 1.509 -1.949 

A = /  0 0 0 1  / ; B = /  0 
(0 -2.650 0 '-2.4311 1-1.949 8.4151 

with the -uncertainties for system and input matrices 
calculated as 

0 0 - 0  0 0 0 

. 0 4.208 0 2.431 2.3368 5.299 
Using equation (9, the bounds of H(t) and E(/) can be 
computed: 

Define the gains: 
11y(t)11:a=2.6046 ; IIE(f)l~S~=l.9617 

i 

2.0125 3.4291 0.0919 0.8735 such that 

K = [  0.3235 0.4080 0.6868 0.4838 1 
andC=[O 0 0.2 I]. 

h(A + B K )  = {-1,-2,-2,-3} 
3 . 1  0 0 

the controller parameter y's can therefore be computed 
from equation (31)-(33) as: 

For comparison purposes, two sets of the controller 
parameters are chosen: 

y, >1.1731; y i  >0.8742; y, >0.6584 

- Set 1: y, = 0.5; y2 = 0.2; y, = 0.2 
- s e t 2  y, = I S ;  y2  =1.0; ys =1.0 

In Set I ,  the controller parameter is selected to study the 
performance of the system if the gain conditions of 
equations (31)-(33) are violated; while in Set 2 the 
controller parameters is selected to represent a situation 
where the conditions imposed on the controller are met. ne simulation results for both sets are shown in Figure 2. 
If the controller parameter conditions are not met (Set' l), 
the actual output positions fail to track the desired positions 
(Figure 2a and Figure 2b). This is due to the fact that the 
control inputs are not capable of switching fast enough~and 
hence the sliding mode. fails to materialized. On the 
contrary, when the controller parameter conditions are met 
(Set 2), the position tracking is satisfactory (Figure 2c and 
2d). 

Decentralized PI Sliding Mode Con fro1 
With the given bounds, the plant can be represented in 

the form of equation (IO). Each joint of thembot is treated 
as a sub-system with the nominal value .of A ,  Ai, Bi and B,, 
is calculated as: 

0 1.168 

A * ,  = [o  0 - ' 2.650 0 ] : B ~ . = [ l , ~ 0 6 ] : k . - = [ 8 . ~ l ~ ] ~ ,  

0 0 
= [ - 1.949 1' Bzl  = [ - 1.949 1 

Using equation (1 I ) ,  the bounds of H,(t) and &(t) can be 
computed: 

IIHl(t)l16all =0.6471, IIHz(t)ll<a,, =0.2889, 

IIH,2(t)ll <al2 = 0.6458, (IH2,(t)ll 5a2i = 0.5 

1(4,0)((< P,, = 1.5519, (/41(t)((s P,, =0.2777 

~ p ~ ( t ) l l ~  P , ,  =0.1385, Ip2(t)li< p,, =0.6297, 

In this study, the gains are chosen as follows: 
K ,  = [1.3282 2.7683 ]sothat h(A, +E,K,)={-1,-2}; 
K ,  = [0.7130 0.30531 so that h ( 4 + B 2 K , ) = { - 5 - 3 } ;  

C ,  = [3 I]  and C ,  = [4 , I ] .  
Therefore, from equations (38)-(41): 

y I I  > 1.40;y, ,  > 1 . 7 2 ; y , , ~ >  0 . 2 5 ; ~ ~ ~  > 1.13; 
y i l  > 4 . 1 9 ; y 2 ,  >0:91;y,, > 1 . 1 4 ; y 2 ,  > 4 : 4 8  
For simulation purposes, two sets of controller parameters are chosen: 

set 1 :  y2, = O S ;  y 1 2  = O S ;  y13 =0.1; y l r  = O S ;  
-{y2,=4; y2*=0.5; ~ ~ ~ = 0 . 5 ;  y I 1 = 4  

y i1=3;  Yli=3; Y,3=2;  Y,4=2; 
y 2 , = 5 ;  y 2 > = 2 ;  y 2 , = 2 ;  y z 4 = 5  



Set 1 contains the controller parameter selected to study the 
performance of the system if equations (38)-(41) are not 
met; while Set 2 contains the parameters satisfying the 
condition imposed. The output trajectories for both 
subsystems 1 and 2 are shown in Figure 3. It can be seen 
that the tracking performance for both subsystems when Set 
1 parameters were used are unsatisfactory (Figures 3a and 
3b). The simulation was run again but this time with the 
decentralized controller parameter was supplied from Set 2 
(Figures 3c and 3d). As predicted theoretically, the 
tracking performance is good for both subsystems. 

VI. CONCLUSIONS 
In this paper, a PI Sliding Mode controller is proposed 

for trajectory tracking of robot manipulators. The 
controller can be design and implemented either in 
centralized or decentralized fashion. In both of the 
approaches, it is shown mathematically that the error 
dynamics during sliding mode is stable and can easily be 
shaped-up using the conventional pole-placement 
technique. Besides, the system stability is also guaranteed 
during the reaching phase. Application to a two-link 
manipulator shows that the proposed controllers are 
effective in tackling the uncertainties, non-linearities and 
coupling exist in robotic system. 
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Fig. I A No-link manipulator. 
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(a) State X,(I) response for set I 

(b) State x, ( I )  response for Set 1 



(c) Statcx,(l) response for Set 2 
adp“? Tm,l.l.r” 

1 2  -1 ’ ’ I 

(d) State x,(t) response for Set 2 (d) State x3( l )  response for Set 2 

Fig. 2 Simulation results for Centralized PI Sliding Mode Control. Fig. 3: Simulation results for Decentralized PI Sliding Mode Control. 
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