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Abstract : This paper looks at the analysis of heart
sounds and murmur using time-frequency signal analysis.
The techniques used are the Wigner-Ville distribution
(WVD) and windowed Wigner-Ville distribution
(WWVD) that belonged to the bilinear class of time-
frequency distribution. These techniques developed to
provide high-resolution time-frequency representation for
time-varying signals. Due the nonlinear operation
involved, interference terms are introduced in the time-
frequency representation. The signals of interest are
modeled as multicomponent signals and the
characteristics of the signal in time-lag plane are
observed. From the time-lag plane, the interference
components are identified, and the appropriate window
width is selected in the WWVD to remove the
interference. Analysis results show that WWVD produces
more accurate time-frequency representation compared to
the WVD and the signal-to-interference is used to
quantify the improvement.

I INTRODUCTION

Time-frequency signal analysis techniques are developed
to allow the representation of the instantaneous
characteristics of time-varying signals jointly in the time-
frequency plane. One of the earliest method developed
was the spectrogram [1] that is based on the moving time-
windowed Fourier transform. However, the choice of the
window function results in the compromise in the time
and frequency resolution. This is overcome by Wigner-
Ville distributign that belongs to the general class of
bilinear time-frequency distribution [2][3]. A major
problem with this method is the presence of interference
due to cross terms in the time-frequency distribution.
Other time-frequency distributions such as the
exponential kernel distribution (EKD) [4] and reduced
interference distribution (RID) [S5] are efforts made to
overcome this problem.

Two time-frequency distributions presented are the

Wigner-Ville distribution (WVD) and the Windowed
Wigner-Ville distribution (WWVD). The paper presents
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the use of both of these time-frequency distributions in
the analysis of heart sounds and murmurs. A model for
the heart sound is presented and its characteristics are
represented in the time-lag plane. The interference
problem is identified and with the appropriate window
width selection the interference terms are minimized
using the WWVD.

I SIGNAL DEFINITION

Heart sounds and murmurs can be measured based on the
auscultation using a stethoscope. The signal is periodic
and within a period can be generally expressed as

4
2(n) = Z z/(n)  0<n<N, 1)

1=0

where N, is the period of the signal and z(n) is the
individual component of the heart sound. The various
component of heart sounds that are represented by z{n)
are described as follows

1) z¢(n)-the 4 th heart sound (S4) that has low energy and
does occur for normal heart conditions.

2) z(n)-the 1 st heart sound (S1) that has high energy
and represent the sound of a normal heart.

3) zy(n)-a period of lull for normal heart but of significant
activity for heart conditions such as valvular
regurgigation or stenosis conditions.

4) z3(n)-the 2 nd heart sound (S2) that has high energy
and similar to the 1 st heart sound is a feature of a
normal heart.

5). z4(n)-the 3 rd heart sound (S3) that could have energy
levels approaching either the S1 and S2 heart sounds.

Each of the signal component z{») is a limited duration
complex pulse sinusoid centered at time », samples and of
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pulse duration N, samples. The following conditions
ensure that the individual signal components do not
overlap in time

ny<m<mx<...... -<ny
nl="o+No, m=m+t No, oo eenne N(»
nge=ns+Ny @

Each individual component of z{n) can be is expressed as

z(n)= HN,, (n—n))c; exp(j27f,(n— )~ ¢y) )]

where ¢, is the amplitude, f; is the frequency, # is the time

delay and ¢ is the phase. The term HN is referred as
(]

a box function that is defined as

HN (n-n)=1 for n No/2<n<ns+- No/2
=0

elsewhere O]

From the 31 classes of heart sounds, four are chosen for
analysis because they represent most of the possible
combination of heart sounds. The sounds and their
mathematical representation based on Equation (1) are
summarized in as follows

Normal heart

z(n)=zy(n) + z3(n) _ ®)
Aortic stenosis

2(n) = z,(n) + 2, (n) + 23(n) ©
$4 gallop preceding S1

2(n) = 2o (n) + 2, () + 25(n) 0)
Quadruple thythm (S4-S1-82-S3)

2(n) = 2o (n) + 2, (n) + 25 (1) + 2, (n) ®)

Each of the individual components of z(») in Equation (5)
to (8) are defined in Equation (3). In general, it is found
that the frequency f; and £; for the S1 and S2 heart sounds
are identical. Other parameters are not expected to be
identical.

11} BILINEAR TIME-FREQUENCY
DISTRIBUTIONS

The formulation for the bilinear class of discrete time-
frequency distribution [1][2] is

N
O]

N-i
pnk)= ZG(n,m)(*)[z(n +m)z’ (n— m)]exp(— i 4”’"")
m=0 L

where G(n,m) is the time-lag kemel function and z(n) is
the discrete-time analytical signal. The product
z(n+m)z*(n-m) is often referred as the bilinear product
K, (n,m). Basically, the bilinear product transforms the
time domain signal z(n) into the time-lag plane that i
described by the function K (n,m). Thus, Equation (9) can
be written as

N-1

, 4nkm
po(nk)= ’;o[a(n, m)(:) K, (n, m)] exp(— j T)
(10)
In the above equation, the term G(n,m)("’) K, (nm) is

referred as the time-varying autocorrelation function and
is given by the notation R(n,m).

If the time-lag kernel function is defined as G(n,m)=&n),
then the formulation in Equation (9) becomes the Wigner-
Ville distribution (WVD)

N-1
W,(nk)= Zz(n + m)z'(n - m)e)q{’ jm)
m=0

N
& 4zkm
=) K,(n,m) exp(—-j———)
2 v

The windowed Wigner-Ville distribution (WWVD)
differs from the WVD because the time-lag kernel
function is defined as G(n,m)=&n)g(m). When substituted
into Equation (9), the time-frequency distribution is

1n

N-1
W, (k)= glm)z(n+m)z" (n—m) exp(— jf—?)

m=0
(12)
The window function g(m) is defined as
gm0 for -N,<m<N,
=0 elsewhere (13)

where N, is the window width. Any one of the popular
window functions such as the rectangular, Hamming,
Hanning or Bartlett window functions can be chosen for
the WWVD.

v CHARACTERISTICS OF THE BILINEAR
PRODUCT

In this section, the analytical expressions for the auto
bilinear product and cross bilinear product are derived.
From these expressions, it is of interest to determine the
range of values in time and lag, time deviation frequency
and lag frequency for the individual auto bilinear product
and cross bilinear product components. Based on these
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factors, the interference conditions are defined for the’

time-frequency representations.
A DEFINITION OF THE BILINEAR PRODUCT

Based on the signal definition in Equation (1), bilinear
product of the signal obtained from Equation (9) is

K, (n,m) = z(n+m)z" (n—m)
N -1

= Z z(n+ m)NX-fz; (n—m)
=

i=0

14

By putting the terms for i=/ together, the bilinear product
is now ’

N,-1 N,=IN,-1
K (nm=Y K nm+ Y. Y K, (nm)  (15)
=0 i=0 =0

where K, (nm) is the auto bilinear product of the
component signal z(n) and K, .(n,m) is the cross bilinear
product for the signal component z(n) and z{n). The auto
bilinear product and the cross bilinear product
components are defined as

(16)
an

K, (n,m)=2z/(n +m)z;(n—m)

. Kzi,zl(n’m) = zzi(’”'m)z;l(n"m)

Based on this definition, the bilinear product for the
normal heart sound and quadratic rhythm sound are

3 3 3
K, norma (n,m) = ZK,(('LM)"' Z ZKqu("’”’)

I=odd i'=?dd I=odd
(18)
1 4
K, g mm)=Y Ky (nm)+ Y K, (n,m)
=0 I=3
1 4
+3 D K, (nm) (19)

i=0 1=3

The terms K {n,m) and K, .(n,m) are referred as the auto
bilinear and cross bilinear components respectively. Thus,
the bilinear product consists of the auto bilinear product
and the cross bilinear product components with the auto
bilinear product and the cross bilinear product of the
signal components.

"B AUTO BILINEAR PRODUCT COMPONENTS

Based on the signal and bilinear product definitions in
Equation (1) and (9), the auto bilinear product for an
arbitrary signal component z(n) is

K, ,(nm)= I_LV0 (n-n; + m)l--Lvo (n—n; - rrﬁt)c,2

xexp(j2n2fm) 20)
The maximum overlap of the box functions in time occurs
at lag m=0. Thus, Equation (20) when expressed in time
at this lag value is

Km0 =[], @-nxi @

Equation (20) is centered at time instant 7=n;, and when
define over lag becomes

K (mmy=TT], (e exp(222f,m) @)

The lag frequency f;, for auto bilinear product is 2f; that is
twice the frequency of the true signal and the results in
Equation (21) is also the instantaneous energy of the
signal component z{n).

Based on the results in Equation (21) and (22), the range
of values in the time-lag plane, and the lag frequency f,
and time deviation frequency f3, for the auto bilinear
product are '

K. (n,my0 for n-No/2<n<np+Ny/2,
and -Ny/2<m<N,/2
S 2 far=0
K.(n,my=0 elsewhere (23)
Jn0, 15,0

C CROSS BILINEAR PRODUCT COMPONENTS

In this section, it is desired to determine the range values
in time and lag for the cross bilinear product component.
By substituting the signal definition in Equation (1) into
(9), the cross bilinear product for the signal component
z1+1(n) and z(n) is

Kogayu(n,m)= I—[No (n—n, +m) l I N, (n-ny —m)c?

xexp(j@p1,) exp(i2a(fr — [ )n) exp(i222 fipy + f1)m)
(24)

where ¢.,, is the time-lag phase term

Priay =278 fratn — [im) = G — 91 - (25)
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The maximum overlap in time for the box functions in
Equation (24) occurs at r=(n;.;+n;)/2. When expressed in
lag, Equation (24) at this time instant becomes

+ + .
Kz(mw(‘nm_zni’ "‘] = HNa (nl_ﬂzﬂ “”‘}mcl exp(dy )

xexp j2a(fi, — fl)( n,+12+ il ]]exp(ibrz(fm +f)m)

(26)
From the above equation, the lag frequency fy, is fi. i+
Results in Equation (26) shows that the function in lag is

centered at m=(ny,-n;)2. When expressed over time at
this lag instant is

n.,—n N, +n .
Kz(h-l)zl("’ 1+12 1]=m("“ Mz I}HICI exp(igy)

xe>q{ﬂn2(f,+, +ﬁ{nl+12~ L )]e’m(lw-ﬂ ~-fom

@n

Based on Equation (26) and (27), the range of values in
time-lag, plane lag frequency f,, and time deviation
frequency f5, for the cross bilinear product component are

Kz([+ l),,;(n,m)#O for [(n;+] +n1)-No]/ 2<n<[(n1+1+n,)+N 0]/2 N
and [(n4-mp)-Nol 2<m<[(.1-ny)+No}/2

f m=ﬁ+ l+ﬁ,j;in=ﬁ+ l'ﬁ

Kz(1+ 1),2(71,"!):0 elsewhere (28)

Jo=0, f5:=0

D BILINEAR PRODUCT FOR NORMAL HEART
SOUND

The signal definition and the bilinear product for the
normal heart sound is defined in Equation (5) and (16).
Based on the procedure in Section 4.1 and 4.2, the
individual components of the bilinear product are
calculated. Figure (1) and (2) shows the bilinear product
components and the lag-frequency distribution
respectively.

The WVD considers the bilinear product of the signal
over the time-lag plane. At time instant such as at n,, the
instantaneous energy of the signal is zero because the
bilinear product evaluated at lag zero lag has zero
magnitude. Thus, there should not be any signal
components in the time-frequency representation at this
time instant. However, the Fourier transform in lag at this
time instant is not zero since the cross bilinear products
K3.(n,m) is present. Thus, K, (nm) contributes as
interference in the time-frequency representation of the
signal.

n\m 0 No2 No 3N2 2N,
no
m Ka
ny K
n3 K
ny
Fig1l The positions of the auto bilinear product and cross

bilinear product of the signal components in the time-lag
plane. [The magnitude of all the bilinear product
components is at unity. Note : K, is K;1(n,m) and K;3

is K3 ,1(n,m)]
n\m 0 No2 No 3Ny2 2N,
Ro
mo 2]
n; 1 J3
mo |26 ]
ny

Fig2 The lag-frequency distribution in the time-lag plane.

The window function used in the WWVD can reduce the

interference present in the time-frequency representation.

From Figure (2), the cross bilinear product that are

considered as interference are removed if a window

function is defined as

g(m)=1 -No/2<m<Nyp/2

=0 elsewhere 27N

As a result, the cross bilinear products component

K.3.1(n,m) is removed from the time-lag plane resulting in
a more accurate time-frequency representation.

E BILINEAR PRODUCT FOR QUADRATIC
RHYTHM

Equation (8) and (19) defined the quadratic rhythm signal
and its bilinear product. Based on the procedure in
Section 4.1 and 4.2, the individual components of the
bilinear product are calculated. Figure (3) and (4) show
the bilinear product and the lag-frequency distribution.

Similarly, the instantaneous energy can be used to
indicate if the cross bilinear product contribute as
interference in time-frequency representation. Within
instant n,, there are three cross bilinear product
components 1(24,20(’1’”1); Kz3,zﬂ(n’m)9 and Kz4,zl(n3m)' Since
the instantaneous energy within this time instants is zero,
then components will appear as interference in the time-
frequency representation similar to the normal heart
sound described in the previous section.
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nvn 0 No2 No N2 2N,
no K,o
Kzl,zi)
ny Ka
Kz:!
n2 sz
Koz
n; Ks
Kﬂ@
ny Kz4
Fig3 The positions of the auto bilinear product and cross

bilinear product of the signal components in the time-lag
plane. [Note : K, is K;i(n,m) and K4 13 is Ky4 5(nm)

n\m ] No2 No 3Ny2 2Ny
no 2
fothi |
ny 2f1
Lfeths ]
n, otfa
itfa
n3 2f;
Fytfy |
na 2f4

Fig4 The lag-frequency distribution in the time-lag plane.

From position of the bilinear product components, the
components that contributes as interference can be
minimized if a window function is defined as
g(m)=1 -No/2<m<Ny/2
=0 elsewhere (28)
The chosen window function will remove completely all
the cross bilinear products that lies at lag greater than
Ny/2. Thus, the window width derived in this section
remove the cross bilinear product components is similar
to the one obtained in the previous section.

F  CONDITIONS FOR INTERFERENCE IN THE
WVD AND WWVD

Based on the examples for the heart sounds, several
conclusions can be derived about the auto bilinear and
cross bilinear products and how they contribute to the
interference present in the time-frequency representation.
The results are

1) The auto bilinear products does not contribute to
interference and must be must be preserved. The
magnitude at lag m=0 is the instantaneous energy of
the signal and the lag-frequency is the proportional to
the frequency of the true signal.

2) For a given time instant, a cross bilinear product is
considered as interference if the lag-frequency is not
equal to the lag-frequency of the auto bilinear
product. This is not observed in the heart sounds but
was demonstrated for communication signals such as
frequency shift-keying [6].

3) If the magnitude of the auto bilinear product is zero
at a given time instant, all the cross bilinear products
that exist are considered as interference terms.

4) The analysis results show that the window width that
is equivalent to the pulse duration can remove the
interference components and is the compromise
between the interference level and smearing in the
time-frequency representation.

v RESULTS

The time-frequency representations for the good heart
sound and quadratic rthythm based on the WVD and
WWVD are shown in Figure (5) to (6). In general, the
WWVD produces a more accurate time-frequency
representation compared to the WVD because the
presence of interference is minimized. More specific
comparison is also made in terms of the signal-to-
interference ratio as shown in Table (1). Thus, the use of
the window function in the WWVD has successfully
reduced the interference present in the time-frequency
representations.

WVD WWVD25 | WWVD 50
Signal SIR { SIR { SR [ SIR | SIR | SR
dB dB dB
Good heart | 0.75 | -1.3 | 374 | 25.7 | 138 | 214
sound
Quadratic 032 -5 105 | 20.2 | 874 | 194
rhythm .

Table 1 Comparison between the various time-frequency
representations for the good heart sound and quadratic
rhythm based on the signal-to-interference ratio (SIR).

VI CONCLUSIONS

Time-frequency distributions such as the WVD and
WWVD are developed as a tool to analyze time-varying
signals. The instantaneous characteristics for these signals
are represented jointly in the time-frequency plane. Due
to the nonlinearity of the operations involved, interference
terms are introduced in the time-frequency representation.
Analysis performed on the bilinear product of the signal
in the time-lag plane show that the desired signal
characteristics is present in the auto bilinear product
components that occur at zero lag values and parallel to
the time axis. Thus, the removal of the cross bilinear
product terms is necessary to obtained an accurate time-
frequency representation of the signal. This is only
possible if the WWVD is used because the window
function can be used to control the amount of interference
present in the time-frequency representation.
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