EVALUATION ON PROPERTIES OF TENDER MIXES

ZANARIAH BT ABD RAHMAN

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil – Transportation and Highway)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2006

ABSTRACT

Tender mix has caused many problems to the contractor during the construction of hot mix asphalt (HMA) pavement. The objective of this paper was to investigate the properties of tender mixes as related to the problem of rutting. Two mixes of ACW20 were designed in compliance to Jabatan Kerja Raya (JKR) specification. One mix was designed with typical dense graded gradation but away from the maximum density line (MDL) described as control mix. The other mix was designed close to MDL to simulate tender mix. Marshall sample were prepared in order to determine the optimum bitumen content (OBC) and volumetric properties of compacted mixtures. Using the OBC obtained from Marshall samples, two beams were fabricated for each mix for the wheel-tracking test. Comparisons of rut depth between control mix and tender mix were made at 500, 1000, 2000 and 5000 passes. Volumetric properties results indicate that 'tender mix' is not tender as expected due to high voids in the mineral aggregate (VMA) compared to control mix. However, there is a significant difference between tender mix and control mix in terms of rutting according to the t-Test statistical analysis. Furthermore, tender mix indicated low stability and stiffness value which show that the gradation of tender mix that was designed close to MDL are recommended as poor gradation and show a potential problem in mixes if the mix is used.

ABSTRAK

Campuran lembut telah menimbulkan banyak masalah kepada kontraktor jalan raya semasa proses turapan campuran berasfalt panas (HMA). Objektif bagi kajian ini ialah untuk menilai ciri-ciri volumetrik yang pada campuran lembut dan dikaitkan dengan masalah aluran. Dua campuran ACW20 telah direka dengan mematuhi keperluan spesifikasi dari Jabatan Kerja Raya (JKR). Satu rekaan campuran mempunyai gradasi gred tumpat yang tipikal tetapi menjauhi garisan ketumpatan maksimum (MDL) dan dikenali sebagai campuran kawalan manakala satu rekaan campuran yang lain mempunyai gradasi yang direka hampir dengan MDL dan dikenali sebagai campuran lembut. Sampel Marshall disediakan untuk mendapatkan kandungan bitumin optimum (OBC) dan ciri-ciri volumetrik bagi setiap campuran. Dengan menggunakan kandungan bitumen optimum yang telah diperolehi, dua sampel rasuk disediakan untuk campuran kawalan dan campuran lembut sebagai sampel untuk digunakan dalam ujian jejak roda. Perbandingan bagi kedalaman aluran antara dua campuran tersebut akan dilakukan pada 500, 1000, 2000 dan 5000 laluan. Daripada keputusan ciri-ciri volumetrik, didapati bahawa lompang dalam agregat (VMA) bagi campuran lembut menunjukkan nilai yang tidak dijangka iaitu nilai VMA campuran lembut lebih tinggi berbanding nilai VMA campuran kawalan. Walaubagaimanapun, terdapat perbezaan yang ketara dalam nilai kedalaman aluran antara campuran kawalan dan campuran lembut berdasarkan daripada analisis statistik t-Test. Tambahan pula, campuran lembut juga menunjukkan nilai kestabilan dan kekukuhan yang rendah dan dengan ini gradasi bagi campuran lembut yang direka berhampiran dengan MDL dicadangkan sebagai gradasi yang tidak sesuai digunakan kerana berpotensi untuk menimbulkan masalah jika campuran digunakan kelak.

TABLE OF CONTENTS

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES	Х
LIST OF SYMBOLS / ABBREVIATIONS	xii
LIST OF APPENDICES	xiii

1 INTRODUCTION

1.1	Research Background	1
1.2	Problem Statement	3
1.3	Objective	3
1.4	Scope	4
1.5	Importance of Study	4

2 LITERATURE REVIEW

2.1	Introduction	5
2.2	Aggregate	7
2.3	Aggregate Gradation	7
	2.3.1 Gradation Limit of ACW20	10

Maximum Density Line		10
Voids in the Mineral Aggregate (VMA)		13
2.5.1	Varibility in VMA	15
Tende	r Mixes	16
2.6.1	Identify Tender Mixes	17
2.6.2	Causes of Tender Mixes	17
2.6.3	Incorrect Mix Design	18
2.6.4	Smooth and Rounded Aggregates	19
2.6.5	Moisture in the Mix	20
Comp	action of Tender Mixes	20
Ruttin	g	22
Wheel	Tracking Machine	24
2.9.1	Wheel Tracking Apparatus	24
	Maxim Voids 2.5.1 Tende 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 Comp Ruttin Wheel 2.9.1	Maximum Density Line Voids in the Mineral Aggregate (VMA) 2.5.1 Varibility in VMA Tender Mixes 2.6.1 Identify Tender Mixes 2.6.2 Causes of Tender Mixes 2.6.3 Incorrect Mix Design 2.6.4 Smooth and Rounded Aggregates 2.6.5 Moisture in the Mix Compaction of Tender Mixes Rutting Wheel Tracking Machine 2.9.1 Wheel Tracking Apparatus

3 RESEARCH METHODOLOGY

3.1	Introduction		26
3.2.	Gradation Design		27
3.3	Labor	atory Test Procedure	29
	3.3.1	Sieve Analysis of Fine and Coarse	
		Aggregates (ASTM C 136-84a)	30
	3.3.2	Specific Gravity and Absorption	
		of Coarse Aggregate (ASTM C 127-88)	32
	3.3.3	Specific Gravity and Absorption	
		of Fine Aggregate (ASTM C 128-88)	34
	3.3.4	Theoretical Maximum Specific Gravity	
		and Density of Bituminous Paving	
		Mixtures (ASTM D 2041-91)	36
	3.3.5	Resistance to Plastic Flow of	
		Bituminous Mixtures Using Marshall	
		Apparatus (ASTM D 1559)	38
3.4.	Mixin	g Specimen	40
	3.4.1	Sample Compaction	41
3.5	Whee	l Tracking Machine Test	42

3.6.	Data Analysis		43
	3.6.1	Volumetric Properties of	
		Compacted Mixtures	43
	3.6.2	Optimum Bitumen Content	45
	3.6.3	Wheel Tracking Test Result	46
	3.6.4	Standard Specification	46

RESEARCH FINDINGS AND ANALYSIS 4

4.1	Introduction	48
4.2	Aggregate Gradation	49
4.3	Result of Volumetric Properties	52
4.4	Result of Wheel Tracking Test	53

CONCLUSIONS AND RECOMMENDATION 5

5.1	Introduction	56
5.2	Summary of the Findings	56
5.3	Recommendations	57

REFERENCES

Appendices A - F

62 - 71

59

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Gradation Limit for ACW20	10
2.2	Recommended Minimum VMA Values	14
2.3	Factor that Affect the VMA of HMA	15
3.1	Gradation Design of ACW20 Control Mix	28
3.2	Gradation Design of ACW20 Tender Mix	28
3.3	Gradation Limits for Asphaltic Concrete	47
3.4	Design Bitumen Contents	47
3.5	Test and Analysis Parameters for Asphaltic Concrete	47
4.1	Gradation of ACW20 Control Mix for Marshall Sample	49
4.2	Gradation of ACW20 Tender Mix for Marshall Sample	50
4.3	Gradation of ACW20 Control Mix for	
	Wheel Tracking Sample	51
4.4	Gradation of ACW20 Tender Mix for	
	Wheel Tracking Sample	51
4.5	Volumetric Properties of ACW20 Control Mix	
	and Tender Mix at OBC	52
4.6	Number of Compaction of Wheel Tracking Sample	53
4.7	Summary of Data from the	
	Wheel Tracking Machine Test	54

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Processed Aggregates at the Quarry	7
2.2	Typical Terms Used to Identify Aggregate Gradation	8
2.3	0.45 Power Gradation Chart	11
2.4	Group of MDL Plotted on 0.45 Power Gradation Chart	11
2.5	Maximum Density Line Related to VMA	12
2.6	Illustration of VMA	13
2.7	Gradation Pattern of Tender Mix on	
	0.45 Power Gradation Chart	19
2.8	Stress Applied to the Sub-grade or	
	Base below the Asphalt Layer	23
2.9	Three Wheel Immersion Tracking Machine	25
3.1	Flow Chart of the Laboratory Works	26
3.2	Gradation Chart of Control Mix and	
	Tender Mix for ACW20	29
3.3	Sieves Agitated by Mechanical Apparatus	31
3.4	Aggregate Separated and Stored in	
	Container According to Sizes	31
3.5	The ASTM D 2041 Test Apparatus	37
3.6	Specimen Immerse in Water Bath at 60°C	39
3.7	Compression Testing Machine	39
3.8	Sample Place and Check for	
	Compaction Temperature	40
3.9	Sample after Compaction with	
	9 Kilograms of Steel Roller	41

3.10	Well Compacted Sample	42
3.11	Maintain Water Temperature in Wheel Tracking Machine	43
3.12	Reading at Three Point for Each Sample	43
4.1	Rut Depth vs. Number of Roller Passes of	
	Control Mix and Tender Mix	50
4.2	Rut Depth vs. Number of Roller Passes	
	of Control Mix and Tender Mix	55

LIST OF SYMBOLS / ABBREVIATIONS

AASHTO	-	American Association of State Highway and
		Transportation Officials
ACW	-	Asphaltic Concrete Wearing Course
AI	-	Asphalt Institute
ASTM	-	American Society for Testing and Materials
FHWA	-	Federal Highway Administration
G _{mb}	-	Bulk Specific Gravity of Compacted Mixture
G _{mm}	-	Maximum Specific Gravity of Paving Mixture
G _{sa}	-	Apparent Specific Gravity of Aggregate
G _{sb}	-	Bulk Specific Gravity of Aggregate
G _{se}	-	Effective Specific Gravity of Aggregate
HMA	-	Hot Mix Asphalt
JKR	-	Jabatan Kerja Raya
MDL	-	Maximum Density Line
NAPA	-	National Asphalt Pavement Association
OBC	-	Optimum Bitumen Content
OPC	-	Ordinary Portland Cement
P _{mm}	-	total loose mixture, percent by total weight of mixture
Ps	-	percent of aggregate by total mass of mixture
Superpave	-	Superior Performing of Asphalt Pavement
UK	-	United Kingdom
US	-	United States of America
UTM	-	Universiti Teknologi Malaysia
VFA	-	Voids Filled with Asphalt
VMA	-	Voids in the Mineral Aggregate
VTM	-	Voids in Total Mix

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Aggregate Bulk Specific Gravity of ACW20	62
В	Maximum Specific Gravity of Loose Mixture ACW20	63
С	Calculations of Mineral Filler from Washed Sieve Analysis Result	64
D	i) Calculations of VTM in ACW20Control Mix and Tender Mix	65
	ii) Calculations of VTM Before and AfterWheel Tracking Test	66
E	Result of Wheel Tracking Test for ACW20 Control Mix and Tender Mix	67
F	Photograph	69

CHAPTER 1

INTRODUCTION

1.1 Research Background

There are two types of tenderness as reported by Crawford (1989). The first type is characterized by the asphalt mix being difficult to compact when normal construction techniques are used. Re-compaction attempts will result in a decrease in pavement density. The other type of tenderness is characterized by the asphalt mixtures being slow setting after construction. This type is sensitive to turning traffic and power steering. It may also lack resistance to critical loading, especially during hot weather.

The problem of compaction of tender mixes is actually has been observed for years by United States. Tender mixtures are not stable under the roller and tend to move laterally when rolled. This lateral movement sometimes result in hairline crack. Hairline cracks that sometimes results when rolling tender mixes are usually very shallow and do not cause a significant problem. However, these cracks allow the mix to absorb moisture and may reduce the durability of the hot mix asphalt (HMA). They may provide a weakness in the HMA pavement that may result in crack growth and eventually premature failure. In the past year, most tender mixes were attributed to excessive temperatures or excessive sanded mixes. There are many other possible reasons for the tender mixes but these two causes appeared to be mentioned most (Brown *et al.*, 2000).

The complaints about tender or slow setting asphalt pavements in the United States always arise at about the same time of year which is from about the first part of July through the middle of September (Tarrer and Wagh, 1991). At this time of year, ambient temperatures are high. Tender pavement rarely occurred in cool weather therefore it seems obvious that one of the conditions that must be obtained for this type of distress is hot weather. Furthermore, Hot Mix Asphalt Paving Handbook (2000) shows that gradation that close to the maximum density line (MDL) may have at times lower than desirable Voids in the Mineral Aggregates (VMA) which will result in very little void space within to developed sufficient asphalt thickness for durable mix. It is also recommended that such gradation to be avoided so as not to produce mixes that are tender and difficult to compact

Brown *et al.* (2000) reported that in the early to mid 1990s, Superpave mixes began to be used in the United States. For the most part, these mixes have been coarse-graded mixes with relatively high coarse aggregate content. Experience has shown that when these mixes are tender, they act similar to tender mixes that were encountered in the past. Based on two surveys by National Asphalt Pavement Association (NAPA), it appears that approximately 40 percent of coarse graded Superpave mixes experience some tenderness (Brown *et al.*, 2000). Therefore, as a result of reported tenderness problems, the Federal Highway Administration (FHWA) and NAPA held a jointly meeting in June 1998. There was a lot of discussion about causes and cures of the tender mix problem among the attendees which included state Department of Transportations (DOTs) and Industry representatives (Brown *et al.*, 2000). This shows that FHWA and NAPA are concern about the problems created from tender mixes and is looking forward to improve the mixes.

1.2 Problem Statement

Tarrer and Wagh (1991) reported that tender mixes are often difficult to compact to the required density. Once the mix begins to move laterally, additionally rolling results in further lateral movement and does not allow for adequate compaction. Even though these tender mixes may not result in loss of life, they will lower the overall pavement quality by increasing the roughness of the compacted mixes. In general, tender mixes are difficult to roll, difficult to achieved specified density and occasionally rut. Other than that, they will also displace under high pressure and shove and scuff under traffic (Button *et al.*, 1980).

A remarkable increase in traffic volume has contributed to the severe rutting on highway and main road in Malaysia. Rutting is defined as the accumulation of small amounts of unrecoverable strain resulting from applied wheel loads to HMA pavement (Cooley Jr *et al.*, 2000). Rutting in HMA will not only decrease the life of pavement but also will create safety hazard to the public. Therefore, it is necessary to estimate the potential of rutting on tender mixes besides investigating the properties of tender mixes.

1.3 Objective

This study is undertaken to evaluate the properties of tender mixes as related to rutting problem.

1.4 Scope

In order to accomplish the objective, this study is subjected to this following scope and limitation:

- Designing two (2) ACW20 mixes using Marshall design conforming to Jabatan Kerja Raya (JKR) specification;
 - a. One mix design with typical dense graded gradation but away from maximum density line (MDL) described as control mix.
 - b. One mix design with gradation design close to MDL to simulate tender mix.
- ii. Wheel tracking machine was used to investigate the differences in rut depth between control mix and tender mix.

1.5 Importance of Study

From this project, the properties of tender mix that are design close to MDL can be determined hence providing a guideline for highway engineers to produce a high-quality pavement through well designed gradation. In relation to the properties, the suitability of the gradation to resist rutting was also be able to determined through analyzing the data and result from wheel tracking machine test.

REFERENCES

- Asphalt Institute. (1983). Principles of Construction of Hot Mix Asphalt Pavements. Manual Series No. 22.
- Asphalt Institute. (1989). *The Asphalt Handbook*. 1989 Edition. Lexington: Asphalt Institute.
- Brown, E. R., Lord, B., Decker, D. and Newcomb, D. (2000). *Hot Mix Asphalt Tender Zone*. NCAT Report 00-02.
- Button, J. W., Epps, J. A., Little, D. N., and Gallaway, B. M. (1980). Influence of Asphalt Temperature Susceptibility on Pavement Construction and Performance. NCHRP Report. (268).
- Chadbourn, B. A., Skok, E. L., Newcomb, D. E., Crow, B. L., and Spindler, S.. (2000). *The Effect of Voids in Mineral Aggregate (VMA) on Hot Mix Asphalt Pavement*. MN/RC–2000–13. Minnesota Department of Transportation.
- Crawford, C. (1989). Tender Mixes: Probable Cause, Possible Remedies. *NAPA*. (108/86)
- Foster, C. R. (1982). Development of Marshall Procedures for Designing Asphalt Paving Mixtures. *NAPA Information Series* 84.

- Garber, N. J. and Hoel, L. A..(2002). *Traffic and Highway Engineering*. 3rd Edition. Brooks/Cole.
- Goode, J. F. and Lufsey, L. A. (1962). A New Graphical Chart for Evaluating Aggregate Gradation. AAPT.
- Huner, M. H. and Brown, E. R. (2001). Effect of Re-heating and Compaction Temperature on Hot Mix Asphalt Volumetrics. NCAT Report01-04.
- Jabatan Kerja Raya. (1998). *Standard Specification for Road Works (JKR/SPJ/1998)*. Kuala Lumpur: JKR.
- Kandhal, P. S. and Chakraborty, S. (1996). Evaluation of Voids in the Mineral Aggregate for HMA Paving Mixtures. *NCAT Report No. 96-4*.
- Mallick, R. B., Buchanan, S., Brown, E. R., and Huner, M. (1998). An Evaluation of Superpave Gyratory Compaction of Hot mix Asphalt. NCAT Report No. 98-5.
- Manual of Three Wheel Immersion Tracking Machine. Wessex Engineering and Metalcraft Co.
- Marker, V. (1977). Tender Mixes: The Causes and Prevention. *Asphalt Institute*. No. 168 (IS-168).
- Martin, J. R. and Wallace, H. A..(1958). Design and Construction of Asphalt Pavement. McGraw-Hill Book Co.
- Prowell, B. D., Zhang, J., and Brown, E. R. (2005). Aggregate Properties and the Performance of Superpave-Designed Hot Mix Asphalt. NCHRP Report (539).

- Roberts, F. L., Kandhal, P. S., Brown, E. R., Lee, D. Y., and Kennedy, T. W. (1996).
 Hot Mix Asphalt Material, Mixture Design, and Construction. 2nd Edition.
 Maryland: NAPA Research and Education Foundation.
- Tarrer, A. R. and Wagh, V.. (1991). Factor Influencing Mix Setting Characteristic and Test to Predict Mix Setting Characteristic. SHRP-A/ UWP-91-508.
- US Army Corps of Engineers. (2000). *Hot Mix Asphalt Paving Handbook*. 2000 Edition. United States of America: US Army Corps of Engineers.
- Wasage, T. L. J., Ong, G. P., Fwa, T. F., and Tan, S. A. (2004). Laboratory Evaluation of Rutting Resistance of Geosynthetics Reinforced Asphalt Pavement. Vol. 44 Issue 2. Singapore: Centre of Transportation Research, Department of Civil Engineering, National University of Singapore.
- Wong Yee Ching. (2005). Evaluation of Rutting on Different Types of Hot Mix Asphalt Gradation. Universiti Teknologi Malaysia: Degree Project.