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presents the development of a 
sliding mode controller for 
robot manitsulators. A robust 

sliding mode controller is deriveh so that the actual 
trajectory tracks the desired trajectory as closely as 
possible despite the highly non-linear and coupled 
dynamics. The Proportional-Integral sliding mode is 
chosen to ensure the stability of the overall dynamics 
during the entire period i.e. the reaching phase and the 
sliding phase. Application to a two-link planar robot 
manipulator is presented. 
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I. INTRODUCTION 

Variable Structure Control (VSC) with SIiding Mode 
Control (SMC) has been widely applied to systems with 
uncertainties andor input couplings [ I ] ,  [2]. The design 
philosophy is to obtain a high-speed switching control 
law to drive the nonlinear plant's state trajectory onto a 
specified and user-chosen surface called the sliding 
surface. When a system is in the sliding mode, its 
dynamics is strictly determined by the dynamics of the 
sliding surfaces and hence insensitive to parameter 
variations and system disturbances. Nevertheless, the 
system posses no such insensitivity property during the 
reaching phase. Therefore insensitivity cannot be 
ensured throughout the entire response and the 
robustness during the reaching phase is normally 
improved by designing the system in such a way that the 
reaching phase is as short as possible [3]. 

Recently, a variety of the SMC known as Integral 
Sliding Mode Control (ISMC) has surfaced in the 
literatwe [4 - 81. Different from the conventional SMC 
design approaches, the order of the motion equation in 
ISMC is equal to the order of the original system, rather 
than reduced by the number of dimension of the control 
input. Moreover, by using this approach, the robustness 
of the system can be guaranteed throughout the entire 
response of the system starting from the initial time 
instance. 

In this paper, the problem of robust tracking for robot 
manipulator is considered. On the basis of sliding mode 
control theory, a class of VSC controllers for robust 
tracking of robot manipulators is proposed. It is shown 

theoretically and by computer simulations that for 
system with matched uncertainties, the tracking error is 
guaranteed to decrease asymptotically to zero and the 
system dynamics during the sliding phase can easily be 
shaped up using any conventional pole placement 
method. 

11. PROBLEM FORMULATION 

Consider the dynamics of the robot manipulator as an 
uncertain system described by 

where X(r) E R",U(r) E R" , represent the state and 
input vectors, respectively. A and B are constant 
matrices of appropriate dimensions while AA and AB 
denote uncertainties present in the system and input 
matrices, respectively. 

Let a continuous function X , ( I )  E R" be the desired 
state trajectory, where Xdf) is defined as: 

x, (i) =[.dl ( ~ ) , ~ ~ ~ ( ~ ) , . . . , x ~ ~ ( ~ ) ~  (3) 

Define the backing error, Z(t) as 

Z(f) = x(r) - x, ( t )  (4) 

In this study, the following assumptions are made: 
Al)  The state vector X(t) can be fully observed; 
A2) There exist continuous functions H(r) and E(t) such 

that for all x(t) E R" and all t:  

( 5 )  A@) = B H ( f )  ; l/H(f,ll< 01 

Afw = BE(0  ; 11w1 P 

j i s ( f ) =  AX,(t)+BR(t) (6) 

A3) There exist a Lebesgue function Q(r) E R ,  which 
is integrable on bounded interval such that 

A4) The paiF (A, B)  is controllable. 

Assumption ii) assures that all uncertain portions M(t) 
and AB(t) are contained in the range space of the 
nominal input matrix B. This structural condition on the 
uncertainty is termed matching condition [9]. The 
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continuous functions H(t)  and E(f )  exist if and only if 
the following rank conditions are satisfied: 

runk [ B ]  = rank [ B ,  A A ( X , ~ , t ) J  
rank [ B ]  = rank [ B , A B ( X , t , t ) ]  

(7) 
(8) 

Equation (5) or the rank conditions (7) and (8) are 
essentially related to the structure of the mattices B ,  
M(t) and M(t), and not to the values of their elements. 
These conditions impose constraints on the structure of 
the system matrix uncertainty cLA(t), and the input 
ma& uncertainty AE(t) to lie within the range space of 
the input matrix B. This assumption is needed so that 
the control, U(& which enters the system through B can 
compensates the uncertainty in the system. 

In view of equations (4), (5) and (6), equation (1) can be 
written as: 

Define the Proportional-Integral (PI) sliding surface as 
I 

~ ( t )  = CZ(t) - [[CA 4 CBKlz(7)d~ 

c = dug [c, c2  .*. c n , ]  (11) 

I101 
0 

The structure of matrix Cis as follows: 

where ni is the nth state variable associated to the ith 
input of the M M O  system. The matrix C is also chosen 
such that CB E R""" is nonsingdar. Tbe matrix K 
satisfies 

x, ( A +  BK) < 0 (12) 

The system dynamics during sliding mode can be found 
by substituting the equivalent control of equation (11) 
into the system error dynamics of equation (9): 

i ( t )  = [ A  + BK]Z(t)  (12) 

Hence if the matching condition is satisfied (equation 
( 5 )  holds), the system's error dynamics during sliding 
mode is independent of the system uncertainties and 
couplings between the inputs, and, insensitive to the 
parameter variations. 

IV. CONTROLLER DESIGN 

In the last section, the control system has been shown to 
be stable during the sliding phase. In this section, it will 
be shown that the system trajectory during the reaching 
phase is guaranteed to be attracted into the switching 
surface (1 0). 

The manifold of equation (8) is asymptotically stable in 
the large, if the following hitting condition is held: 

(UT 0) ~llcf(4l) 40 < 0 (13) 

As a proof, let the positive definite function be 
YO) = 114011 (14) 

Differentiating equation (14) with respect to time, t 
yields 

;(t> = (uT((t) hi(t))  /~lu(t)ll (15) 

The control problem is to design a controller using the 
PI sliding mode given by equation (10) such that the 
system's state trajectory X ( f )  tracks the desired state 
trajectory Xdt)  as closely as possible for ali t in spite of 

~ ~ l l ~ ~ i ~ ~  the L~~~~~~ stability theory, if equation 
(13) holds, then the sliding manifold o(t) is 
asymptotically stable in the large. 

the uncertainties and non-linearities present in the 
system 

IU, SYSTEM DYNAMICS DURING SLIDING 
MODE 

The concept of equivalent control was first mentioned in 
[lo]. The equivaient control is only a mathematically 
derived tool for the analysis of a sliding motion rather 
than a real control law generated in practical systems. 
In fact it is not realizable in the real controller. With the 
equivalent control, one can predict the system behaviour 
during the sliding mode. 

The equivalent control of the error system (9) can be 
found by differentiating equation (lo), substituting 
equation (9)  into it, and equating the resultant equation 
to zero. It can be shown that the equivalent control is 
[ I l l :  

Proof. See [11]. 
It is shown in [ 111 that the system (1) is stable in the 
sense of Lyapunov if the system is subjected to the 
control input (16). 

As shown in equation (16), the controller consists of 
two parts. The first part is designed based on the 
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nominal system, interaction, input and coupling 
matrices. Beside that, it utiiizes the pre-defined system 
closed-loop locations that will give the desired constant 
gains matrix, K, as well as the pre-specified 
proportional-integral sliding surface constants matrix,, C. 
The second part of the controller, sZ(t), is basically the 
control component to ensure asymptotic tracking of the 
nonlinear uncertain system. 

The sign function SGN (a(t)) used in equation (16) is 
an m x l  vector of discontinuous functions described as 
follows: 
SGN (u ( t ) )  = [SGN ( U  ( t ) )  . .. SGN ( U  ~ ( t ) ) ]  ' (20) 

The discontinuous nature of the control input signal 
described by equation (16) due to sign function 
sGN(a( t ) )  described by equation (20), gives rise to 
the control input chattering and direct application of 
such control to the plant may be impractical. To obtain 
a continuous control signal such that the chattering is 
eliminated, each .element of the discontinuous sign 
function SGN[u(t))  in equation (20) can be replaced 
by a proper continuous function as follows 1121: 

where S, is a positive constant. This replacement is 
shown in Figure 1, when 6; is equal to zero, S, ( 1 )  

becomes SGN(a(t)) and when 6, is large, S,(I) 
goes to zero. 

/ I 0  

Fig. I. Continuous Function s, (t) . 

Therefore, in order to eliminate the, the discontinuous 
hnction vector described by equation (20) can be 
replaced by the following continuous function vector: 

The continuous function described by equation (22) 
guarantees that the chattering problem encountered in 
the control input signal U(t) is removed. This will make 
the control more sensible from practical point of view. 
However, tracking accuracy may be lost. 

V. APPLICATION TO ROBOT TRACKING 
CONTROL 

Consider a two-link planar manipulator with rigid links 
of nominally equal length I and mass m as shown in Fig. 
n 
L. 

Yt 

k 
T 

Fig. 2. A Two-Link Planar Manipulator. 

The dynamics of the manipulator is [ 131: . . .  . . ~  
.* ($ + cos I?,) sin 8,.81+ +sin O 2 . ( 2 I ? 1 + 8 2 ) . 8 2  e, = y - cos2 e, 

$ q - 2(; +cos BJT, 
- cos2 8, 

y - cos2 e, 

+ 

** - 2(++cos8,)sin6,.0~ e 2  = 

. . .  
(f +~osB, ) s in6 , . (28~+8~) .6~  - 

y - cos2 e, 
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Define 

'I' X( t ) fgx ,  n, x3 XJ =PI i ,  8, e 2  

W ) ~ ~ W  w) r  = [Ut) K W P  

i ( L )  = A ( t ) X ( t )  "I. B(t)U(t)  

Then the plant can be represented in the form of 

where 

= ((2/3)+ cosxJsinx,. x, /((16/9) -coszx,) 

b,, = (2/3)sinx3 . (2x,  + x , )  + x, /((16/9)-cos2 x,)  

u , ~  = -2((S/3) + cosx,)sinx, - x, /((16/9) - COS' x3)  

U,, = -((2/3) + cosx,)sinx, (2-5 + xJ/((16/9) 1 cos' x,) 
b,, = (4/3)/((16/9)-~0~*~,) 
bZ2 = -2((2/3)+ C O S X , ) / ( ( ~ ~ / ~ ) - C O S ~  x,) 

b,, = 4 2  

Let the bounds ofthe ~ , ( q  and ; , ( t i  be: 

bd2 = 4((5/3) + C O S X , ) / ( ( ~ ~ / ~ ) -  COS'X,) 

. .  
- i 5 o ' s e ,  si50',  o's-' 58, s ~ o ' s - ' ,  

It is assumed that each subsystem is required to track a 
pre-specified cycloidal function of the form: 

r l f  
where 
input trajectory data used are as follows: 

A, = Q,(a) -8,(O), i = 1,2. In this paper, the 

. Start time, t(0) = 0.0 s 
Final time, 5 = 10.0 s 
Startpositions, @,(a) = 10 deg ; &(O) = 15 deg 
Final positions, @(T) = 50 deg ; &(T) = 60 deg 

With the given bounds, the plant can be represented in 
the form of equation (1) with the nominal value of A and 
B calculated as: 

A = /  0 1.169 0 0.972 lu= l  1.7 -1.949 

0 0 0 ' 1  0 

10 -2.650 0 -2.4311 1-1.949 8.415 1 
and the uncertainties for system and input matrices as: 

0 0.974 0 0.972 0.209 0.337 

0 0 0 0  
10 4.208 0 2.4311 12.3368 5.2991 

Using equation (5),  the bounds o f  H ( f )  and E(t) can be 
computed: 

lIH(r)ll<a=2.6046 ; /IE(r)l[sP=1.9617 

Define the ea&: 
Y 

2.0125 3.4291 0.0919 0.8735 that the 

K = [  0.3235 0.4080 0.6868 0.4838 1 
desired closed-loop poles h(A + BK)  = {-1,-2,-2,-3} 
a%=[ 3 1  0 0  ] 

0 0 0.2 1 

The controller parameter y's can therefore be computed 
from equation (1 7- 19): 

Let 

and compute n(r) using equation (6) gives: 

where 

y, > 1.1731; T~ > 0.8742; -y3 > 0.6584 

yl =1.5; yz =1.@ y, =1.0 

n(t> = [Q I ( f ) 7  2 (N' 

S Z ,  ( r )  = -0.1933id, (r) .I- 0.9455id, ( t )  - 0.3867fd, ( t )  

!2,( t )  = 0.1933id1(r) + 0.219.&(t) -I 0.1993Xd,(r) 
+ 0.219id,(t)  

+ 0.1696id4(t) 

The simulation results are shown in Figures 3, 4 and 5 
for the tracking responses, the control inputs, and the 
sliding surfaces, respectively. Figures 3a and 3b show 
the tracking response for joint 1 and joint 2, 
respectively. It can be observed that the tracking 
performance is satisfactory for both joints, indicating 
that the controller is capable of handling the 
nonlinearities, couplings and uncertainties present in the 
system. The control input for joint 1 and joint 2 is 
shown in Figures 4a and 4b, respectively. The control 
inputs generated switch indiscriminately very fast to 
ensure that all states are directed toward the sliding 
surface (Figures 5a and 5b). This however produces 
chattering, as expected. To overcome this problem, the 
continuous function vector described in equation (22) is 
employed. Figures 6a and 6b show the control input of 
joint 1 and joint 2, respectively, using the continuous 
functions with 6, = 0.005, ti2 = 0.001. It can be 
observed from the graphs that the chattering is totally 
eliminated without causing much differences in the 
tracking performances (Fig. 7). 

VI. CONCLUSIONS 

In this paper, a PI Sliding Mode controller is proposed 
€or trajectory tracking of robot manipulators. It is 
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shown mathematically that the error dynamics during 
sliding mode is stable and can easily be shaped-up using 
the conventional pole-placement technique. Besides, 
the system stability is also guaranteed during the 
reaching phase. Application to a two-link manipulator 
shows that the proposed controllers are effective in 
tackling the uncertainties, nonlinearities and coupling 
exist in robotic system. 
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JOINT 1 CONTROL INPUT 
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Fig. 4. Control Inputs 
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Pig. 5. Sliding Surfaces 
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Fig. 6.  Control Inputs Using Continuous Function 
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JOINT 1 TRACKING ERROR JOINT2 TRACKWG ERROR 
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Fig. 7. Tracking Errors 
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