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ABSTRACT: This study reports the operational implementation of technique for the 
exploitation of TOPSAR data in the framework of soil condition applications. Three 
empirical and theoretical radar backscatter models were examined in this study to 
characterize radar backscatter of TOPSAR data over coastal lowland of Sadong Simunjan 
River Basin, Sarawak, Malaysia.  The main objective of this study is to analyze relationship 
between radar backscatter of TOPSAR data to (i) degree of wetness of drained peatland, (ii) 
depth of water table and, (iii) peat decomposition. The analysis of these models were 
examined using varying terrain-and-sensor related parameters namely surface roughness, 
dielectric constant, incidence angle, polarization and frequency, respectively. These 
simulated backscatters were used to understand the interaction of SAR with the above three 
methods before mapping the soil conditions using TOPSAR data. Results of this study 
indicate good relationship (RMSE<5.0) exists between radar backscatters and moisture 
content, even in the relatively moist drained peatland, which good correlationship with the 
depth of water table and peat decomposition at 0.89 and 0.88 respectively. 
 
 
 
1. INTRODUCTION 
 
Peatland can be defined as an area where peat accumulates over time (hundreds or 
thousands of years) and where their formation varies at depths ranging between few 
centimeters to 12 meters. Peat is an organic matter formed from roots, decaying plant 
residue, and dead plants. The peat decomposition is very much dependent on the moisture 
content at which the decomposition period varies with rate of organic oxidation and 
reduction processes, respectively. 
 
Completely decomposed peat will form peat substrate, and in its natural condition consists 
of organic-rich material (parts of plants) and water, which is very favorable for selected 
hardy-crops such as oil palm and pineapple. Peatland with its organic soil content is known 
for its importance to wetland ecology, thereby need to be preserved. However, the fertility 
of the decomposed organic soil have amounted pressure of being drained and converted to 
other uses such as agricultural or other land-related developmental projects to sustain 
increasing need of the local economic activities.  
 
There has been significant research effort in the past two decades to develop remote sensing 
techniques to observe soil characterization from radar backscatter. Advances in active 
microwave remote sensing have demonstrated the ability to estimate soil moisture from 



3RD MALAYSIAN REMOTE SENSING & GIS CONFRENCE AND EXHIBITION 
“ Spatial information Technology in the New Millenium” 
8-9 April 2002, LEGEND HOTEL, KUALA LUMPUR 

 

characterization radar backscatter in the surface layer under a variety of topographic and 
land cover conditions. In fact, several studies have demonstrated the relationship between 
the radar backscattering coefficient σo and the surface soil moisture content under varying 
terrain condition (Ulaby et.al, 1982; Sano et.al, 1998; Benallegue et.al, 1995). 
 
Radar backscatter in particular Synthetic Aperture Radar (SAR) data are dependent on 
several nature surface parameters such as dielectric constant (Dubois et.al, 1995) and 
surface roughness (Evans et.al, 1992). The dielectric constant is highly dependent on soil 
moisture due to the large difference in dielectric constant between dry soil (typical 
dielectric constants of 2-3) and water (dielectric constant of approximately 80). This is 
formed the basis for inferring soil moisture from radar data. 
 
Conventionally, in-situ soil moisture measurement techniques provide point measurements 
that do not account for the spatial variability typical of soil moisture profiles (Jackson and 
Schmugge, 1986). In-situ soil moisture measurements are generally expensive, often 
problematic, and not available at large-scale (Li et.al, 1997). Remote sensing of soil 
moisture may resolve these problems since it naturally provides global fields of soil 
moisture data at high spatial and temporal resolutions that are impractical to achieve with 
in-situ methods. 
 
From the hydrological point of view soil moisture is very important parameter in the semi- 
and arid zones for many applications (Engman, 1991). This might be one of the main 
reason to the total mass of previous studies on estimating soil moisture using SAR within 
these regions, for example Weimann, et.al (1998) and Sano et.al (1998) to quote a few 
recent ones that have been mentioned previously. However, such similar studies have not 
been reported being undertaken in the humid tropical region, at least for the last decade in 
Malaysia. In fact, this rare availability is not because there are no such needs in this region 
or there is an existence of profound evidence to nullify that developed SAR-based moisture 
models are invalid in the humid tropics. But the all-weather penetration capability in SAR 
system, offers unrestricted constraints in acquiring remote sensing data for the tropical 
region like Malaysia (lies at parallel 0o -5o N along the Equator), which has an average of 
more than 75% cloud cover throughout the year (MMC, 2000) 
 
Owing to above factors, this study is devised to examine whether or not there exist a 
relationship between radar backscatters with degree of wetness in Malaysia. The main 
focuses of this work were three folds, i.e to analyze relationship between radar backscatter 
of TOPSAR data to: (i) soil moisture (degree of wetness) (ii) depth of water table (iii) 
degree of decomposition of organic materials in peatland area. The water table is the level 
at which the water stays. It is the very top of the zone of saturation. A few centimeters 
above this level water can also be found due to capillary action. In the presence of a 
pumping well, the water table will drop around the well (Fraser, et al, 2001) and peat 
decomposition is level from surface, which the organic can decompose. The contents of 
organic compound in peatland area determine the decomposition level. 
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2. SCATTERING MODELS 
 
The radar scattering models employed in study are: (a) model developed by Dubois et.al 
(1995) hereafter referred to as Dubois model, (b) Integrated Equation Model (IEM) Fung 
et.al (1992) and (c) Oh model developed by Oh et.al (1992) hereafter referred to as Oh 
model. Brief descriptions of these models are as follows: 
 
 
2.1 Dubois Model 
 
An empirical model describing the co-polarized backscatter coefficients of bare surface as a 
function of surface roughness, dielectric constant, incidence angle and frequency. The 
dielectric constant is the parameter sensitive to volumetric soil moisture. The hh and vv 
polarized backscattering cross-section σ°hh (power) and σ°vv (power) were empirically 
found by Dubois et.al (1995) to follow these two relationships: 
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where; 
θ is the incidence angle (radian),  
ε is the real part of the dielectric constant,  
s is the root mean square (RMS) height (in cm),  
k is the wave number (k = 2π/λ), and  
λ is the wavelength (in cm) 
 
These two relations are valid for frequencies varying between 1.5 and 11 GHz, for surfaces 
with roughness ranging from 0.3 to 3 cm for RMS height and for incidence angle between 
30 and 60°. The backscatter coefficient σ° (units in decibel, dB), and were calculate using 
equation 3.  

 
Power =10 dB/10                     (3) 

 
 
2.2 IEM Model 
 
This is a theoretical model, which describes the co-polarized backscatter coefficients of 
bare surface as a function of surfaces roughness, dielectric constant, incidence angle and 
frequency, and Fung et.al (1992) expressed this relationship as: 
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where;  
pp is the polarization (hh or vv) 
R|| is the Fresnel Reflectivity constant for vertical polarization;   
R⊥ is the Fresnel Reflectivity constant for horizontal polarization;  
W(n)(kx,ky) is the surface roughness due power of correlation for ρ(ζ, ξ) by Fourier 
transformation: 
kz = k cosθ;  kx  =  k sinθ;   

 
 

2.3 Oh Model   
 
Based on empirical model, the radar backscatters are expressed in two components q and p. 
Both of these components are rationed of cross and hh polarisations with vv polarisation, 
and Oh et.al (1992) expressed them as: 
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where; 
Γo is the Fresnel Reflectivity for surface in nadir point (see equations 10 and 11) 



3RD MALAYSIAN REMOTE SENSING & GIS CONFRENCE AND EXHIBITION 
“ Spatial information Technology in the New Millenium” 
8-9 April 2002, LEGEND HOTEL, KUALA LUMPUR 

 

3. MATERIALS AND METHODS 
 
3.1  Study Area 
 
Fig. 1 shows the study area, located at Sadong Simunjan River Basin, Kota Samarahan of 
Sarawak, Malaysia covering an area of about 170 km2 (5 by 34 km), comprising a partially 
drained peatland, intended for large- scale agricultural plantation. The original vegetation 
found here are scarce, stunted and dwindling types due to high water table and soil acidity 
(Lim, 1992). It is also situated in one of the largest contiguous peatland remain in Malaysia 
with an approximate total area of 1.6 million hectares.  
 

 

Fig 1: The study area 

 

3.2 SAR Data 
 
The TOPSAR data (L-band) were used in this study, acquired as part of the PACRIM I 
campaign, a collaborative works between Southeast Asia including Australia and New 
Zealand with Jet Propulsion Laboratory (JPL) /NASA of USA. The data have already been 
corrected for slant-to-ground range and systematically geometric corrected to local 
mapping datum – the Timbilai Datum of the Borneo Rectified Skew Orthomorphic 
Projection System. The unsystematic errors, however, have not been treated before 
dissemination, and were performed in this study by image-to-map registration technique. 
The brief technical specification of the data is tabulated in Table 1. 

 
 
 
 
 
 



3RD MALAYSIAN REMOTE SENSING & GIS CONFRENCE AND EXHIBITION 
“ Spatial information Technology in the New Millenium” 
8-9 April 2002, LEGEND HOTEL, KUALA LUMPUR 

 

TABLE I.:  Specification of TOPSAR Data 

Parameter AIRSAR 
Band L (1.26 GHz, 23.0 cm) 
Mode TOPSAR 
Altitude 8.382 km 
Incidence Angle 20° - 60° 
Polarization hh, vv and hv 
Resolution 10 m x 10 m 
Acquired Date 25 Nov. 1996 

 

3.3 Ancillary Information 

Remote sensing is only capable to measure the amount of radiance in their instantaneous 
field of view. Observation reveals that, this radiance is a mixture of different signals, one of 
which may be related to soil moisture. Therefore, in-situ ground measurements are 
necessary for establishing some relationship between soil moisture and observed radiance.  
 
The ancillary information used in the study includes the topographic map of corresponding 
area (scale 1:50,000) and in-situ measurements carried out during the flight mission. Field 
surveys were conducted to gather samples for deriving information on the surface 
roughness, soil particle size, soil bulk density, and soil moisture. In addition, the depth of 
water table was also determined.  Fig.2 shows the location of sample points collected in the 
study area. Two mutual sets of samples were generated, each meant for model calibration 
and accuracy assessments. They are designated as red and yellow ticks in Fig.2, 
respectively. 
 
(i) Gravimetric Observations - the oven-drying soil moisture technique is the standard for 
calibration of all other methods. The method involves obtaining a wet soil sample weight, 
Ww drying the sample at 100°C for 24 hours, and then obtaining the dry sample weight Wd. 
Then with a measurement of the bulk density, Yd and the density of water, Yw the 
volumetric water content can be found: 

%100
YW
YW

M
wd

dw
v =                   (12) 

 
(ii) Soil Roughness Measurements – The height profiles of the soil surface were 
measured by a 1.5-meter made of a raw of 100 pins, spaced 1 centimeter for 1 meter and 
100 pins spaced 0.5 cm for 0.5 meter. The relative pin elevations are recorded 
photographically, after which they are digitized with AutoCAD software and analyzed to 
obtain surface profiles. From these measurements, three parameters can be calculated: 
standard deviation of surface height; correlation length and standard deviation of surface 
height slope (Table II and Table III). The design of these profilometer is based on 
Hoekman et.al (2000). 
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Fig 2: Location of sampling points 

TABLE II.  Volumetric Soil Moisture and Soil Roughness for the Sample 
Calibrating Radar Backscattering Models 

ID Point Surface 
Roughness (s, cm) 

Correlation 
Length (l, cm) 

Soil moisture 
(Mv, vol) 

S1 3.080 11.864 0.71 
S2 2.994 13.845 0.87 
S3 0.935 2.696 0.76 
S4 1.463 7.690 0.69 
S8 0.333 31.589 0.53 
S10 1.511 33.166 0.72 
S11 2.000 31.208 0.64 
S13 0.445 28.496 0.68 
S14 1.037 28.980 0.62 
S15 1.746 23.754 0.70 
S16 1.580 31.946 0.63 
S17 2.327 24.377 0.75 
S23 2.310 27.039 0.78 

 

TABLE III. Check Points Used for Accuracy Analysis of Volumetric Soil 
Moisture and Soil Roughness for the Check Points 

ID Point Surface Roughness 
(s, cm) 

Correlation 
Length  (l, cm) 

Soil moisture 
(Mv, vol) 

S6 0.706 29.875 0.63 
S20 2.318 32.067 0.80 
S21 2.283 27.105 0.70 
S22 2.338 27.229 0.80 
SB2 2.317 12.137 0.61 
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3.4 Data Processing 
 
3.4.1 Speckle Reduction 
 
Speckles found in SAR data due to random multiplicative noise, can be recognized by the 
random pattern and the noise levels increases with average gray level of specified window 
area in an image scene (Lee, 1986). Minimization of speckle effects in SAR data were 
carried out using adaptive radar filter (Lopes et.al, 1990). In this study, several radar 
adaptive filters and convolution filters were used, namely Lee, Frost, Gamma, Kuan, Local-
Sigma, Low- Pass, Laplacian, Gaussian and Median. Results in this study indicates that 
Gaussian 7x7 filter is the best for this area, reporting best coefficient of variance test 
(Paudyal and Aschbacter,1993).  Furthermore, the windows size 7 x 7 was also within 
reasonable spatial variations of the target of interest at the spatial resolution of the 
TOPSAR data. 

 
3.4.2 Extraction of Surface Roughness and Soil Moisture 
 
The main core processing carried out in this study was to extract surface roughness and soil 
moisture from radar backscatters of the TOPSAR data. In the first task, the surface 
roughness (s) or the RMS heights were computed using all the three backscatter models 
employing equations (1) and (2) for Dubois model; and equations (10) and (11) for Oh 
model. In the case of IEM model, which involves by rigorous computation, a computer 
program developed by Fung et.al (1992) were used.  Apart from computed surface 
roughness (s), the same parameter was computed directly using TOPSAR data after it was 
preprocessed and converted into dB image. This is then known as s computation directly 
from image.  
 
In the second processing task, the soil moisture estimation was performed using the 
regression analysis approach with main input derived from radar backscatters parameters 
obtained in the first task other than using image direct. 
 
 
3.4.2.1 Dielectric Constant 
 
For the selected models examined the critical input is the dielectric constant ε. In this study 
approach by Hallikainen, et.al (1985) has been adopted, where dielectric constant 
measurements for five different soil types at frequencies between 1.4 and 18 GHz were 
established. Based on these measurements, polynomial expressions can be derived relating 
the real and imaginary part of ε to the volumetric moisture content, Mv, and the percentage 
of sand and clay. These polynomial expressions are of the following form: 
 

( ) ( ) ( )MvCcSccMvCbSbbCaSaa 210210210  ++++++++=ε         (13) 
 
where; 
S is the percentage (by weight) of sand,  
C is percentage of clay, and  
ai, bi, ci are coefficients, which depend on frequency. 
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3.4.1 Extraction of Depth of Water Table 
 
Depth of water table (DWT) is main factor to decide what type of crop to plant in 
converted peatland. Strong relationship existence between plants type and DWT, which 
also influence roots for water uptake (Melling et.al, 1999). In this study, the water depth for 
each ID point was determine with measure from ground surface that the level which the 
water stays around a well.   
 
For determine the correlation between water depth information and backscatter value 
extracted from TOPSAR data, regression technique was employed. Multiple linear 
regressions were generated for both information and correlation coefficient (R2) given 
shows correlation for each point. Table IV shows DWT information during sampling on 21 
till 23 July 1999 over Sadong Simunjan River Basin, Sarawak. 
 

Table IV: Water Depth Information on Sampling Site 
Coordinate (m) Coordinate (m) ID point 

Easting Northing 
Water depth 

(m) ID point 
Easting Northing 

Water depth 
(m) 

S1 3960230 1056345 -0.750 S25 3960061 1058800 -0.640 
S2 3959928 1057398 -0.400 S26 3959766 1058898 -0.300 
S3 3960482 1056210 -0.300 S27 3960015 1059234 -0.400 
S4 3960935 1056177 -1.500 S28 3959989 1059797 -0.320 
S5 3960297 1056861 -0.310 S29 3959283 1060839 -0.500 
S6 3960423 1057107 -0.010 S30 3959019 1062163 -0.330 
S7 3960305 1057222 -0.190 S31 3959624 1062245 -0.360 
S8 3960364 1057291 -0.350 S32 3959941 1061278 -0.340 
S9 3960237 1057323 -0.320 S33 3960567 1061137 -0.300 
S10 3960012 1057370 -0.360 S34 3959637 1061073 -1.500 
S11 3960440 1057367 -0.470 S35 3961058 1060241 -0.500 
S12 3960627 1057416 -0.400 S36 3959449 1059865 -0.200 
S13 3960888 1057399 -0.100 S37 3959501 1059976 -0.250 
S14 3961063 1057379 -0.550 S38 3959645 1060098 -0.260 
S15 3961014 1057591 -0.050 S39 3959713 1060047 -0.700 
S16 3960330 1057521 -0.340 S40 3959807 1060003 -0.350 
S17 3960267 1057427 -0.250 S41 3961535 1058130 -0.320 
S18 3960464 1057600 -0.200 S42 3962624 1058199 -0.200 
S19 3960472 1057625 -0.220 S43 3963016 1057390 -0.300 
S20 3960086 1057688 -0.230 S44 3963410 1056089 -0.050 
S21 3960844 1058086 -0.130 S45 3962038 1056642 -0.100 
S22 3960278 1058087 -0.700 S46 3960993 1056760 -0.220 
S23 3960357 1058615 -0.150 S47 3961879 1057391 -0.150 
S24 3960009 1058725 -0.430 S48 3961001 1058398 -0.680 

 
3.4.2 Extraction of Degree of Peat Decomposition 
 
Determinations of decompose level of organic matter of peatland area.  Commonly, 
peatland can divided to three parts (Lim, 1992) and presented as (i) sapric, (ii) hemic, and 
(iii) fibric. The composition of standard peatland is comprised 80 percent of organic matter 
and the ratio can be calculate from this equation: 
 

Organic matter (%) = 100 – (% ash + % water)              (16) 
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Based on equation 16, mass of water contents is input parameter to determine a 
organic matter.  Table V shown a peatland water contents during a sampling period.  
 

TABLE V.  Peatland Water Contents from Samples  

Point ID W1=Land 
+ Ring 

W2=Land 
+ ring dried 

W3 = ring 
weight 

W4 = W2-W3 
MassDry Soil 

W1=W2 
MassWater 

Masswater content 
(W1-W2) x100/W 

S1 185.20 114.66 96.35 18.31 70.54 385.25 
S2 201.23 114.24 99.77 14.47 86.99 601.17 
S3 193.44 117.50 97.67 19.83 75.94 382.96 
S4 183.32 114.80 96.79 18.01 65.52 380.46 
S5 184.85 114.08 98.07 16.01 70.77 442.04 
S6 240.31 177.77 100.38 77.39 62.54 80.81 
S7 227.26 166.76 92.78 73.98 60.50 81.78 
S8 237.58 184.31 96.77 87.54 53.27 60.85 
S9 240.61 186.32 90.78 95.54 54.29 56.82 
S10 192.04 119.72 97.48 22.24 72.32 325.18 
S11 194.20 130.57 95.90 34.67 63.63 183.53 
S12 198.44 126.17 97.61 28.56 72.27 253.05 
S13 196.06 127.81 93.32 34.49 68.25 197.88 
S14 215.89 153.58 97.85 55.73 62.31 111.81 
S15 178.65 108.90 94.96 13.94 69.75 500.36 
S16 189.22 125.99 97.84 28.15 63.23 224.62 
S17 193.71 118.70 94.79 23.91 75.01 313.72 
S18 184.09 114.81 97.66 17.15 69.28 403.97 
S19 195.86 118.35 95.93 22.42 77.51 345.72 
S20 196.56 116.21 99.21 17.00 80.35 472.65 
S21 187.26 116.86 97.45 19.41 70.40 362.70 
S22 192.76 112.53 95.72 16.81 80.23 477.28 
S23 191.02 113.13 93.43 19.70 77.89 395.38 
S24 192.89 112.20 97.56 14.64 80.69 551.16 
S25 249.67 193.16 96.95 96.21 56.51 58.74 

 
 
4. RESULTS AND DISCUSSION 
 
The derived surface roughness (s) from the respective models was compared with Mv 
obtained from in-situ measurements with regression analysis, and their respective 
relationship (based on r2) are summarized in Table VI.  

TABLE VI:  Summary of Results of Regression Analysis Carried Out.  

Relationship 
analyzed 

Image 
DirectΨ 

Dubois 
Model 

IEM  
Model  

Oh  
Model 

 Lhh Lvv Lhh Lvv Lhh Lvv Lhh Lvv 
Mv vs σ° 0.53 0.38 0.76 0.89 0.54 0.54 0.57 0.34 
s vs σ° 0.37 0.46 0.82 0.69 0.75 0.70 0.49 0.97 
θ vs σ° 0.21 0.42 0.21 0.28 0.39 0.45 0.22 0.14 

Note: Ψ  Refer to TOPSAR data 
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4.1 Soil Moisture 
 
With regard to the Mv versus backscattering coefficients, the best relationship found with 
Dubois model with r2 =0.8 and 0.9 in hh and vv polarizations, respectively. Fig. 3 and Fig. 
4 exhibit these relationships and the best-fit models are given by equation 13 and 14. The 
other models: Oh and IEM, however, do not show any significance when compared to 
original backscatters derived from image direct. This is evident with relatively the same r2 

shown by these models against image direct.  
hh-Polarization: 99.45610.0M hhv +σ=           (13) 

vv-Polarization: 93.49765.0M vvv −σ=            (14) 

The relationship of s and radar backscatters (σ°) was reported best with Dubois model (r2 
=0.8) followed by IEM model (r2 =0.7), both in the hh polarizations. This shows most other 
models is a weak relationship between incidence angle and backscatters, this is also 
exhibited by the r2 in range of 0.1 to 0.4.  Of all the models analyzed, Oh model was found 
to be most inferior whilst s and Mv are the best correlated by Dubois model. IEM model 
fits in between Dubois and Oh models. 
 
Next, the Mv and s derived from the respective models were also analyzed for root mean 
square error (RMSE). This was achieved by comparison of the respective values with the 
corresponding in-situ measurements (the mutual test set), and the results obtained are 
summarized in Table VII. Again Dubois model shows the best result, with Mv best be 
determined with Lhh whilst the s with Lvv. The RMSE obtained here are comparable to the 
results obtained by Dubois et.al (1995), around 4.2 percents. 
 

 

TABLE VII:  Summary of RMSE of model examined 

 Image DirectΨ Dubois Model IEM  
Model  

Oh  
Modelτ 

 Lhh Lvv Lhh Lvv Lhh Lvv Lhh Lvv 
Mv  7.97 9.74 4.41 3.25 8.27 8.59 - - 
s  0.80 1.27 0.37 0.48 0.43 0.50 - - 

Note: Ψ  Refer to TOPSAR data 
          τ  most inferior to count 
 
 

y = 0.6097x - 45.993
R2 = 0.7566
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Fig.3. Estimated σ°Lhh calculated from Dubois model versus Mv 
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Fig 4.    Mv map derived from TOPSAR Lhh using Dubois model  

 
4.2.  Depth of Water Table 

 
Depth of water table (DWT) may be defined above ground level. Information of DWT is 
vital parameter in this study.  Only 23 points were used to generate the fitted model this 
information can relate of each backscatter value due to water depth and its can explain in 
equation 15. 

 
The regression model was generated using all of the specified independent variables, the 
best fit model of DWT is: 
 

Phv
o

Pvv
o

Phh
o

Lhv
o

Lvv
o

Lhh
o

σσ

σσσσ

017.0006.0             
035.0 056.0045.0003.0969.1DWT

++

++++=      (15) 

 

where: 

σ°Lhh, σ°Lvvσ°Lhv,   σ°Phh, σ°Pvv, σ°Phv  are  backscatter value from co-polarized TOPSAR 

image. 

The P-value gives the probability of getting a value of t with absolute value greater than 
that observed if the null hypothesis H0 is true. The statistical test carried out such that 
hypothesis tested are H0 is coefficient equal 0 and HA coefficient not equal 0. If the P-value 
falls below 0.05, the null hypothesis is rejected at the 5 percent significance level. In such 
case, the coefficient corresponding to Lhv are statiscally significant, while other variables 
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are found insignificant. The water depth table map was derived using best fit model 
(equation 15) is shown in Fig. 5.  The areas near riverbanks were found having a higher 
water depth compare with inland area. Comparing with ‘ground truth’- 25 check points 
were used for assessing the accuracy of model generated, and the results is summarized in 
Table VII. 
 
Table VIII:  Summary Results from Multiple Linear Regression for Water  

Depth Analysis 

Parameter Estimate Standard Error t-statistic   P-value 
Variables 1.969 0.8226 2.39 0.0621 
Lhh 0.003 0.0247 0.10 0.9211 
Lvv 0.045 0.0413 0.109 0.3238 
Lhv 0.056 0.0306 1.83 0.1262 
Phh 0.035 0.0329 1.05 0.3406 
Pvv 0.006 0.0189 0.30 0.7748 
Phv 0.017 0.0379 0.44 0.6790 
Correlation Coeff. R2  0.89 
Std. Dev. (Estimation) 0.201147 
Average Deviation (Absolute) 0.106759 
Confidence Level 95% 

 
 

 
 
Fig 5: Depth of water table over study area using L band and P band 
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4.3 Peatland Decomposition 

 
Peat decomposition level can be determined using three common methods, namely: (i) bulk 
density (ii) pyrophosphate color test, and (iii) fibre contents. In this study, only 
determination bulk density peat was adopted 
. 

 Bulk density = 
)(cm Vol

(g) 
3

Mass              (17) 

 
Table IX.  Multiple Regression of Bulk Density.  

Parameter Estimate Standard Error t-statistic  P-value 
Variables 0.6849 0.7924 0.86 0.4510 
Lhh -0.0202 0.0173 -1.17 0.3270 
Lvv -0.0484 0.0318 -1.52 0.2258 
Lhv -0.0448 0.0228 -1.96 0.1446 
Phh 0.0662 0.0335 -1.98 0.1426 
Pvv -0.0740 0.0242 -3.06 0.0551 
Phv 0.0632 0.0354 -1.79 0.1719 
Correlation Coeff. (R2 ) 0.88 
Coeff of Variation 46.80% 
Average Deviation (Absolute)                                                                0.0590 
Average Deviation (Estimation) 0.1384 
Confidence Level 95% 

 
The fit model for bulk density determined from backscatter of TOPSAR data is best given 
by equation 18 with r2 = 0.8.  

 

   0740.00662.00448.0                      
0561.00484.00202.06849.0 

Phv
o

Pvv
o

Phh
o

Lhv
o

Lvv
o

Lhh
oDensityBulk

σσσ

σσσ

−−+−

−+−−−−=
  (18) 
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Fig. 8:  Decomposition level of peatland area. 

 

 

5.  CONCLUSIONS 

The results presented in this study have demonstrates that soil moisture, depth of water 
table and degree of decomposition within peatland can be estimated using TOPSAR data. 
Of all the radar backscattering models examined, Dubois model is the best for TOPSAR 
data for all three parameter tested. The soil moisture and surface roughness is best 
estimated using Lhh and Lvv co-polarized TOPSAR which is more sensitive to degree of 
wetness in the tropical region. With regard to depth of water table and peat decomposition, 
co-polarized L and P bands can adequately be modeled for extraction of these parameters 
with correlation of above 80 percent.  It is anticipated with liner spatial resolution of 
polarized multi band SAR would enhance all the results obtained in this study in near 
future, where multipolarized SAR band are planned for adequate earth observation. 
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