
Case study: Reconnaissance techniques to support

 feature location using RECON2

Suhaimi Ibrahim, Norbik Bashah Idris

Centre For Advanced Software Engineering,

Universiti Teknologi Malaysia,

Kuala Lumpur, Malaysia

(suhaimi,norbik)@case.utm.my

Aziz Deraman

Faculty of Technology & Information System,

Universiti Kebangsaan Malaysia,

Selangor, Malaysia

a.d@pkrisc.ukm.my

Abstract

Change requests are often formulated into concepts or

features that a maintainer can understand. One of the

main issues faced by a maintainer is to know and locate

“where does this program implement feature X”.

However, these features are implicitly available in the

code and scattered elsewhere that make them

undoubtedly difficult to manage. A technique called

software reconnaissance was originally inspired by

industrial maintainers about the need for better ways of

locating software features in large systems. This paper

presents the authors’ experience in using the software

reconnaissance technique and tool called RECON2,

developed by the university of West Florida. Our

objective is to understand how the technique and tool

work and to further suggest some enhancements with

respect to software understanding strategies.

Keywords: software understanding, change request,

software reconnaissance, concept location, dynamic

analysis.

1. Introduction

In many organizations, maintenance tasks are quite

costly and tedious to manage. More worse,

documentations and other written materials are

notoriously out-of-date and unreliable. Source code is

considered the most reliable source of information

available. However, the knowledge of interest for change

is implicitly available in the code and scattered elsewhere

that make it undoubtedly difficult to understand and

locate. It is more likely that the functionality is coded as a

delocalised plan. Soloway et al. have shown that

maintainers can very easily mislocate and misunderstand

such plans leading to serious maintenance errors as pieces

of related code are physically located in non-contiguous

parts of a program [1]. This makes code-level

understanding a key activity in the maintenance task.

Software understanding or software comprehension is

the process of recovering high-level, functionality-

oriented information from the source code. Program

comprehension is an essential part of software evolution

and software maintenance: software that is not

comprehended cannot be changed [2]. In the maintenance

phase alone it has been estimated that programmers spend

half or more of their time analyzing code or documents to

try to understand the behavior of the system being

maintained [3]. In particular, these programs have been

maintained by many programmers with different

programming styles over a number of years may be

unnecessarily complex and difficult to manage.

Clearly, the software understanding process is an

important activity so any approach towards assisting the

comprehension can considerably reduce software costs.

The study of software understanding is very important in

order to know what are the elements of the knowledge

required by the maintainers and how they construct a

strategy towards achieving their objectives. Many

researchers have proposed several cognitive models

describing the comprehension strategies when

understanding a program.

In bottom-up theory of program comprehension, the

programmer’s understanding is based on abstractions or

chuncks of knowledge structures [4]. Chunks are parts of

code that the programmer recognizes for example, “sort”

numbers, “update” records, etc. These chunks are further

aggregated into larger chunks representing higher level

goals. So, large chunks contain smaller chunks nested

within them. The programmer pieces together his

understanding of the program by combining chunks into

increasingly large chunks.

Soloway and Ehrlich [5] observed the programmer’s

understanding program in top-down strategy starting

from the global structures of the program and refined

further into a hierarchy of smaller abstractions until a

complete goal is achieved. Top-down understanding

requires some per-existing knowledge of the program in

order to start exploration. Both bottom-up and top-down

program comprehension theories are complementary and

have been combined into unified models [6].

Rajlich [2] suggests a different view of program

comprehension that does not rely on the top-down or

bottom-up dichotomy, but one is based on the role of

concepts. As programs have become larger, it has become

ever less feasible to achieve complete comprehension.

Instead, experienced programmers tend to use an “as-

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

needed” strategy in which they attempt to understand only

how certain specific concepts are reflected in the code

[7,17]. In “as-needed” strategy, programmers work on a

particular program task at hand and attempt to locate for

certain knowledge of understanding based on program

dependence and relationships. Data flows and control

flows of program components are examined in order to

search for concept or feature locations.

Reconnaissance technique was originally inspired by

the industrial maintainers about the need for better ways

of locating software features in large systems. It was a

result of discussion and comments from the maintainers

in handling a maintenance task. For example, work at the

Bell Communications Research Centre where a large

PBX telephone switch was maintained, Northrop-

Grumman Melbourne Systems that built radar systems,

etc. The maintainers indicated that one of their key

problems was understanding where different features of

the change requests implemented.

The concept locations can be used to handle the user’s

change requests. The change requests are often

formulated into domain concepts or features that a

maintainer can understand. One of the main issues faced

by a maintainer is to know and locate “where does this

program implement feature X”. These features need a

special technique and tool to locate. One technique that

has been developed to help locate concepts in code is

Software Reconnaissance [8]. In this paper, we want to

present our experience in using a reconnaissance

technique and its associated tool called RECON2 [9],

developed by the university of West Florida.

Section 2 of the paper discusses the theoretical aspects

of the concept location scenarios. Section 3 presents the

software reconnaissance technique. A case study of GI

system (Generate Index) is presented in section 4. Section

5 highlights some results of the case study followed by

some lessons learnt. Section 6 presents some related

work. Section 7 contains the conclusions and future work.

2. Concept location scenarios

In most software engineering processes, complete

comprehension of the whole program is unnecessary and

often is impossible especially for large programs [14].

Change requests often need to be formulated to some

domain concepts or features that express the knowledge

in terms of labels of program functionalities.

For example, “credit card” can be considered as a

concept that is equivalent to object in an object-oriented

program. There are concepts that are too trivial to have a

class of their own. For example, the concept “discount”

may be implemented as a single integer within class

“sale” rather than having its own class.

Concept location is a process of locating a concept in

the code and is a starting point for the desired program

change. It is relatively easy to handle in small systems,

which the programmer fully understands. For large and

complex system, it can be a considerable task. The

concept location assumes that the maintainer understands

the concepts of the program domain, but does not know

where in the code they are located.

For example, we want to change “a radio button

selection window” found in a web browser application to

a “pull down menu”, we need to understand the concept

of both “radio button” and “pull down menu”

applications before hand. Then we can search for the

location where the radio button selections are

implemented in the code. During the course of locating a

concept, the maintainers assimilate new facts that easily

fit into their pre-existing knowledge.

Frequently in program comprehension the programmer

understands domain concepts more than the code.

Concept location is needed whenever a change is to be

made. Let us consider the above GUI (graphical user

interface) task with little problem extension.

“Change the radio button selection window to a pull

down menu and apply it to credit card services to provide

better views”

In order to make such required changes, the user must

find in the code the location where the concepts of “radio

button” and “credit card” are placed – this is the start of

the change.

Based on this starting point, a programmer can explore

some other program statements within the context of the

same feature location. During the exploration, a

programmer may need to branch to some other parts of

the program in order to trace all the related statements for

the desired concept. The related statements can be marked

to indicate the boundaries from the unrelated statements.

3. Reconnaissane technique

Reconnaissance technique [11] is a dynamic search

method rather than static search to locate concepts.

Dynamic search involves the execution of the code with

some test cases. Some prefer dynamic search as it is more

focused and can extract most syntactic information that

the static search may miss. The reconnaissance technique

is based on the implementation of the instrumented

program statements.

The instrumented statements are additional statements

created to indicate which parts of the program

conditions, for example if, while, case, etc were

traversed during the execution of test cases. The target

program is initially instrumented to put all “markers”

executed at each condition. Then the target program is

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

run with test cases to produce a set of markers of “with”

desired feature.

The target program is run for second time with

different set of test cases to produce another set of

markers of “without” desired feature. The “marker”

components can then be analyzed to locate the feature by

taking the set of components executed in the "with"

desired feature and subtracting the set of components

executed in the "without" desired feature. The tests can be

repeated for several time using different set of test cases

for both “with” and “without” desired feature to ensure

the focus of the feature location.

4. A case study

As part of reconnaissance study, we conducted a case

study on RECON2 that applied to the Generate Index

(GI) project, written in C. GI is a complete but ‘crude’

program of small size system (450 LOC) specially

developed to train our M.Sc students working on software

maintenance project. The idea of GI is to generate the

indexes of document resemble to the reference indexes of

our text books but with some slight variations. The

change request was to incorporate the occurrences of an

index on the same page as single indexes to appear in the

output (index file). The feature location task was to find

where the code associated to indexes located in the

program. As first task, we had to understand the domain

concept of GI.

4.1 Domain understanding of GI

GI works in Dos environment. It needs to be enhanced

based on some change requests. The basic process of GI

is shown in Figure 1. A text document, doc and a

dictionary, dic were used as input to generate an index

file, indx as depicted in the Listing 1a and 1b. GI is

executed with the following command.

> gi doc.txt dic.txt indx.txt err_file.txt

Figure 1 : process of Generate Index

Each word in doc is examined of its occurrences against

the words in dic. If they match then the corresponding

word will be dumped into indx as an index. Err_file is

just made available to capture errors if any abnormal

situations occur, for example the input file is not found.

 Listing 1 (a) : Sample document of GI

Listing 1 (b) : Sample dictionary and index of GI

Note that the original GI program produces indx that

consists of indexes, each followed by a page number and

a line number. The subsequent occurrences of itself may

proceed to different line numbers of within the same page

or different pages.

The sample of the generated indexes is shown in the

indx file (Listing 1b). For the sake of simplicity, the

following symbols

‘.’ ‘:’ ‘ ‘ ‘,’ ‘”’ ‘;’

 GI

Document

Dictionary

Index

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

Source code

Instrumentation

Instrumented

code

Instrumented

object code
Compilation Execution Analyser

‘Y’ test cases

‘N’ test cases

‘Y’ traces

‘N’ traces

Feature

location traces

in the doc (Listing 1a) are used as the separators

between words with ‘;’ as a page break. This program

provides a trivial example of an index system that can be

enhanced further.

The contents of output in indx reflects how the system

works. For example, the word “aaa” occurs on on page 1-

line 1, page 1-line 2, page 2-line 1, page 2-line 2, etc. The

word “bbb” occurs on page 2-line 1, page 3-line 2, page

3-3, etc. while the index “bus” occurs on page 3-line 3,

page 4-line 4 and page 7-line 2. Note that, the words

“bus” or “buses” as appeared in doc are treated to be the

same and should be managed by the index “bus” in dic. It

just applies to singular words that end with ‘s’, not

others.

4.2 Feature identification

For our case study, we are dealing with the following

change request.

Change the program to only consider a single

occurrence of identical indexes if they occur on the same

page in the document.

This means no more line numbers involved. We only

consider a single occurrence of indexes on a page. Please

take note that we are going to search for the feature

location and impact of the intended features not the actual

change.

Before using the RECON2, we need to understand the

change request and dismantle it into some explicit

features. Our first issue now is to identify what are the

features could we extract from the change request. Based

on the scenario described above we can derive the

functionality as consisting of the following features;

Words and separators

Figure 2: The implementation of RECON2

The reason we say that is, from words we can derive

the indexes and words would be of no use without the

separators in between. However, we are interested in

words as a feature not the separators.

Listing 2 : The N-Test Cases

But our first impression of the document as appeared

in the doc seems that the contents are jumbled up with

words and separators. Words are said to be the intended

features, while separators are the unintended ones. Our

attempt now is to get the separator location out of the

document in the code. So, how do we manage this ?

One way to solve this is to design or construct two

types of test cases, one is to identify all stuffs in the

document (words and separators) and another one is to

identify the separators. Then we can think of extracting

the separator location from the document location.

Our second issue now is to design or contruct the test

cases for both document and separators. This issue will

be explained further in the following section.

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

4.3 RECON2 approach

To support the above change request, we arrange our

work into several subtasks using RECON2 (Figure 2).

- Perform instrumentation

- Test case selection

- Analyze traces

a. Perform instrumentation

Initially, RECON2 makes an instrumented copy of the

user’s target program before we implement a particular

program feature. Instrumentation process adds to the

original source code, some statements on each program

condition such as if, while and case components so that

the ‘marker’ components can be traced when analyzing a

search.

 Listing 3 : A snapshot of Y-traces

b. Test case selection

Our strategy on test case selection is to identify the

actual locations or boundaries of the needed codes in the

program. Two feature locations are discussed here

i) document location

ii) separator location

From the above discussion, we recognized the

document as consisting of all sorts of words and

separators. We firstly constructed a set of test cases that

led to the implementation of code to cover all the words

and separators. We called it Y-test cases. We then created

another set of test cases that covered only the separators.

We called it N-test cases. We considered the doc in

Listing 1a as the Y-test cases and the doc1 in Listing 2 as

the N-test cases.

The test cases should be specially designed as they

will determine the location to be searched. Too many test

cases may affect the accuracy of feature location as this

makes the resulting traces more difficult to analyze. The

least and well chosen test cases will be useful as it makes

the search more focused and close to the needed code. So,

we classified two types of test cases as

i) Test cases “with” the feature (Y-test cases).

ii) Test cases ‘”without” the feature (N-test cases).

RECON2 executes the Y-test cases to produce the Y-

traces and executes the N- test cases to produce the N-

traces. Both traces contain the status of program

conditions that includes the Boolean values, line numbers

or positions of the affected program conditions in the

module, module pointers and the physical location of the

module involved (Listing 3). The traces reflect the

detailed execution of the test cases.

 Listing 4 : A snapshot of target traces

c. Analyze traces

We use an analyser provided by RECON2 to analyze

the difference between the Y-traces and N-traces. Listing

3 shows some sample traces of Y-test cases. Conceptually

it takes an extraction of N-traces out of Y-traces then the

difference will be the occurrence of N-traces that differs

from the Y-traces. We can also perform the analysis on

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

individual Y-traces and N-traces to see their tracing

impacts on the source code modules.

During the analysis, the result of the difference traces

are directly annotated into the source code modules by

automatically placing the markers “>>>>>” on the

affected program conditions. Each marker is followed by

a symbol “T” or “F” or both “T F” (Listing 4).

The “T” indicates the current program condition

always gives a true Boolean while implementing a test

case. The “F” indicates the program condition is false i.e

it never occurs. While the “T F” is to indicate that both

Booleans apply.

The “T F” situations could occur when the tracing

gives different values at different times while traversing

the path. The behavior of the program during execution

may cause to some path repetition or looping that would

change the variable status especially when a maintainer

uses many test cases of different types in one run.

5. Results

The Y-test cases generated a Y-trace file of 62 pages

in size. While the N-test cases generated a N-trace file of

smaller size of about 5 pages only. All the traces are

based on the complexity of the test cases we use that

might involve looping, branching and repetitions of

program paths. We run a RECON2 analyzer to analyze

the difference between the Y-traces and the N-traces. The

results of the tracing analysis are shown in Table 1.

 Table 1 : Result of RECON2 analysis
Files No.

of

funct

ions

Y-TEST

CASES

(No. of

annotate

d marks)

N_TEST

CASES

(No. of

annotate

d marks)

Diff.

mmims_main.c 1 4 4 -

dmsc.c 4 4 4 -

dictionary.c 3 11 11 -

document.c 3 16 15 3

atmarker.c 4 3 1 2

atword.c 4 5 3 4

atindexedword.c 5 5 - 5

index.c 3 6 2 5

TOTAL 27 54 40 19

The diff in the table 1 shows that the difference in

terms of the number of traces how the separator is

different from the document. The result is encouraging.

From the table 1, we found the total number of tracing

markers “>>>>>” after extracting the N-test cases from

Y-test cases is 19 as compared to the original traces, 54 of

Y-test cases and 40 of N-test cases. This means a

maintainer can reduce his effort by just examining those

files affected by the markers rather than examining the

whole parts of the program.

The file mmims_main.c, dmsc.c and dictionary.c were

not affected by the intended feature location as no

difference can be derived from Y-traces and N-traces i.e

all the traces are common to both Y-traces and N-traces.

The number of traces in document.c had drastically

reduced to 3 out of 15 of N-test cases and 16 of Y-test

cases. It also seems that there were no N-test case traces

found in the atindexedword.c after the implementation of

N-test cases. This is due to the fact that no influence of

the separators in the program file, so the feature words

make full use of the program dependence and

relationships in atindexedword.c.

In overall, we noticed that the traces in the affected

files were greatly reduced from the original Y-test which

means the search strategy is more focused.

Remarks and lessons learnt
Some points can be concluded with regard to the

application of reconnaissance techniques and RECON2

tool.

i) Generally only a few test cases are needed if they are

well chosen. It is important to make the test cases

"with" the feature as similar as possible to the test

cases "without" the feature to avoid accidentally

including irrelevant components in the trace.

ii) Reconnaissance techniques are useful for a starting

point of concept location and regression testing. As it

involves the dynamic search of the program, it can

focus the search process and reduce the time for code-

level analysis.

iii) RECON2 provides some elements of supporting a

program task at hand, “as-needed” strategy which is

useful as a basis to handle a large program.

However, the drawback is the reconnaissance

techniques are based on the test cases. Very often that the

test cases cannot be easily designed or selected. Many

functionalities or features may not be easily formulated

into test cases. Furthermore, the set of “without” test

cases were just not rich enough to exclude the unwanted

branches.

Another issue is the use of software reconnaissance

would expect a maintainer to have some pre-existing

knowledge of the program and application. Without this

knowledge would be almost impossible for a maintainer

to construct and choose the best test cases possible.

6. Related works

Many researchers have been dealing with the change

impact analysis and it seems beginning to establish since

the last two decades. The glorious records are discovered

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

in a collection of prestigious papers and bibliographies in

[12]. Some dependence graph and slicing techniques such

as program dependence graphs (PDG), system

dependence graphs (SDG), abstract system dependence

graphs (ASDG), etc contribute to the static and dynamic

search strategies of impact analysis.

As change impact analysis deals with the estimation of

the program size prior to change, the reconnaissance

process takes the complementary action to provide a

starting point to locate concepts of software change. In

describing the feature location process, the cognitive

models of program understanding are useful

[2,4,5,6,13,14].

Lokhtia [10] concluded that partial comprehension of

software is sufficient for practical maintenance work.

Mayrhauser suggested that tools for performing partial

comprehension will be helpful. Chen and Rajlich [14]

develops a reconnaissance tool that incorporates both

static and dynamic search of using top-down exploration.

This search expects a programmer to have some pre-

existing knowledge of the program. The programmer has

to decide on certain hypotheses in order to reach or locate

the desired features. This exploration seems quite flexible

although it is time consuming as the programmer has to

walkthrough the program.

Wilde [15] developed a reconnaissance tool, RECON2

on the expectation to locate concepts based on “as-

needed” strategy. He claims that the tool is faster as it can

work automatically on the concept location based on test

cases.

Agrawal [16] developed a system test called Suds to

incorporate understanding, debugging and testing. Suds

stores an execution trace, which records how many times

each test has exercised a particular software component

(functions, blocks, decisions, data flow association) and

expects pre-existing knowledge of program

understanding.

As the reconnaissance techniques can automatically

execute the test cases for tracing and analyzing, it does

not allow the maintainer to manoeuvre the search. In

software understanding, the intervention of maintainers is

still useful to a certain extent. The maintainers might want

to skip or proceed with certain hypotheses and do forward

or backward during searching process. So, our future

work is to see the possibility of incorporating both

dynamic and static analysis into the change impact

process.

7. Conclusion and future work

We presented some mechanisms of dynamic analysis

adopted by the reconnaissance techniques.

Reconnaissance techniques are potential to locate features

and focus on a search process. The ability to dynamically

analyze the traces within program components greatly

reduces the maintainer’s work of manually searching for

their discrepancies in the code.

The software understanding of “as-needed” strategy

has a potential to support the code-level maintenance of

large system as it can focus on a program task at hand.

However, it expects a maintainer to have some pre-

existing knowledge of the program functionalities,

otherwise the software change is almost impossible to

implement.

Reconnaissance techniques can help provide a ‘crude’

estimate of feature ‘size’ which might be useful for cost

estimation. Currently, we are working on the change

impact analysis. The ability of reconnaissance techniques

to search for feature location could be used to identify the

size of the proposed change. Our study on reconnaissance

gives a good insight into the dynamic analysis that will be

useful in our future work.

References
[1] Soloway E., Pinto J., Letovsky S., Littman D., Lampert

R.. “Designing documentation to compensate for

delocalized plans”, ACM, 1988, Volume 31, No. 11, pp.

1259-1267.

[2] Rajlich V., Wilde N., “The Role of Concepts in Program

Comprehension”, Proceedings of 10th International

Workshop on Program Comprehension, 2002, IEEE, pp.

271-278.

[3] Corbi T.A., “Program understanding: Challenge for the

1990s”, IBM Systems Journal, 1989, Vol. 28, No. 2, pp.

294-306.

 [4] Letovsky S., “Cognitive Processes in Program

Comprehension. In Empirical Studies of Programmers”,

E. Soloway and S. Iyengar, eds., 1986, Ablex, Norwood,

NJ, pp. 58-79.

[5] Soloway E., and Ehrlich K., “Empirical Studies of

Programming Knowledge”, IEEE, 1984, SE-10, Volume

5, pp. 595-609.

[6] Mayrhauser A.V. and Vans A.M., “Industrial Experience

with an Integrated Code Comprehension Model”,

Software Engineering Journal, Sept 1995, pp. 171-182.

 [7] Koenemann J., and Robertson S., “Expert Problem

Solving Strategies for Program Comprehension”,

Proceedings of conference on Human Factors im

Computer Systems, CHI, ACM Press, May 1991, pp.

125-130.

[8] Wilde N., Scully M., “Software Reconnaissance:

Mapping program features to code”, Journal of Sofware

Maintenance: Research and Practice, 1995, Vol. 7(1995),

pp. 49-62.

[9] “RECON – tool for C programmers”,

http://www.cs.uwf.edu/~wilde/recon/

 [10] Lakotia A., “Understanding someone else’s code: Analysis

of experience”, Journal of System and Software, 1993,

Vol. 23, pp. 269-275.

[11] Wilde N., Casey C., “Early Field Experience with the

Software Reconnaissance Technique for Program

Comprehension”, WCRE, IEEE, 1996, pp. 270-276.

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

[12] Bohner S.A. and Arnold R.S., “Software change impact

analysis”, IEEE Computer Society Press, 1996, Los

Alamitos, California.

[13] Brooks R., “Towards a theory of the comprehension of

computer programs”, International Journal of Man-

Machine Studies, 1983, Volume 18, pp. 543-554.

[14] Chen K., Rajlich V., “Case study of feature location using

dependence graph”, IWPC2000, IEEE, 2000, pp. 241-

247.

[15] Wilde N., Page H., Rajlich V., “A case study of feature

location in unstructured legacy Fortran code”, IEEE,

2001, pp. 68-76.

[16] Agrawal H., Alberi J.L., Horgan J.R., Ghosh S., Wilde N.,

“Mining system tests to aid software maintenance”, IEEE,

1998, pp. 64-73.

[17] Lukoit K., Wilde N., Stowell S., Hennesey T.,

“TraceGraph: Immediate visual location of software

features”, IEEE, 2000, pp. 33-39.

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

