
Proceedings 2003 IEEE International Symposium on
Computational Intelligence in Robotics aud Antomation
July 1620,2003, Kobe, Japan

Offline Cursive Handwriting Recognition System based on
Hybrid Markov Model and Neural Networks

Yong Haw Tay, Marzuki Khalid', Rubiyah Yusof, and C. Viard-Gaudin
Centre for Artificial intelligence and Robotics (CAIRO),

Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur, Malaysia.
E-mail: mamrki@utmkl.utm.my (*contact person)

segmented into sub-character image frames using a
Abstract fast sliding window technique. Then, by combining

offline cursive handwriting recognition several image kames, we generate a segmentation
system, based on hybrid of Neural Networks (NN) and graph of Segmentation Candidates (scs)
Hidden Markov Models (HMM), is described in this !h"t suggest d l possible ways to segment a word
paper. Applying SegRec principle, the recognizer does Image into letters. Having all the character recognition
not make hard decision at the &mer segmentation probabilities for each SC, the final process decides the
process. Instead, it delays the character segmentation to best segmentation based on the character recognition
the recognition stage by a segmentation results. This approach reduces information lost from
graph that describes all possible ways to segment a one process to the successive one. However, as the
word into letters. To recognize a word, the NN SCS may consist of sub-cbaracters or multiple
computes the observation probabilities for each characters, 01 We termed them 'junks', the character
segmentation candidates (scs) in the segmentation recognizer must model those SCs to only give low
graph, nen, using concatenated letter-m~s, a probabilities for character classes. We describe in
likelihood is computed for each word in the lexicon by detailed two approached to train the word recognizer:
multiplying the probabilities over the best paths 1). Character-level training 2). Wod-levei mining.
through the graph. We present in detail two approaches In this Paper, we first inwoduce *e fundamental
to train the word recognizer: 1). chmcter-level training processing and configuration in our cursive handwritten
2). word-level h;lining. me recognition perfomances word recognizer in Section 2. This is followed by
of the two systems are discussed. presentation of the character-level training scheme, In

Section 4, we present another method to train the NN
using the word-level criteria. Experimental results have

1. Introduction been obtained using the IRONOFF isolated word
database [3].

Cursive handwriting recognition problem has
only been profoundly studied since last decade. Given
the ambiguity of the human cursive handwriting, the
task to develor, a reliable recognizer oresents a
technical challenge. At present, most of the-successful
commercially applied handwriting recognizers are for
environment with small and specific lexicon, for
example as in bank cheque's legal amount recognition
[l]. The increase of the size of lexicon expands the
complexity of the recognition task, specifically the
computation and recognition performance. Ideally,
word recognition process can be considered as an
extension of character recognition process, whereby a
word image is segmented into letters, then recognized
individually by a character recognizer. However, the
process of character segmentation is not simple
without the knowledge of characters. Likewise, the
character recognizer cannot recognize correctly
without the true segmentation. This is referred to as
the Sayre's paradox 121.

Realizing the interdependency of
segmentation and recognition process, our approach
that is based on Segmentation by Recognition
(SegRec) principle proposes to delay the character
segmentation process until later stage by the character
recognizer. In order to recognize a word image, it is

II. NN-HMM Hybrid Recognitlon System
Our cursive handwritten word recognizer is a
segmentation-based, lexicondriven system. Detailed
description ofthe system can also be found in [4].

A. Slant Correction
Slant correction is required in order to reduce the
variability of handwriting styles. Our slant correction
process utilizing the techniques used in [l]. For a
given word, we run a contour-following algorithm on
each connected component. Each external contour of a
connected component is described as a list of contour
vectors, each of which can he classified as
horizontal(nh), vertical(nJ, diagonal +45'(n+), or
diagonal -4S"(n.). We count the contour vectors of
each class and compute the slant 0 as the average
orientation of the vertical parts of the word

0 = arctan (n+:;:n-] (2.1)
Slant correction is applied on the whole word image
by shearing the image horizontally:

x ' = x - y s i n O and y ' = y (2.2)

1 0-7803-7866-0/03/$17.00 02003 IEEE 1190

B. Reference Line Detection
Reference l i e s carry important information for
handwriting recognition systems, as they help in
normalizing the image size and in emacting
geometrical features related to the position of letters
with respect to their context. Given an input word
image, our goal is to fmd four parallel straight lines
and their respective position:

1. Ascender line, positioned at the top of letters
like ‘K’, ‘h’, and ‘t’,

2. Core line, positioned at the top of lower case
letters like ‘a’, ‘e’, and ‘m’,

3. Base line, positioned at the bottom of letters
like ‘a’, ‘e’, and ‘m’,

4. Descender line, positioned at the bottom of
characters like ‘p’, ‘q’, and ‘y’.

To detect the reference lines, we first smooth the
binary image. Then, we extract the local minima and
maxima of the handwriting signal by running a
contour following algorithm on the internal and
external contours of the word image. Together with
the a priori probability distribution of the line
positions, these e m m a are used as the observations
for an Expectation-Maximization (EM) algorithm in
order to estimate position and slant of the 4 straight
parallel reference lines. More details on this algorithm
can be found in [5] .

C. Segmentation
The word image is cut from left to right into slices of
variable width. In order to achieve size invariant
segmentation, the average slice width depends on the
height of the core-zone of the word. The parameters of
the segmentation algorithm are chosen such that each
slice contains either a letter or part of a letter, but not
more than a letter (over-segmentation). The exact
position of each cut is determined such that a
minimum number of ink pixels have to be crossed.
From the lefl-right ordered sequence of slices, we
combine several consecutive slices to form SCs. A
segmentation graph represents all possible ways to
segment the word into letters. Figure 1 depicts an
example of a word image cut into four slices. The
right side of the figure shows the segmentation graph
that consists of SCs composed of 1 to 4 consecutive
frames. A maximum of 9 consecutive frames is
allowed for a SC.

D. Feature Extraction
The main objective of the feature extraction process is
to capture the most relevant and discriminant
characteristics of the character to recognize. We
extract 140 geometrical features from each SC. The
features are I) Dimension and aspect ratio of the
bounding box of ink-pixels in a h e , 2) Center of
gravity, 3) Distance to the core-zone, 4) Profiles in 8
directions, and 5) Number of transitions from non-ink-
pixel to ink-pixel, for vertical, horizontal, +45” and -
45” diagonal direction. All features are normalized by

the height of the core zone, h, in order to make the
features invariant with respect to the size of the
handwriting.

Fig. 1. (Lefi) Word ‘et’ is segmented in 4 slices.
(Right) Segmentation graph describing all possible
ways to segment the word into letters. The bold

lines indicate the true segmentation paths for the
word ‘et’.

111. Character Recognition using NN
For each SC in the segmentation graph, we perform
character recognition. We fust extract geometrical
features from the SC, and feed them into a trained NN
for classification. The topology of the NN is a 3-
layered Multi-layered Perceptrons (MLP), with
soRmax activation at the output layer (see Fig). The
output of this process is a list of character
probabilities. Notice from the Fig2 that there could be
many non-characters exist as SCs, therefore, it is
important that the NN must be able to model those
SCs. It has to give low probability for all character
classes if those junks are presented. To solve this, we
propose to add a ‘junk‘ output neuron to the NN.
Approach to train the junk class will be discussed in
succeeding sections.

140 features as input

Fig. 2. Topology nf the soffmax MLP

A. Word-likelihood Computation using HMM
For each entry in the lexicon, we build a word HMM
(Hidden Markov Models) hy concatenating letter
HMMs and ligature HMMs as illustrated in Fig. 3.
The gray states are ‘dummy’ states that do not emit
Observation probabilities. They allow for the
alignment with the observation sequence where each
slice is an observation, and thereby allow the use of
the usual HMM tools. The observation probabilities in

2 1191

each emitting state of the basic HMMs (letter- and
ligature-HMMs) are computed by the NN. The
likelihood for each word in the lexicon is computed by
multiplying the observation probabilities over the best
path through the grapb using the Viterbi algorithm.
The word HMM with the highest probability is the
fist recognition candidate.

”’- h”,k’ bbbu i b’ h n n ’ w

Fig.3. Word HMM ‘et’ is composed of letter
HMMs ‘e’ and ‘t’, with ligature-HMMs inserted
before and after. Lines in bold indicate the best
path through the model for the example of Fig. 2.

B. Character-Level Discriminant Training
The basic idea in character-level training scheme

is that we train the NN as a character recognizer. The
NN is trained using isolated characters segmented
from the word images. With the NN to generate

s, we train the transition
to estimate the duration

frequency of a character. And finally, we combine the
two at the recognition stage. Figure 4 illustrates the
structural training scheme to improve the performance
of the recognizer. For this training scheme, we
initially use isolated characters generated by OUT
baseline word recognition, which is based on discrete
HMM, to automatically segment word image into
characters (Bootstrap process). Once we have a word
recognizer, we then use the word recognizer to
regenerate isolated characters to restart the process
again (Viterbi B). And finally, we train the NN to
model junk examples (Discriminant Training).

~~~~ ...., ~ ~ ~~ .. 

j 
. .  

Bmsnp ! v m h B m “ “ s  ~ ! D W T m U .  

~ 

Bootstrap 
We first need to train the NN to recognize 

characters. This can be done by manually segmenting 
word images into isolated character images with 

associated class labels. As this approach is rather 
laborious and time-consuming, we opted for an 
automatic approach, which uses the trained baseline 
recognizer to segment the word images in the training 
set into isolated characters. This can be done by 
running the Viterbi hacktracking algorithm to select 
the best segmentation path, given the true HMM. 
Baum-Welch training is performed after this to 
estimate the transition probabilities. 

wterbi B 
Given the discriminant power of the NN, the 

initial bootstrapped recognition result shall already be 
better that the baseline recognizer. We iterate this 
training procedure a few times by using the obtained 
hybrid recognizer to segment the word images into 
letters for the NN training. Baum-Welch training is 
again performed to estimate the transition 
probabilities. 

Discriminant Training 
During the frst two stages, the recognizer 

managed to improve its recognition accuracy 
significantly. However, one problem remains 
unsolved in which the NN was not trained to reject 
non-characters, also termed ‘sunk”. For these SCs, e.g. 
part of a character or combination of a few characters, 
the NN will gave unpredictable results. This is known 
as the collapse problem 161. To solve this problem, we 
have added another output to the NN, which is 
responsible for giving a high probability if a non- 
character/junk is presented. Although the HMM will 
not use this probability directly, a high probability at 
this junk class output will eventually flatten the 
probability distribution of other character classes if a 
junk example is presented (Remember that we are 
using softmax normalization at the NN output layer, 
which sum all outputs to 1.0). At this training stage, 
we generate junk examples and combine character 
examples to retrain the NN. Baum-Welch training for 
transition probabilities is again performed after the 
NN retraining. 

Given a true HMM, all SCs that do not belong 
to the best segmentation are junk examples. This 
method can generate almost the entire junk examples 
that can be found in the training database. However, 
the problem of this using this method is that a huge 
number ofjunk examples will be generated to train the 
NN. With more training examples, the training 
process would be very time-consuming. Some of the 
SCs are not in the best segmentation, given the true 
HMM, it might resemble other characters. For 
examples, ‘w’ can be combination of two ‘U’S, left 
part of ‘d’ could look like a ‘c’, and 50 on. Generating 
those SCs as junk examples will create competition 
between junk class and those character classes which 
will eventually pull down the probability of those 
classes compared to others that have no such problem. 

3 1192 



Thus, we introduce the discriminant training, Table 1. Recognition performance (test set) for 
which is a process to carefully choose the SCs that cacb training stage on IRONOFF-196 
cause recognition errors as junk examples. The key 
idea of the training is that, given a true HMM, /1’ ,and 
the best HMM, A*, we compute the difference of y 
between each SC. The y probability represent 
probability that a given observation is a true letter 
observation for the considering word-=, 1. y 
can be computed using the forward a ,  and 
backward p , variables as defined as below: 

aiPj y .  =- 
‘ P ( 0 l A )  (3J) 

The SCs that have the minimum of difference between 
two y is considered as the junk examples. The junk 
example from the SCs can be formulated as: 

Junk = argmin y,r - y,* (3.2) 
‘ET 

where T is the total number of SCs. 
We run the training for a few iterations until the 
optimum recognition is obtained. 

IV. Experimental Results 
We have tested our recognition system on isolated 

words fiom the IRONOFF [3] database. The database 
contains a total of 36,396 isolated French word images 
fiom a 196-word lexicon. The offline handwriting 
signals are sampled with spatial resolution of 300 dots 
per inch (DPI), with 8 bits per pixel (256 gray level). 
The training data set contains 24,177 word images, 
and another 12,219 images are used as test data set. 
The scriptors of the two data sets are different. This 
reflects an omni-scriptor situation where only some 
types of handwriting styles are available during the 
designed training of the system. We name the full 
database as IRONOFF-196. 
In all the presented experiments, recognition scores at 
the word level were evaluated using two performance 
measures. The recognition rate is the percentage of 
samples that are correctly classified. Generalizing this 
concept, we also compute the recognition rate, Rec 
(K), in the second, third and subsequent position, 
which is the cumulated recognition rate of the first K 
position in the candidate list. The second measure is 
the average position,%, of the true class in the 
candidate list. This measure tells more about the 
distribution of the probabilities within the candidate 
list, and is therefore more informative with respect to 
the performance of the complete recognition system. 
If the true class is not recognized in the first position, 
but in the second or third position, and with a 
relatively high probability, the true class may still be 
recognized in subsequent processing step. 

Training Stage 

Viterhi B 

Discriminant Training (2000-lex) 

Table 1 shows the recognition performance of the NN- 
HMM hybrid recognizer for each training stage. The 
training and testing is performed on IRONOFF-196 
database. The NN is initially trained with 
segmentation by the baseline recognizer, which 
achieve Rec(1) of 89.3%. After the bootstrap process, 
the recognition of the hybrid recognizer is 91.7%, 
which is 2.3% better than the baseline recognizer. This 
indication proves the strength of the hybrid 
recognizer. By regenerating isolated characters using 
the hybrid recognizer in the Viterbi B stage. it then 
gains 4.3% improvement. This is because the hybrid 
recognizer, having better recognition, is able to 
segment word into characters more precisely. We 
separate the discriminant training stage into 2. First, 
we generate junk examples using the original 196- 
word lexicon. Rec(1) improve to 95.5% after this 
stage. We felt that the performance could be better by 
letting the NN to have more examples of other junks. 
Thus, at the second discriminant training stage, we 
instead use a lexicon of 2000 words that closely 
resemble words in the original 196-word lexicon. This 
will make the recognition tougher and thus, more junk 
examples can be generated. And finally it achieves 
96.1% of recognition rate, which is 7.5% of 
recognition improvement over the baseline recognizer, 
or in other words, a reduction of 70% error (from 
10.7% error to 3.2% error). 

Discriminant Training (1961ex) 95.5 

V. Word-Level Discriminant Training 
Although character-level training yields better 
recognition, it trains the NN and HMM separately, i.e. 
by segmenting words into isolated letters, which are 
then used to train the NN [7, 81. Therefore, the NN is 
optimized at the character level, which does not 
guarantee optimal recognition performance at the 
word level. Secondly, within this type of approach, the 
outputs of the NN are divided by the class prior 
probabilities. This results in ‘scaled-likelihood’, which 
are used as the observation probabilities in the HMMs. 
This normalization often generates problems if some 
letter classes have very low prior probabilities. For 
instance capital letters usually have relatively small 
priors (thus large scaled-likelihoods) compared to 
lower-case letters. Furthermore, character level 
training implies that we need to provide examples of 
letters as well as non-letters (‘junk’) to train the NN, 
which is not an easy task [4]. 

Word level discriminant training seems to be an 
answer to our problem [6, 91. Instead of generating 
isolated letters from the word images in order to train 

4 1193 



the NN separately, we want to instantly back- 
propagate the error at the word level into the NN to 
update its parameters. All transition probabilities in 
the HhlMs are set to 1 and are not modified during 
training. We base the word level objective function L 

I T  
=---ma, ,4 ,b ,  bl(0,) r ( Q )  (4.7) 

on the M a x i "  Mutual Information (MMI) as 

IRONOFF- 

follows: 

Training Training 
R 4 )  p.. R 4 )  p.. 
96.1 1.4 97.1 1.2 

where P(O 1 A )  is the likelihood of the observation 

sequence 0 = 0,0, ... Or, given the HMM 1. X 
is the true word HMM, and n' varies over all word 
Hh4Ms in the given lexicon. The objective function is 
optimized using gradient descent (back-propagation). 
To reduce the computational complexity of Eq. (I) ,  an 
approximate cost of L can be written as 

where,%* is  the HMM with the largest likelihood 

among all i or 

i = l 0 g ~ ( 0 1 ~ ) - l 0 g ~ ( 0 ~ a ' )  (4.2) 

a' =argmaxP(OI i )  (4.3) 
n' 

Eq. (4.2) states that the word-level objective function 
is based on the difference between the log-likelihood 
of the true HMM, /2' and the best HMM, A'. If /2' is 
also the best HMM, then 
L'=lOgP(01/2')-lOgP(OI/2')=0,andthus, 
no error is back propagated to update the NN. 
Otherwise, we change the weights Ff' of the NN 
using the chain rule: 

196 
IRONOFF- 
2000 

The word likelihood of HMM a ,  given observation 
sequence 0 can be defied as: 

83.1 5.9 88.1 3.0 

where U ,  b (0 , )  are the transition probabilities, and 
observation probabilities, respectively, and the sum 

derivatives of U ,  b (0 ,  ) can be written as: 
IUS over dl paths r through the HMM /z [lo]. The 

1 i = j  

0 i + j  
where 6,,, = 

Therefore, the derivative of the word likelihood with 
respect to the observation probability can be written 
as: 

where P(O,q, = j I 1) can be computed by a 
dynamic programming atgorithm [IO]. 
The first term in Eq. (4) can be further derived as: 

aL 1 dP(01X) 1 JP(0I.i.) 
Jb,(O,) P(0lX) Jb,(O,) P(0IX) Jb, (S)  (4.8) _ = ~ . _ _ _ ~ . _ _  

where P(o'q' = J ' ') is the probability that a 
, P(0laz) 

given observation is one of the letters in the 
considered word HMM 1. 
For the second term of the equation (4.4), as bi (0,) 

is actually the output of the NN given 0, , we can use 
the usual back-propagation algorithm to update the 
weights of the NN. 

We tested our recognition system on the 
IRONOFF database. We bootstrapped the recognizer 
by using the NN that have been trained at the 
character level. Once the NN bas been bootstrapped, 
we started to train the recognizer using the word-level 
discriminant training. Table 2 shows the recognition 
performances of the recognizers using two different 
approaches. For IRONOFF-196, word-level training is 
1.0% more accurate than the character-level trainiig 
(about 25.6% of error reduction). To further analyze 
the performance of the recopnizers, we tested the 
systems using larger size of lexicon, i.e. 2000 words. 
It shows that for IRONOFF-2000, word-level training 
is 5.0% better in recognition performance (about 
29.5% of error reduction), as well as significant 
improvement of the average position, pos . - 

Table 2. Recognition performances of the 
recognizers on two test data sets. 

IDatabase I Char-level I Word-level I 

1194 5 



VI. Conclusions 
In this paper, we described an offline handwriting 
recognition system using hybrid of NN and HMM. In 
order to minimize lost of information, the 
segmentation process proposes all possible ways for 
cutting a word image into letters. By using character 
recognition results on each SC by the NN, the HMM 
decides the best segmentation path based on the word 
likelihood computation. Two approaches to train the 
word recognizer are presented, namely character-level 
discriminant training and word-level discriminant 
training. Recognition performances on IRONOFF are 
presented and show the superiority of word-level 
approach compared to character-level training. In 
addition to that, word-level discriminant training 
eliminate the used of scaled-likelihood, which is 
difficult to adjust. Further experiments will he carried 
out to train the recognizer directly using random 
initialization. This will eliminate the process of 
bootstrapping using another recognizer. 

Acknowledgements 
The authors would like to express their deepest 
gratitude to Dr. Pierre-Michel Lallican and Dr. Stefan 
Knerr kom Vision Objects for their help and 
guidance. 

References 

S. Knerr, E. Augustin, 0. Baret, and D. Price, 
“Hidden Markov Model Bused Word Recognition 
and Its Application to Legal Amount Reading on 
French Checks”, Computer Vision and Image 
Understanding, vol. 70, no. 3, June 1998, pp. 
404-419. 

TSteinherz, E.Rivlin and N. Intrator, “W-Line 
Cursive Script Word Recognition - A Survey, 
Int’l Joumal of Document Analysis and 
Recognition, 1999. 

C. Viard-Gaudin, P.M. Lallican, S. Knerr, P. 
Sinter, “The IRESTE Odm (1RONOFF) Dual 
Handwriting Database”, International 
Conference on Document Analysis and 
Recognition, 1999. 

Y.H.Tay, P.M.Lallican, M.Khalid, C.Viard- 
Gaudin and S.Knerr, “An Ofnine Cursive 
Handwritten Word Recognition System”, Proc. 
of TENCON, 2001, Singapore, 2001. 

Y. Bengio, Y. LeCun, “Word Level Training of a 
Handwritten Word Recognizer Based on 
Convolutional Neural Networks”, International 
Conference on Pattem Recognition, pp. 88-92, 
1994. 

[6] Y. LeCun, L. Bottou, Y. Bengio, P. H a e r ,  
“Gradient-Bused Leming Applied to Document 
Recognition”, Proceedings of IEEE, Vol. 86, No. 
11 ,  pp. 2278-2324, 1998. 

[7l R.Plamondon, S.N.Srihari, “On-Line arid Off- 
line H a n d ~ t i n g  Recognition: A Comprehensive 
Survey”, IEEE Transactions on PAMI, V01.22, 
No. 1, pp.63-84,2000. 

[8] S. Knerr, E. Augustin, “A Neural Network- 
Hidden Markov Model Hybrid for Cursive Word 
Recognition”, Intemational Conference on 
Pattem Recognition 98, Brisbane, 1998. 

[9] Y. Bengio, R. De Mori, G. Flammia, R. Kompe, 
“Global Optimization of a Neural Network- 
Hidden Markov Model Hybrid”, IEEE 
transactions on Neural Networks, Vol. 3, No. 2, 
pp. 252-258, 1992. 

[IO] L. R. Rabiner, “A Tutorial on Hidden Markov 
Models and Selected Applications in Speech 
Recognition”, Proceedings of the IEEE, vol. 77, 
pp. 257-285, 1989. 

1195 6 


