
A PI Sliding Mode Tracking Controller with application to a 3 DOF 
Direct-Drive Robot Manipulator

S. W. Nawawi, J. H. S. Osman and M. N. Ahmad

Lecturer, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 
81310 UTM Skudai, Malaysia. E-mail: sophan@fke.utm.my

ABSTRACT

This paper deals with the tracking control of 
direct-drive (DD) robot manipulators.  A robust
Proportional-Integral (PI) sliding mode control law is 
derived for accurate tracking despite the highly
non-linear and coupled dynamics. It is shown
mathematically that the proposed controller is capable of
withstanding the expected variations and uncertainties
present in the system.  The performance of the
proposed control law is evaluated by means of computer
simulation studies on a 3 DOF revolute DD robot
manipulator actuated with BLDCM motors.

1. INTRODUCTION 

The concept of direct-drive (DD) robot has been around
for quite some time. It eliminates the problems
associated with gear backlash and friction significantly.
The construction is much stiffer, no wear and tear, and
easy to maintain. In DD arm, the complex dynamics of
the arm are directly reflected to the motor axes.
Therefore, the varying inertia effect and the effects of the
coupling and non-linear torques will have a substantial
dynamical effect [1], [2]. Moreover, large inductance
in typically used DD actuators, such as Brush-less DC
Motors and Variable Reluctance Motors, will have a
direct influence on the overall dynamics of the DD arm.
In conventional SMC approaches, the starting point for
the design procedure is through the transformation of the
input distribution matrix B to some canonical form. The
most commonly approach is to transform the system 
model into the Reduced Form or Regular Form whereby
the matrix B is partitioned to the form [  with 

. A variety of the SMC known as Integral
Sliding Mode Control (ISMC) has surfaced in the
literature [3]- [7]. In ISMC, the order of the motion
equation in is equal to the order of the original system.
It is not necessary to transform the original plant into a 
canonical form. Moreover, by using this approach, the
robustness of the system can be guaranteed throughout
the entire response of the system starting from the initial
time instance. 
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2. PROBLEM FORMULATION 

The integrated dynamic model of an N DOF DD revolute
manipulator can be represented as [7]:,
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where  is a payload, and are the joint
angle, velocity and acceleration, respectively. The robot
dynamics (1) can be represented as: 

and,
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where A and B are nominal constant matrices, while

A(X, ,t) and B(X, ,t) matrices are uncertainties. 
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Let be the desired state trajectory: N
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Define the tracking error, Z(t) as 
)()()( tXtXtZ d (4)

in this study, it is assumed that there exist:
i) Continuous functions  and 

such that for all  and all t:
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ii) A Lebesgue function 1, such that )( mt

)()()( tBtAXtX dd             (7)
In view of (4), (5), (6) and (7), (2) can be written as 
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Define the PI sliding surface  as 1)( mts
t
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where  and NmRC 3 NmRK 3  are constant
matrices. The structure of matrix C is as follows:
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The matrix C is also chosen such that  is 
non-singular, while the matrix K satisfies 

mmRCB

0)(max BKA        (11)
The condition in (11) guarantees that all desired pole are 
located in the left half plane to ensure stability. The
control problem is to design a controller using (9) such
that X(t) tracks Xd(t) accurately for all t in spite of the
system uncertainties and non-linearities. In view of the
error space, the tracking problem has become the
problem of stabilizing the error system (8).

3. CONTROLLER DESIGN 

The design task is divided into two parts; 1) To
assure that the error dynamics must be asymptotically
stable during the sliding mode, and 2) To design an SMC
controller in such a way that whatever error the system
has during the initial stage, the system must be directed
towards the sliding surface during the reaching phase. 

3.1. System Dynamic During Sliding Mode 

The equivalent control, Ueq(t) can be found by
differentiating (10) and substituting (9) into it [7]:

)}()()(

)())({()]([)( 1

tXtHt
tZKtHtEItU

d

neq  (12) 

Then the system dynamics during sliding mode can be
determined by substituting (12) into (8):
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It is clear that the error dynamics during sliding mode
are independent of the system uncertainties and
couplings between the inputs, and, insensitive to the
parameter variations, and may be determined through a 
proper selection of the desired closed loop poles
locations.

3.2. Controller Design

The manifold (9) is asymptotically stable in the large, if 
the following hitting condition is held [3]:
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Theorem: The hitting condition (14) of the manifold (9)
is satisfied if the control U(t) of system (2) is given by :
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)1/()(3 CB   (18) 
Proof:  See [5].
Remark: The above conditions guarantee not only that
the hitting condition (14) is met, but it also assures that
based on the Lyapunov theory, the system dynamics is
stable in the large.

3.3. Input Chattering Elimination 

In order to eliminate the control input chattering, the
discontinuous function vector sgn(s(t) in (16) can be
replaced by the following continuous function vector: 
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he continuous function vector (20) guarantees that the
chattering problem encountered in the control input
signal U(t) is removed.  This will make the control
more sensible from the practical point of view.

5. SIMULATION RESULT 

The controller is applied to a 3 DOF revolute DD
manipulator actuated by BLDCM motors as shown in Fig. 
1. A  complete  set of non-linear dynamic equations of
the robot model comprising the mechanical part of the
robot and the actuator dynamics have been derived and
used in the simulations. These equations were used in
the simulation to represent a real DD robot manipulator
without any approximation and simplification of the 
highly non-linear and coupled system. For the purposes
of deriving the controller, the nominal matrices A, B, as 
well as the bounds on the non-zero elements of the
uncertainties matrices in (3) have been calculated based
on the given range of the payload, joint angles and
velocities.

The controller is required to track a reference
cycloidal trajectory of the form:
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where 3,2,1),0()( iiii  and  is a final time.
Using (7) and (8), the bounds of H  and

may be computed as follows: 
),,( tX

),,( tXE
6200.0),,(;9874.5),,( tXEtXH (22)

Define the gain K as in (23) such that the closed-loop
poles of the system are: 

Joint 1: )0.3,31.0,3.0{1

Joint 2: )0.3,31.0,3.0{2 (24)
Joint 3: )3.0,031.0,03.0{3

Define the matrix C as: 

12030000000
00012030000
000000132

C   (25) 

using (17) - (19), the controller parameter  may be
computed as follows: 

7962.761 ; 2157.662  ; 8566.63 (26)

(23)
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5.1. Effects of load variations

The simulation was carried out with the robot load
fixed at its extremity i.e. no load and maximum load.
Fig. 2, 3 and 4 show the tracking response of each joint.
The tracking performances for both conditions are good
for all joints, indicating that the controller is capable of 
withstanding the non-linearities and uncertainties present
in the system.
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5.2. Effect of the PI Sliding Surface Constant 

To study the influence of matrix C on the
performance of the controller, the simulation was run 
again by a different set of the constant matrix C of (13).
Throughout the simulations, a payload of 5 kg is 
attached to the end tip of the manipulator.  The
following desired poles location and the controller
parameter  has been used in the simulations:

Joint 1:  -3.0  ,  -3.1  ,  -30.0 
Joint 2:  -3.0  ,  -3.1  ,  -30.0 (27)
Joint 3:  -3.0  ,  -3.1  ,  -30.0 

30;300;350 321
     (28)

Three sets of the matrix C have been considered in the 
simulations:

][ 321 CCCdiagC            (29)
where 3,2,1;][ 321 icccC iiii

Case 1: ]130003[iC       (30)
Case 2: ]12000100[iC       (31)
Case 3: ]11000300[iC       (32)

Figs. 5-7 illustrate the tracking performance for joints 1,
2 and 3, respectively, for all the above cases. It can be
observed that Case 1 results in an over-damped response,
while Case 2 and 3 produces under-damped responses,
with all the trajectories enter the sliding region at about 3
seconds after the simulation start and remain there in for
the rest of simulation time.  These indicate that the
shape of the trajectories during the reaching phase may
be determined by the choice of the elements Ci1 and Ci2
of the constant matrix Ci.Fig. 2: Joint 1 tracking responses. 
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5.3. Control Input Chattering Suppression 

The same sliding surface constant fixed as in Case 1 are
simulated again but with the discontinuous function
vector SGN(s(t)) replaced with a proper continuous
functions vector S (t) described by (30). The simulation
was performed with the continuous function constants

i's are as shown in Table 1. 
Table 1: Continuous Function Constants

I
JOINT 1 2 3
SET 1 200 100 60
SET 2 1000 550 250
SET 3 2000 800 600

The results are as shown in Fig. 8, 9 and 10. It can be
seen that the chattering in the control input may be
suppressed with a suitable choice of constant i. The
value of i should be properly selected since too large
values will only create unstable responses. 
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Fig. 10: Joint 3 control input.Fig. 7: Joint 3 tracking responses (different C).
6. CONCLUSION

A PI sliding mode tracking controller has been proposed
for DD robot manipulators. The control law is
formulated based on the assumption that the system
uncertainties and non-linearities are bounded and these
bounds are known. By mathematically it shown that the
error dynamics during sliding mode is stable and can
easily be shaped-up using the conventional
pole-placement technique. The system actual trajectory
is guaranteed to track accurately a desired trajectory
despite the highly non-linear and coupled dynamics.
Application to a three DOF revolute direct-drive robot
manipulator confirms the effectiveness of the controller.
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