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Abstract—In a restructured power system, it is the responsibility
of the independent system operator (ISO) to control the power
transactions and avoid overloading of the transmission lines be-
yond their thermal loading megavolt-ampere (MVA) limits. For
this, ISO has to update periodically a real-time index termed avail-
able transfer capability (ATC). The methods reported to date for
ATC determination are unable to cater to either the accuracy or
the online CPU time requirements when the system is a large one.
This paper proposes a novel method with the full details for deter-
mining ATC in a large power system from only three input vari-
ables through fuzzy modeling. The method is validated through
extensive simulation tests on the standard IEEE 24-bus reliability
test system (RTS), and comparison with an ac load flow-based con-
ventional method using the same array of transactions, base cases,
and generation/line outages.

Index Terms—ATC, electricity market, fuzzy logic, large-scale
power system, power system control.

I. INTRODUCTION

THE experience [1] gained since 1996 until now has turned
the deregulation of power industry into an almost mature

reality. In a deregulated system, the generation and distribution
companies (i.e., market players) engage in transactions (i.e.,
selling or buying electricity) through a competitive bidding
process administered by an agency known as power exchange
apart from the transactions through bilateral negotiations.
Every intended transaction is communicated to the transmis-
sion network operator termed independent system operator
(ISO). The transactions are evaluated by ISO on the basis of
an index termed available transfer capability (ATC) [2]. The
bus at which a generation company sells (injects) power is
termed source, and the one at which a distributor buys (extracts)
power is called “sink.” ATC between a given source-sink pair
is the highest allowable size of a transaction over and above
the already committed uses of the transmission system (i.e.,
existing base case) so that no line is overloaded in excess of
its thermal loading limit megavolt-ampere (MVA) when the
system is in steady-state condition.
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ATC is computed in real time at periodic intervals for each
source-sink pair separately considering the base case that ex-
ists just before the current interval. Notably this base case is the
outcome of the transactions that have already taken place be-
tween the current interval and the immediately preceding one.
Also, various contingencies (anticipated outage scenarios) se-
lected from a ranked list are considered one by one along with
a base case while computing ATC between a source-sink pair.
Having completed the ATC computations for all the source-sink
pairs in the current interval, the intended transactions are ranked
in descending order of available transfer margin (ATM). The
difference between ATC and the size (in megawatts) of an in-
tended transaction is termed “ATM.” The transaction having the
highest ATM is deemed honored first [3] leading to a change in
the base-case scenario that warrants recalculation of ATC in the
same interval corresponding to the transaction with the second
highest ATM, and so on. Thus, ATC computation for a large
system with many pairs of source-sink buses is a dimensional
process.

A number of methods have been reported to date in litera-
ture for ATC determination. The continuation power-flow (CPF)
methods [4]–[7] repeat full-scale ac load flow solution for each
increment (above the base case value) of the load at sink bus
until any line in the system is overloaded. Although accurate,
these are not real-time compatible for large systems. The dc
load-flow-based methods [3], [8], [9] are a bit faster than their
ac counterparts but model only real power flow (in megawatts)
in the lines rather than MVA, and assume the network to be
loss free. The methods based on power transfer/outage distri-
bution factors [10]–[12] can cater to only the scenarios that are
too close to the base case from which the factors are derived.
The stochastic methods [13], [14] are more suited to planning
stage. The reported [15] artificial neural network (ANN) method
requires a large input vector so that it has to oversimplify deter-
mination of ATC by limiting it to a special case of power transfer
to a single area from all of the remaining areas. So this method
is unable to track down the bus-to-bus transactions, which is the
true spirit of deregulation.

The authors have deliberated on the drawbacks of the re-
viewed methods, and developed an idea that if ATC could be
determined in one shot (without any repetition) using a reduced
set of input variables and trivial online computations, then this
would hold potential for a large-scale power network. To meet
this goal, the authors have chosen fuzzy logic [16] as a tool.
It has two main advantages. The way fuzzy logic tackles the
dimensionality of a problem is computationally more efficient
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than that by other artificial intelligence (AI) techniques (such as
ANN, expert system, etc.). Another advantage is that fuzzy logic
can capture uncertainties inherent in an incomplete or reduced
set of data. It is noteworthy that rigorous mathematics intensive
conventional methods have none of these two advantages.

Fuzzy logic has successfully been used in many power system
problems [17]. Of course, the way this is applied and exploited
to advantages depends on the problem in particular. However, to
date, no results appear to have been reported on the application
of fuzzy logic for ATC determination.

In this paper, the authors have developed a method that
applies fuzzy logic in the determination of ATC in a large
system. The proposed fuzzy method has been tested extensively
for computing ATCs between a number of source-sink pairs
in the standard IEEE 24-bus reliability test system (RTS).
The method has also been compared with a full-scale ac load
flow-based method in terms of accuracy and CPU time for
evaluating ATCs considering the same array of transactions,
base cases, and outages.

II. PROPOSED METHOD

The development process of the method proposed for deter-
mining ATC in a large system can best be illustrated beginning
with a small (three-bus) power network shown in Fig. 1. Let
the ATC between buses 1 (source) and 2 (sink bus) be evalu-
ated. Power injected at bus 1 will flow to bus 2 through path
‘1–2’ as well as through ‘1–3–2’. The authors introduce path
‘1–2’ as the “direct path,” ‘1–3–2’ as the “indirect path,” and
bus 3 as the “neighboring bus.” Notably the direct path has the
less impedance and it shares more flow. The indirect path via
the neighboring bus has the higher impedance, and it shares less
flow. Consideration of the existing (base case) loads/generations
at sink and neighboring buses (i.e., only two inputs can help
fuzzy determination of the ATC between a pair of source-sink
in an exclusively three-bus system). But in any large system with
a higher number of buses, usually more than one electrical path
shares the flow of power from a source bus to a sink one. This
gives rise to a number of major differences that impacts ATC
determination in a large system.

A. Differences Between a Large and a Three-Bus System

The following are the major differences.

i) There are a number of candidate paths and buses that can
be labeled as “indirect path” and “neighboring bus” cor-
responding to a given source–sink pair in a large system.

ii) For a given system topology, a transaction (power
transfer) between any two buses of a large system is
influenced by loads at various buses, and affects the
flows in many lines to different extents depending upon
the operating condition.

iii) Consideration of only sink and neighboring bus data will
not be able to provide the required minimum information
on the operating condition and outage scenarios (if any)
of a large system. On the contrary, too many input vari-
ables will require a large rule base and mar the real-time
compatibility of even a fuzzy method.

Fig. 1. Three-bus sample power system.

iv) The physical characteristics of an exclusively three-bus
power system are easily tractable so that a set of rules
can be developed to infer a fuzzy value (i.e., linguistic
attribute) of ATC directly from fuzzy values of inputs.
Eventually a single crisp (i.e., numerical) value of ATC
is obtained combining the fired rules through a process
what is known as defuzzification. This way of making
inference is termed Mamdani fuzzy model [16]. But the
characteristics and interactions among many buses and
lines in a large system are not tractable simply on the
basis of intuition. So ATC evaluation in a large system
entails an alternative rule-base.

B. Identification of Indirect Path and Neighboring Bus

For a given source–sink pair, the least “indirect path” is traced
using line impedance data. The one having the least impedance
among all the possible indirect paths is chosen.

If there are a number of buses on the chosen indirect path
between a source and a sink then the bus immediately after the
source is labeled as the neighboring bus. However, if this bus has
mere a load but no generator connected to it whereas a next bus
on the same path is generator connected, then the latter will be
preferred as the neighbor. This is because a generator connected
bus influences a transaction more than what simply a load bus
does. So its choice as the neighbor will provide more explicit
information that will enhance accuracy in the determination of
ATC.

It should be noted that tracing the indirect path and the neigh-
boring bus for each source–sink pair can always be made in of-
fline mode by an algorithm that would use the network topology
and parameters available in the database of a system.

C. Catering to System Operating Conditions and Outages

A unified index has been proposed and labeled as “loading
index” ( ) to represent a given operating scenario of a large
power system taking into account demands at all the buses and
information on generation/line outages. This index is defined as
in (1)

(1)

where is demand (MW) at bus , is the total number of
buses, and is the thermal loadability (MVA) of the line
having the highest limit in the system.

Various operating conditions and outages are considered by
categorizing those. The variable in (1) is assigned a discrete
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integer value (e.g., ) corresponding to the particular
category under which ATC is being determined.

It is noteworthy that if the system demand that may have a
large MW value is added with a small integer the latter’s en-
tity will be masked. So the former is normalized through divi-
sion by a factor 1.5 as in (1). The choice of 1.5 as mul-
tiplier reflects a fact that if there were only one candidate as
the indirect path between a certain source–sink pair, and the
base case were with no load at any bus, then the transferable
maximum power would have been about 1.5 times the thermal
loading limit of the direct path. Multiplication of by “2” in (1)
is mainly to make two successive categories’ loading indexes
( ) distinct.

D. Number of Input Variables

Based on the details explained in Sections II-A to II-C, ATC
between a given pair of source-sink buses in a large system is
determined using only three inputs. These are, respectively, the
sink bus injection , the neighboring bus injection , and
the loading index ( ) under the corresponding base case. The
sink and neighboring bus injections are the differences between
respective local generation and demand in MW.

E. Fuzzification of Inputs

Fuzzy method is presented in literature using a more descrip-
tive form rather than formal mathematics. The authors have pre-
sented precisely various steps using a coherent and unified set
of mathematical expressions in this and subsequent sections.

Each of the inputs is converted from a single crisp value into
a maximum of two fuzzy values using the widely used [16] tri-
angular functions that may overlap with one another as in Fig. 2.
The -axis in Fig. 2 represents the crisp values of th input
while the -axis shows “membership grade” that may vary
from 0.0 to 1.0. Each triangle has a fuzzy attribute that can be
coded by a linguistic variable (e.g., “low”) or a number implying
level of fuzziness (e.g., 1). However, for the sake of mathemat-
ical representation, a number is used. The total number of such
attributes or triangles for th input is denoted by . The coor-
dinates of three vertices of each triangle are, respectively, ,
and when . Equation (2) shows crisp to
fuzzy conversion for th input.

(2)

where (i.e., for ATC determination), , and
are, respectively, , and .

The membership grade corresponding to each fuzzy
value of a given crisp input can be obtained using (3)

(3)

where j implies the numbers picked up by the th input’s fuzzy
value as in (2).

Fig. 2. Triangular membership function for ith input.

F. Inference on ATC

Due to the reasons mentioned in Section II-A, the rule-base
relating ATC to the inputs for a large system is developed using
Sugeno fuzzy model [16]. A set of first-order polynomial equa-
tions is used to infer a crisp value of ATC from crisp values of
three inputs. Each polynomial has four (i.e., one more than the
number of inputs) coefficients ( ’s), and is applied subject to a
particular combination of fuzzy values (attributes) of the inputs.
Equation (4) shows the full set of rules

(4)

where
.

The total number of rules represented in (4) is (i.e.,
product of the number of fuzzy attributes for each input).

It should be noted that a given set of crisp values for the three
inputs will not fire all of the rules rather number of
rules when (i.e., one to eight rules). This is because,
as shown in (2), each input’s crisp value has a maximum of two
fuzzy values. The required overall crisp value ATC is obtained
as in (5) that uses weighted average of the individual crisp out-
puts from each of the fired rules, that is

(5)

where “ ” implies each of the fired rules, and is as in (6)

(6)

where , and are the membership grades calculated
using (3), respectively, for the three inputs’ fuzzy values (i.e.,

, and ) that are also used in the conditional part (termed
fuzzy premise) of rules given by (4).

G. Determination of Polynomial Coefficients

ATC for a given source–sink pair can be obtained by online
implementation of (1) to (6). However, “ ” coefficients as re-
quired in (4) should be made available. The total number of
these coefficients is .

The coefficients are determined by an offline procedure
[16] that is termed adaptive network-based fuzzy inference sys-
tems (ANFIS). A set of training patterns (total number is )



KHAIRUDDIN et al.: A NOVEL METHOD FOR ATC COMPUTATIONS IN A LARGE-SCALE POWER SYSTEM 1153

each comprising three inputs and an already known ATC is
used. The sum of the square of the difference between the avail-
able ATC and that computed by (5) for each pattern (i.e.,

) is minimized in the least square sense
to solve for the set of r coefficients in a noniterative way as
in (7). However, this time (5) considers all the rules (i.e., now

). It means will be zero for some of the
rules which are actually not fired if a given pattern (combina-
tion) of inputs does not satisfy the fuzzy premises of those rules

(7)

where
vector termed consequent parameter vector;

target (known) ATC vector;

[A] sparse matrix with each th row as follows:

when , and is as
in (8)

(8)

[i.e., (the normalized firing strength of a particular th rule)
is expressed as a ratio of the sum of the firing strengths of all
the rules].

It should be noted that determination of coefficients (also
termed consequent parameters) as in (7) assumes that the mem-
bership triangles’ vertices [i.e., , , (also termed premise pa-
rameters)] for all of the inputs are already fixed (i.e., chosen).
However, using the same training patterns the premise param-
eters can also be determined offline assuming that consequent
parameters are fixed. But this involves an iterative steepest de-
cent gradient minimization of the same index to solve for the
premise parameters one by one as in (9). The total number of
premise parameters is . Of course this time, in-
volves an expression in terms of the relevant premise parame-
ters through ATC as calculated by (5) for each pattern

(9)

where denotes th premise parameter, and
.

For greater accuracy, another scheme known as hybrid
learning ANFIS is evolved in which a set of initial values is
chosen for the premise parameters. Using this set (7) is solved
to obtain a set of consequent parameters. These are then used
by (9) to update the premise parameter set. In this way, (7)
and (9) are solved alternatively using one’s outputs as inputs
for the other. This is continued until the updates of each set of
parameters between two successive iterations converge within a
tolerance margin. Each update is termed “epoch” that comprises
a forward pass [i.e., solution of (7)], and a backward pass [i.e.,
solution of (9)]. Notably, the backward pass is similar to ANN
back propagation learning so that the hybrid learning ANFIS is
also termed “adaptive neuro fuzzy inference systems.”

Fig. 3. IEEE 24-bus test system.

TABLE I
CATEGORIZATION OF THE SYSTEM STATUS

III. PRESENTATION OF RESULTS

The IEEE 24-bus RTS, shown in Fig. 3, has been used to
compare the performance of the proposed method with that of an
ac load flow-based ATC determination method [7]. Notably, this
system has long been accepted in literature [3], [8] as the true
representative of the characteristics of a large power network.
The test system’s line parameters and thermal loading limits
(MVA) are given in [18]. The results of the comprehensive study
are presented in the limited space of this paper, mainly in the
form of general comments while highlighting the outputs for a
representative source-sink pair with typical scenarios.

Table I shows the values of category index ( ) required by
the proposed method for use in (1).

A. Illustration for a Representative Source–Sink Pair

The pair of buses 23 (source) and 16 (sink) is considered for
illustrating the determination of ATC. Following the procedure
mentioned in Section II–B, the path 23–13–11–14–16 has been
identified as the one having the least impedance among all of
the indirect paths that connect 16 to 23. This has led to selection
of bus 13 as the neighbor to this source–sink.
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Fig. 4. Fuzzy levels for (a) sink bus load, (b) neighboring bus injection,
(c) loading index for categories 1 to 4, and (d) loading index for categories
5 and 6.

The proposed method has been tested separately on 336 base
cases (i.e., 42 for each of the categories 1 to 4, and 84 for each of
the categories 5 and 6). The test patterns varied from each other
in respect of any of the inputs (i.e., sink bus injection ), the
neighboring bus injection , and the loading index ( ). De-
mands at other buses were also changed when L was required
to be varied in some base cases. The system demand used in (1)
was normalized using the thermal loadability of the line having
the highest one among all of the lines in the test system, which
was 500 MVA. Fig. 4 shows the fuzzy membership functions for
the three inputs. The number of fuzzy levels (attributes) chosen
was respectively 3, 5, and 3 for , and . The linguistic
attributes corresponding to three levels are, respectively, low,
medium, and high. Since the neighboring bus may also have
generation in excess of its local load, its membership levels are
five implying negative high, negative low, zero (including posi-
tive low), positive medium, and positive high, respectively.

B. Comparison With Load-Flow-Based Method

The load-flow-based ATC method has also been applied on
each of the same 336 cases by treating bus 23 as slack, 16 and
13 both as PV (i.e., bus with specified real power and voltage)
buses. The other bus types were retained as what those should
be in a normal load flow. The load at sink bus (no. 16) was
incremented in steps of 100 MW to repeat the load flow until
thermal limit is exceeded in any line of the test system. The
maximum possible increment achieved above base-case load at
the sink bus was the ATC for the corresponding case.

Figs. 5 to 8 compare the ATC between buses 23 and 16 ob-
tained by the proposed and the load-flow methods for a number
of typical patterns belonging to categories 1 to 4, respectively.
In category 3, outage of generator at bus 21 was compensated
by generators at buses 18 and 22. In category 4, the compensa-
tion was made by generators at buses 1 and 2. Fig. 9 shows the

Fig. 5. Bus 23 to 16 ATC by the proposed fuzzy and the conventional
load-flow-based methods for various sink bus loads and neighboring bus
injections under a base system demand of 500 MW (category 1, L = 2:66).

Fig. 6. Bus 23 to 16 ATC by the proposed fuzzy and the conventional
load-flow-based methods for various sink bus loads and neighboring bus
injections under a base system demand of 2000 MW (category 2, L = 6:66).

comparison for test patterns under category 5 with one circuit of
line 15-21 out. This line was noncrucial for transaction between
23 and 16 buses. Fig. 10 compares ATCs by both methods under
category 6 for outage of a crucial line (i.e., 2–4).

The ATCs, by the proposed fuzzy method, compare well with
those by the load-flow method. In general, the difference was
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Fig. 7. Bus 23 to 16 ATC by the proposed fuzzy and the conventional
load-flow-based methods for various sink bus loads and neighboring bus
injections under a base system demand of 3000 MW (category 3, L = 10:00).

Fig. 8. Bus 23 to 16 ATC by the proposed fuzzy and the conventional
load-flow-based methods for various sink bus loads and neighboring bus
injections under a base system demand of 3000 MW (category 4, L = 12:00).

found to be around 100 MW only while it was 150 to 250 MW
in a few cases.

C. ANFIS Training

It should be noted that (i.e.,
) polynomial coefficients (i.e., ’s) required in (4) were ob-

Fig. 9. Bus 23 to 16 ATC by the proposed fuzzy and the conventional
load-flow-based methods for various sink bus loads and neighboring bus
injections under a base system demand of 2650 MW (category 5, L = 13:53).

Fig. 10. Bus 23 to 16 ATC by the proposed fuzzy and the conventional
load-flow-based methods for various sink bus loads and neighboring bus
injections under a base system demand of 2650 MW (category 6, L = 15:53).

tained by the hybrid learning ANFIS procedure mentioned in
Section II-G. For this, 300 training patterns (50 for each of the
6 categories mentioned in Table I) were created. It is noteworthy
that the 336 patterns used to test and compare the proposed
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method are different from the 300 training patterns. The target
ATCs for training patterns were obtained by subjecting each of
the patterns to the load-flow-based method as above. However,
for a real power system, the required training patterns and cor-
responding target (known) ATCs can always be taken from past
history maintained in the database. So the rule-base of Sugeno
fuzzy model becomes able to take fully into account the phys-
ical laws of a network on power flow and thermal loading limits
of the lines through the set of coefficients that is tuned using
ATCs from load flow or real operational data.

For training by ANFIS, the widely used MATLAB Fuzzy
Toolbox [19] was used. The toolbox required that the number
of fuzzy levels for each input be chosen, and this was done as
specified in Section III-A. However, all of the 300 patterns for
six categories were not presented to ANFIS as a single cluster.
The 200 training patterns under categories 1 to 4 were used to-
gether to obtain one set of coefficients. The remaining 100
training patterns belonging to categories 5 and 6 were used to-
gether to derive another set of coefficients. The authors have
found through trial that when only one set of coefficients, ob-
tained from intermingling all six categories’ training patterns, is
used, the ATCs for the test patterns by the proposed method do
not match well those by load flow. This is because the line out-
ages (categories 5 and 6) [i.e., topological changes] are more
nonlinear than generation outages or base load changes and,
hence, require separate training.

Only three epochs were required in the training procedure for
each group (i.e., categories 1 to 4 together, and categories 5 plus
6). The training for each group provided not only the 180 r co-
efficients but also [i.e., ] member-
ship triangular vertices ( , , ) for , and . The values
obtained for these triangular vertices were used in Fig. 4. The
sets of coefficients for two groups were substantially different
from each other. The membership parameters ( , , ) were al-
most the same in both groups for and but different for

. This is because the coefficients (consequent parameters)
depend more on the ranges of outputs (i.e., target ATCs of the
training patterns) whereas the , , vertices (premise param-
eters) depend more on the ranges of the inputs (i.e., ,
and ). Notably, the ranges of ATCs and for categories 1 to 4
were not close to their respective counterparts for categories 5
to 6.

D. ATC for Other Pairs of Source-Sink Buses

The proposed method has also been trained and tested for a
variety of source sink pairs (e.g., 18–15, 2–9, 23–24, and 21–1)
in the same way as mentioned, respectively, in Sections III-C
and III-A. The ATCs by load-flow-based method were found
for each of those pairs in the way mentioned in Section III-B. A
comparison of ATCs for each pair by the two methods for the
same test patterns and categories revealed a close match.

E. Comparison of CPU Time

The commercial programs available for load flow are not in
editable form (i.e., no source code provided) and, hence, cannot
be customized to the specific input-output and repetitive au-
toexecution requirements for each increment of sink bus load
for a given source-sink pair. So the fast decoupled version of

Newton–Raphson load-flow solution together with an exploita-
tion [20] of sparse structure of the involved Jacobian matrices
has been programmed using Fortran 77.

For a fair comparison, the computations in (1) to (6) that
need to be done by the proposed method when implemented on-
line, have also been coded in Fortran 77. The coefficient sets
for each source-sink pair obtained from offline training using
MATLAB Fuzzy Toolbox were saved in a file for use by the
Fortran code.

The coded programs for both methods have been compiled
and executed using Microsoft Fortran Power Station version
1.0 on a 1.6-GHz Pentium 4 PC under Windows XP operating
system. The average CPU time per case/category/source sink
pair of the considered 24-bus test system turned out to be 0.06
and 0.12 s, respectively, by the proposed and the load-flow
methods.

F. Generality in the Performance of the Proposed Method

The proposed method has been able to retain generality in its
performance as evident from the following findings.

i) The method gave satisfactory outputs (ATCs) using only
three input signals for a variety of source sink pairs,
which differ widely from one another in respect to char-
acteristics of the paths and other buses that exist between
each pair.

ii) The method used a single set of coefficients for test
on patterns belonging to four different categories (1 to
4). It used just another set of r coefficients for patterns
belonging to categories 5 to 6 that are of more nonlinear
nature than the first four categories.

iii) The test patterns for each category were widely different
than those used for training. For instance, the standard
deviations of sink bus load in the test patterns under each
of the categories 1 to 4 for the 23–16 source–sink bus pair
were 195 MW on average vis-à-vis 264 MW for the same
in training patterns. This was 247 MW versus 371 MW
for the neighboring bus injections, respectively, in test
and training patterns for those four categories.

iv) The method gave satisfactory outputs even when tested
on line-outage category patterns in which the lines con-
sidered as out were not same as those in the training
patterns. For instance, the 50 training patterns for cru-
cial line outage (category 6) were obtained for the 23–16
source–sink bus pair considering one circuit of the line
20–23 as out. But the 42 test patterns considered line 2–4
as out. Of course, the method was also tested on another
42 patterns in which the line considered as out was the
same as that in training patterns. In a limited space of
this paper, only the ATCs for typical test patterns that
consider a line outage different from the one in training
patterns have been plotted in Figs. 9 and 10.

IV. CONCLUSION

This paper has proposed a method that applies for the
first time ever, fuzzy logic in determining ATC in a large
deregulated power system. The substantial differences between
a small and large power network have been taken into account
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through identifying only three input signals (i.e., sink bus load,
neighboring bus injection, and an appropriately defined loading
index) for ATC between each source-sink pair, and using
Sugeno fuzzy model. The proposed method has adequately
been able to exhibit generality in its performance when tested
extensively on the standard IEEE 24-bus RTS, and compares
well against a full-scale ac load-flow-based method for the
same array of source-sink pairs, base case loadings, and
generation/line outage scenarios.

The developed method determines in one shot the ATC
between a source-sink pair requiring only three input signals,
firing a maximum of 8 out of 45 rules, and using two sets of
180 output coefficients (consequent parameters) irrespective
of system size. The general characteristics that exist in any
large network have been exploited by the proposed method in
choosing only three inputs, five fuzzy attributes for the injection
input, and three attributes for each of the other two inputs. This
limits the number of rules to only 45. The neighboring bus can
always be predetermined (i.e., offline) for each source-sink pair
in a given system. The two sets of 180 consequent parameters
are also obtained offline, respectively, using a mixed set of
only about 200 training patterns on base load variations and
generation outage categories, while another mixed set of only
100 training patterns on crucial and noncrucial line outage
categories. The proposed method’s requirement of two separate
sets of coefficients, respectively, for line outage and other
categories is quite normal just as the conventional load-flow
method which also requires separate Jacobian matrices when-
ever the topology changes.

The test system used in this paper is an IEEE standard system,
and has all of the features typical of a large system (e.g., meshed
transmission lines, dual voltage levels with interfacings between
them, and a significant number of generators, etc.). The way the
proposed method has been developed, does not lack generality
and can always be applied to another test or real power system of
any size. The CPU time requirement of the proposed method is
independent of the system size while the load-flow-based ATC
determination method’s CPU time is directly proportional to
the size despite exploitation of sparse structure of the system.
This is because the load-flow method requires for ATC between
each source-sink pair 2 number of inputs when is the total
number of buses in the system. But the proposed fuzzy method
requires only three inputs irrespective of system size. Even the
numbers of rules and parameters related to fuzzy model are
system size independent. So when applied on a larger system,
the proposed method’s speedup ratio relative to a load-flow
method will definitely escalate far above 2 in proportion to the
size of the system. This will enable the proposed method to de-
termine ATC considering more cases and contingencies than the
conventional load-flow method in a given interval of time when
using the same processor.

Use of more than 100-MW increment in sink bus load by the
conventional method may reduce its CPU time but will seriously
compromise its accuracy in ATC determination. On the contrary,
use of a small increment (e.g., 10 MW will enhance its accu-
racy but increase the CPU time requirement by a factor of about
10). But the proposed method’s accuracy can always be further
improved without any increase in its CPU time irrespective of

system size. This is because the output coefficients (consequent
parameters) it requires can be obtained offline using training
patterns taken from past real data or a load-flow method that
uses 10-MW increment in sink bus load.

The proposed method can easily be extended to provide addi-
tional outputs besides ATC at trivial computational costs. Cur-
rently, the authors are investigating into extending the method
to determine the VAR supports that may be required occasion-
ally to avoid any voltage collapse while a transaction takes place
between a source-sink pair.
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