

MICRO-SEQUENCER BASED CONTROL UNIT DESIGN

FOR A CENTRAL PROCESSING UNIT

TAN CHANG HAI

A project report submitted in partial fulfillment of the

requirement for the award of the degree of

Master of Engineering (Computer & Microelectronic Systems)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

APRIL 2007

 iii

DEDICATION

To my beloved wife, parents and family members

 iv

ACKNOLEDGEMENT

 In preparing this thesis, I was in contact with many people, researchers and

academicians. They have contributed towards my understanding and thoughts. In

particular, I wish to express my sincere appreciation to my thesis supervisor,

Professor Dr. Mohamed Khalil Hani, for encouragement, guidance and friendships. I

am also very thankful to my friends and family members for their great support,

advices and motivation. Without their continued support and interest, this thesis

would not have been as presented here.

 v

ABSTRACT

 Central Processing Unit (CPU) is a processing unit that controls the computer

operations. The current in house CPU design was not complete therefore the purpose

of this research was to enhance the current CPU design in such a way that it can

handle hardware interrupt operation, stack operations and subroutine call. Register

transfer logic (RTL) level design methodology namely top level RTL architecture,

RTL control algorithm, data path unit design, RTL control sequence table, micro-

sequencer control unit design, integration of control unit and data path unit, and the

functional simulation for the design verification are included in this research.

 vi

ABSTRAK

 Unit pusat pemprosesan (CPU) merupakan sebuah mesin yang berfungsi untuk

menjana fungsi komputer. Buat masa kini, rekaan CPU masih belum sempurna.

Malah tujuan utama penyelidikan ini adalah meningkatkan prestasi CPU dari segi

operasi seperti gangguan, timbunan dan panggilan para fungsi. Rekaan metalogy logic

pendaftaran berpindah (RTL) terdiri daripada rekaan RTL, kawalan algoritma RTL,

rekaan unit data, rekaan unit micro-peringkat kawalan dan fungsi penyerupaan.

 vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xi

 LIST OF FIGURES xii

 LIST OF ABBREVIATIONS xiii

 LIST OF APPENDICES xiv

 1 INTRODUCTION 1

1.1 General CPU Organization 1

1.2 Objectives 3

1.3 Scope of Work 3

1.4 Design Methodology 3

 2 VHDL DESIGN OF A CPU 5

 2.1 CPU Specification 5

 2.2 Basic Concepts Of Microsequencer Design 6

 2.3 Design and Implementation of a Microsequencer 7

 2.4 Instruction Sets 8

 2.5 Instruction Sets Format 9

 2.6 Functional Block Diagram 10

 2.7 Microsequencer Branch Control 13

 2.8 Control Unit Flow Chart 14

 viii

 2.9 RTL Control Sequence Table 19

 3 CPU MODULE VERIFICATION AND SIMULATION 41

 3.1 Accumulator 42

3.1.1 Functional Block Diagram 42

3.1.2 Specification 42

3.1.3 VHDL Code 42

3.1.4 Functional Simulation 43

3.2 Program Counter 44

3.2.1 Functional Block Diagram 44

3.2.2 Specification 44

3.2.3 VHDL Code 44

3.2.4 Functional Simulation 45

3.3 Stack Pointer 45

3.3.1 Functional Block Diagram 45

3.3.2 Specification 45

3.3.3 VHDL Code 46

3.3.4 Functional Simulation 46

3.4 RAM 47

3.4.1 Functional Block Diagram 47

3.4.2 Specification 47

3.4.3 VHDL Code 48

3.4.4 Functional Simulation 48

3.5 ALU 49

3.5.1 Functional Block Diagram 49

3.5.2 Specification 49

3.5.3 VHDL Code 49

3.5.4 Functional Simulation 50

3.6 JMAP LOGIC 51

3.6.1 Functional Block Diagram 51

3.6.2 Specification 51

3.6.3 VHDL Code 51

3.6.4 Functional Simulation 52

3.7 BRANCH CONTROL LOGIC 53

3.7.1 Functional Block Diagram 53

 ix

3.7.2 Specification 53

3.7.3 VHDL Code 53

3.7.4 Functional Simulation 54

3.8 NEXT ADDRESS MUX 55

3.8.1 Functional Block Diagram 55

3.8.2 Specification 55

3.8.3 VHDL Code 55

3.8.4 Functional Simulation 56

3.9 ROM 57

3.9.1 Functional Block Diagram 57

3.9.2 Specification 57

3.9.3 VHDL Code 57

3.9.4 Functional Simulation 58

3.10 CPU 60

3.10.1 Functional Block Diagram 60

3.10.2 Specification 60

3.10.3 VHDL Code 61

3.10.4 Functional Simulation 62

3.10.4.1 Testing program listing 1.1 62

3.10.4.2 Testing program listing 1.2 65

3.10.4.3 Testing program listing 1.3 68

3.10.4.4 Testing program listing 1.4 71

 4 ANALYSIS, DISCUSSION & FUTURE WORK 75

 4.1 Analysis and Discussion 75

 4.2 Problem Statements 76

 4.2.1 Problem 1: myRAM compile error 76

 4.2.2 Problem 2: Testing program do not get executed 78

 4.2.3 Problem 3: Typo in the testing program 78

 4.2.4 Problem 4: Incorrect output data from ROM 78

 4.2.5 Problem 5: Invalid value in control sequence table 79

 4.2.6 Problem 6: Stack operation instruction 79

4.3 Design Performance 80

4.4 Future Work 80

 x

 5 SUMMARY AND CONCLUSION 81

 5.1 Summary 81

 5.2 Conclusion 82

REFERENCES 83

APPENDICES 84

 xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 List of instruction sets 8

3.1 List of ALU functions 49

 xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 CPU internal organization 2

2.1 Generic micro-sequencer organization 6

2.2 Top level RTL architecture 10

2.3 Data path unit 11

2.4 Control unit (micro-sequencer control unit) 12

4.1 Compilation error message from Quartus tool 76

4.2 Change the property of LPM_OUTDATA to

“REGISTERED” 77

 xiii

LIST OF ABBREVIATIONS

ALU - Arithmetic Logic Unit

CPU - Central Processing Unit

CU - Control Unit

FPGA - Field-Programmable Gate Array

ISA - Instruction Set Architecture

JMAP - Jump Map

PC - Program Counter

RAM - Random Access Memory

ROM - Read Only Memory

RTL - Register Transfer Logic

VHDL - Very High Speed Integrated Circuit Hardware Description Language

 xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A VHDL Code for Accumulator 84

B VHDL Code for Program Counter 85

C VHDL Code for Stack Pointer 86

D VHDL Code for RAM 87

E VHDL Code for ALU 89

F VHDL Code for JMAP Logic 90

G VHDL Code for Branch Control Logic 93

H VHDL Code for Next Address Mux 94

I VHDL Code for ROM 95

J VHDL Code for CPU 97

CHAPTER 1

INTRODUCTION

 This project is to describe a Central Processing Unit (CPU) can be

implemented with a micro-programmed control unit. This chapter will cover, general

CPU organization, objective of this project, scope of the project and the design

methodology that are use in this project.

1.1 General CPU Organization

In general, a CPU controls the computer operations. It fetches instructions

from memory, supplying the address and the control signals needed by the memory to

access its data. The CPU decodes the instruction and controls the execution

procedure. It performs some operations internally and supplies the address, data and

control signals needed by memory and input/output (I/O) devices to execute the

instruction.

 Generally, a CPU has three sections as show in Figure 1.1. The register

section includes a set of registers and bus or other communication mechanism. The

registers in a processor’s instructions set architecture are found in this section of the

2

CPU. The system address and data buses interact with this section of the CPU. The

CPU includes registers to latch the address being accessed in memory and a

temporary storage register.

Figure 1.1: CPU internal organization

 During the fetch portion of the instruction cycle, the processor first outputs the

address of the instruction onto the address bus. The processor has a register called

program counter to keeps the address of the next instruction to be fetched in this

register. Before the CPU outputs the address onto the system address bus, it retrieves

the address from the program counter register. At the end of the instruction fetch, the

CPU reads the instruction code from the system data bus. It stores this value in an

internal register called instruction register.

 The Arithmetic Logic Unit (ALU) performs most of the arithmetic and logical

operations such as adding, ORing values, XORing values and so on. It receives its

operand from register section of the CPU and stores its results back to the register

section.

 The control unit controls the CPU, it generates the internal control signals that

cause registers to load data, increment or clear their contents and output their contents

3

as well as cause the ALU to perform the correct function. These signals are shown as

control signals as shown in Figure 1.1. The control unit receives some data values

from the register unit which it uses to generate the control signals. This data includes

the instruction code and the values of some flag registers. A microprocessor typically

performs a sequence of operations to fetch, decode and execute an instruction. By

asserting these internal and external control signals in the proper sequence, the control

unit causes the CPU and the rest of the computer to perform the operations needed to

correctly process the instructions.

1.2 Objectives

The main objective of this project is to enhance and upgrade the in house CPU

design. The work can be divided into sub-objectives

i. To enhance the in house developed CPU with additional subroutine

instructions, hardware interrupts and stacks operations.

ii. To upgrade the hard-wired control unit to micro-sequencer based control unit.

1.3 Scope Of Work

The scope of work can be divided into the following:

i. This project is not to design a CPU but enhance the in house CPU design

ii. New instruction sets will be added to CPU.my to handle hardware interrupt,

subroutine call and stack operations.

iii. Hardwired control unit will be upgrade to micro-sequencer base control unit.

1.4 Design Methodology

4

In this project, a CPU with the scope and objective that mention in previous

section will be develop by applying hierarchical modular design concept. VHDLmg

from UTM will be used as design entry tool to model the CPU at RTL level. Altera

Quartus II design software tool will be used to synthesize the HDL for equivalent

logic and targeted implementation platform at FPGA development board. The design

will be verified with software functional waveform simulation. A set of testing

program will be use to test all the instruction execution.

