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ABSTRACT 

 

 

 

 

 Central Processing Unit (CPU) is a processing unit that controls the computer 

operations.  The current in house CPU design was not complete therefore the purpose 

of this research was to enhance the current CPU design in such a way that it can 

handle hardware interrupt operation, stack operations and subroutine call.  Register 

transfer logic (RTL) level design methodology namely top level RTL architecture, 

RTL control algorithm, data path unit design, RTL control sequence table, micro-

sequencer control unit design, integration of control unit and data path unit, and the 

functional simulation for the design verification are included in this research. 



 vi 

 
 
 
 
 

ABSTRAK 
 
 
 
 

 Unit pusat pemprosesan (CPU) merupakan sebuah mesin yang berfungsi untuk 

menjana fungsi komputer. Buat masa kini, rekaan CPU masih belum sempurna. 

Malah tujuan utama penyelidikan ini adalah meningkatkan prestasi CPU dari segi 

operasi seperti gangguan, timbunan dan panggilan para fungsi. Rekaan metalogy logic 

pendaftaran berpindah (RTL) terdiri daripada rekaan RTL, kawalan algoritma RTL, 

rekaan unit data, rekaan unit micro-peringkat kawalan dan fungsi penyerupaan.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

 This project is to describe a Central Processing Unit (CPU) can be 

implemented with a micro-programmed control unit.  This chapter will cover, general 

CPU organization, objective of this project, scope of the project and the design 

methodology that are use in this project. 

 
 
 
 
1.1 General CPU Organization 

 
 

In general, a CPU controls the computer operations.  It fetches instructions 

from memory, supplying the address and the control signals needed by the memory to 

access its data.  The CPU decodes the instruction and controls the execution 

procedure.  It performs some operations internally and supplies the address, data and 

control signals needed by memory and input/output (I/O) devices to execute the 

instruction. 

 
 
 Generally, a CPU has three sections as show in Figure 1.1.  The register 

section includes a set of registers and bus or other communication mechanism.  The 

registers in a processor’s instructions set architecture are found in this section of the 
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CPU.  The system address and data buses interact with this section of the CPU.  The 

CPU includes registers to latch the address being accessed in memory and a 

temporary storage register. 

 
 

 

Figure 1.1: CPU internal organization 

 
 

 During the fetch portion of the instruction cycle, the processor first outputs the 

address of the instruction onto the address bus.  The processor has a register called 

program counter to keeps the address of the next instruction to be fetched in this 

register.  Before the CPU outputs the address onto the system address bus, it retrieves 

the address from the program counter register.  At the end of the instruction fetch, the 

CPU reads the instruction code from the system data bus.  It stores this value in an 

internal register called instruction register. 

 
 
 The Arithmetic Logic Unit (ALU) performs most of the arithmetic and logical 

operations such as adding, ORing values, XORing values and so on.  It receives its 

operand from register section of the CPU and stores its results back to the register 

section.   

 
 
 The control unit controls the CPU, it generates the internal control signals that 

cause registers to load data, increment or clear their contents and output their contents 
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as well as cause the ALU to perform the correct function.  These signals are shown as 

control signals as shown in Figure 1.1.  The control unit receives some data values 

from the register unit which it uses to generate the control signals.  This data includes 

the instruction code and the values of some flag registers.  A microprocessor typically 

performs a sequence of operations to fetch, decode and execute an instruction.  By 

asserting these internal and external control signals in the proper sequence, the control 

unit causes the CPU and the rest of the computer to perform the operations needed to 

correctly process the instructions. 

 
 
 
 
1.2 Objectives 

 
 
The main objective of this project is to enhance and upgrade the in house CPU 

design.  The work can be divided into sub-objectives 

i. To enhance the in house developed CPU with additional subroutine 

instructions, hardware interrupts and stacks operations. 

ii. To upgrade the hard-wired control unit to micro-sequencer based control unit. 

 
 
 
 
1.3 Scope Of Work 

 
 
The scope of work can be divided into the following: 

i. This project is not to design a CPU but enhance the in house CPU design 

ii. New instruction sets will be added to CPU.my to handle hardware interrupt, 

subroutine call and stack operations. 

iii. Hardwired control unit will be upgrade to micro-sequencer base control unit. 

 
 
 
 
1.4 Design Methodology 
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In this project, a CPU with the scope and objective that mention in previous 

section will be develop by applying hierarchical modular design concept.  VHDLmg 

from UTM will be used as design entry tool to model the CPU at RTL level.  Altera 

Quartus II design software tool will be used to synthesize the HDL for equivalent 

logic and targeted implementation platform at FPGA development board.  The design 

will be verified with software functional waveform simulation.  A set of testing 

program will be use to test all the instruction execution. 




