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ABSTRACT 

 
 
 
 

Semiconductor/polymer nanocomposites are of increasing importance with 
their tunable properties being used as dielectric materials. This thesis focused on 
cadmium sulfide (CdS)/polymer nanocomposites. CdS has been combined with three 
polymer matrices, i.e. poly(styrene-divinylbenzene) [P(S-DVB)], poly(methacrylic 
acid-ethyleneglycoldimethacrylic acid) [P(MAA-EGDMA)] and sulfonated 
poly(styrene-divinylbenzene) [SO3H-P(S-DVB)]. CdS/P(S-DVB) nanocomposite 
was synthesized by in-situ polymerization in a miniemulsion system using monomer 
as oil-phase. CdS/P(MAA-EGDMA) nanocomposite has been synthesized by ion 
exchange and precipitation processes. While, the CdS/SO3-P(S-DVB) nanocomposite 
has been prepared by sulfonation, ion exchange and precipitation. Agglomerated 
nanoclusters of CdS were obtained from the above in-situ preparation methods. The 
structure-dielectric property relationship of the nanocomposites is elucidated  by 
various techniques such as UV – Vis, FTIR, UV-Vis DR, TEM, SEM, XRD, 
impedance analyzer, AAS, EDX, thermal conductivity analyzer and 
thermogravimetric analysis. Dielectric properties of the CdS/polymer 
nanocomposites have been studied at frequencies of 0.1 – 1,000 kHz. The decrease in 
dielectric constant was found in CdS/SO3H-P(S-DVB) nanocomposite. Considering 
that the SO3H-P(S-DVB) has very high dielectric constant due to its proton mobility, 
the replacement of the proton of SO3H-P(S-DVB) with the CdS particles caused the 
decrease in dielectric constant of the nanocomposite. Interestingly, an increase in the 
dielectric constant was also observed in CdS/P(S-DVB) and CdS/P(MAA-EGDMA) 
nanocomposites compared to that of CdS nanoparticles or pure polymers. It is also 
demonstrated that the unusual enhancement of dielectric constant of CdS/P(MAA-
EGDMA) depended on the concentration of CdS nanoparticles. The occurrence of 
strong interfacial interaction between CdS nanoparticles with P(MAA-EGDMA) 
polymer has been proved by FTIR spectra. One explains that an increase in dielectric 
constant is due to the increase of interfacial interaction among CdS nanoparticles and 
also CdS nanoparticles with polymer. These interactions increase the mobility of 
charge carriers and polarizability of electron. Based on the results of this study, it can 
be suggested that dielectric properties of CdS/polymer nanocomposites can be 
explained by the following unique properties i.e. nanosize of CdS particles, 
semiconductor property of CdS, the interfacial interaction between CdS 
nanoparticles and polymer and intrinsic properties of polymer. These conclusions lay 
the foundation for developing new synthetic strategies for designing new dielectric 
materials by varying the size, concentration and distribution of CdS nanoclusters in 
various polymer matrices.  
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ABSTRAK 
 
 
 

 
Semikonduktor/polimer menjadi sangat penting kerana sifat – sifatnya yang 

boleh diselaraskan sebagai bahan dielektrik. Tesis ini memfokuskan kepada 
nanokomposit kadmium sulfida (CdS)/polimer. CdS telah digabungkan dengan tiga 
polimer matriks iaitu poli(stirena-divinilbenzena) [P(S-DVB)], poli(asid metakrilik-
asid etilenaglikoldimetakrilik) [P(MAA-EGDMA)] dan poli(stirena-divinilbenzena) 
tersulfonat [SO3H-P(S-DVB)]. Nanokomposit CdS/P(S-DVB) telah disintesis 
melalui kaedah pempolimeran in-situ dalam suatu sistem miniemulsi menggunakan 
monomer sebagai fasa minyak. Nanokomposit CdS/P(MAA-EGDMA) telah 
disintesis melalui kaedah penukaran ion dan proses pemendakan. Manakala, 
nanokomposit CdS/SO3-P(S-DVB) telah dihasilkan secara pengsulfonan, penukaran 
ion dan pemendakan.   Nanokluster aglomerat CdS telah diperolehi daripada kaedah 
penyediaan in-situ.  Hubungan struktur-sifat dielektrik nanokomposit tersebut telah 
dianalisis menggunakan pelbagai tenik seperti UV – Vis, FTIR, UV – Vis DR, TEM, 
SEM, XRD, penganalisis impendans, AAS, EDX, penganalisis kekonduksian terma 
dan analisis termogravimetri. Sifat dielektrik nanokomposit CdS/polimer telah diukur 
pada frekuensi 0.1 – 1,000 kHz. Pemalar dielektrik bagi nanokomposit CdS/SO3-P(S-
DVB) didapati telah berkurang. Memandangkan SO3H-P(S-DVB) mempunyai 
pemalar dielektrik yang sangat tinggi disebabkan oleh mobiliti protonnya, 
penggantian proton pada SO3H-P(S-DVB) dengan partikel CdS telah mengakibatkan 
penurunan pemalar dielektrik bagi nanokomposit. Yang lebih menarik, peningkatan 
pemalar dielektrik juga telah diperhatikan bagi nanokomposit CdS/P(MAA-
EGDMA) dan CdS/P(S-DVB) berbanding partikel CdS atau polimer tulen. Telah 
ditunjukkan juha bahawa peningkatan yang luar biasa pemalar dielektrik bagi 
CdS/P(MAA-EGDMA) bergantung pada kepekatan partikel CdS. Kehadiran 
interaksi antaramuka yang kuat antara partikel CdS dengan polimer P(MAA-
EGDMA) telah dibuktikan dengan spektrum FTIR. Dapat dijelaskan bahawa 
peningkatan pemalar dielektrik adalah disebabkan oleh pertambahan interaksi 
anataramuka di kalangan partikel – partikel CdS dan juga nanopartikel CdS dengan 
polimer. Interaksi tersebut telah meningkatkan mobiliti pembawa cas dan 
kebolehpengutuban elektron. Berdasarkan hasil kajian ini, adalah dicadangkan 
bahawa sifat dielektrik nanokomposit CdS/polimer boleh diterangkan dengan sifat – 
sifat unik berikut iaitu, saiz nano partikel CdS, sifat semikonduktor CdS, interaksi 
antaramuka antara nanopartikel CdS dengan polimer dan sifat intrinsik polimer. 
Kesimpulan ini menjadi asas kepada strategi sintesis yang baru bagi menghasilkan 
bahan dielektrik dengan cara mengubah saiz, kepekatan dan taburan nanokluster CdS 
dalam matriks pelbagai polimer. 
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CHAPTER 1  

 
 
 
 

INTRODUCTION  

 
 
 
 

High dielectric materials have been actively explored and used, because the 

material has potential for application in microwave communication devices, artificial 

muscles, and embedded capacitor for micro-electromechanical system. Dielectric 

materials that can store large electric energy are highly desirable for many electronic 

and electric systems for energy pulse and power conditioning applications. Ceramic 

materials usually have large dielectric constant, but they are limited by their relative 

small breakdown strength. On the other hand, polymers usually enjoy higher 

breakdown strength but suffer from much lower dielectric constant.  

 
 
Nanotechnology has been the subject of increasing interest in recent years 

due to the optical, dielectric, electric, magnetic, biological, pharmaceutics and 

catalytic properties that are present in the metallic and inorganic nanoparticles. These 

properties are used in the development of different nanodevices, including 

microelectronic uses. The ever escalating speed, functionality and portability 

requirement for microelectronic products exert tremendous pressure interest for 

researchers and manufacturers to meet with the rapid growing demand for the 

miniaturization and performance. The miniaturization and high performance in 

electronic devices has driven research and development activities to produce 

embedded passive. Passives are non-active electrical elements and can be divided 

into resistive, capacitive and inductive components. In a typical electronic product 

today, more than 80 % of the surface area of the printed circuit board (PCB) is 

occupied by passive component (Lu et al., 2006). 

 



 2

By eliminating surface mount components and embedding it into the 

substrate board, embedded passive component offer various advantages over 

traditional discrete ones, such as higher component density, increased functionality, 

improved electrical performance, increased design flexibility, improved reliability 

and reduced unit cost. The architecture of passive component is one area with room 

for improvement due to the large and growing number of passive component in 

today’s increasingly functional devices. Discrete passives, especially capacitors, have 

already become the major barrier of the electronic systems miniaturization. 

Therefore, the development of embedded passives is desired, if not required. Among 

passives component, the development of embedded capacitor has been an area of 

significant activity because the capacitor use in multiple functions, such as 

decoupling, by-passing, filtering, and timing capacitors (Rao and Wong, 2004; Lu et 

al., 2007). Figure 1.1 shows a schematic of embedded capacitance solution for 

electronic devices.  

 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Schematic representation of embedded capacitance solution for 

electronic devices 
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Studies and syntheses of polymer nanocomposites, including 

polymer/ceramic nanocomposites, polymer/inorganic nanocomposites and 

polymer/metal nanocomposites with high dielectric constant have been actively 

explored, with the hope to substantially enhance the electric energy density of the 

resulting nanocomposite. The utilized polymer nanocomposites for electronic 

application have many advantages such as light weight, shape-flexibility, cost 

effectiveness, and good process ability of the material.  

 
 

Many studies were developed to produce polymer nanocomposites with high 

dielectric constant. Polymer nanocomposites are appealing for two reasons. First of 

all, they possess large interfacial exchange coupling through a dipolar interface layer 

and leading to enhancement in polarization and polarizability in polymer matrix near 

the interface. As a result, enhanced dielectric constant can be expected in the 

polymer matrix near the interfaces. Secondly, the nanoscale particles also make it 

possible to reduce the thickness of polymer matrix film to nano range, and thus 

increase its already high breakdown strength even further by avoiding avalanche 

effect. 

 
 

Nanoparticles are generally categorized as the class of materials that fall 

between the molecular and bulk solid limits, with an average size between 1 – 100 

nm. Semiconductor nanoparticles, referred to as quantum dots, with dimensions in 

the order of nanometers have been the subject of intense research in the past two 

decades, due to their unique optical, electronic, physical and chemical properties 

(Alivisatos, 1996; Wang and Herron, 1991). Inorganic materials on nano-sized 

metals and semiconductors provide a potential solution to meet present and future 

technological demand in virtue of the novel properties and unique property 

combination of both metal and semiconductor nanoparticles. On the other hand, 

uniform dispersion of nanoparticles in the nanocomposites is required because 

clumps of particles inside the polymer matrix will not lead to desirable electrical or 

dielectric properties. However, uniformly dispersed ultrafine particles in polymer 

matrix may not be easily achieved by incorporating pre-made nano-size particles into 

a polymer. This is caused by the easy agglomeration of nanoparticles and high 

viscosity of polymers. The most promising way to decrease an obstacle of these 
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factors on the dielectric properties of nanocomposites is the in-situ or direct 

formation of nanoparticles in polymer matrix. 

 
 
The focus of this study is to synthesize CdS/polymer nanocomposites and 

characterization of the physicochemical and electrical properties. The materials were 

synthesize by in-situ polymerization and ion exchange-precipitation method. The 

nanocomposites were carried out by several techniques such as UV – Vis 

spectroscopy, UV - Vis Diffuse Reflectance (UV – Vis DR) spectroscopy, Fourier 

Transform Infrared (FTIR) Spectroscopy, X-ray Diffraction (XRD), Atomic 

Absorption Spectroscopy (AAS), Thermogravimetry Analysis (TGA), Transmission 

Electron Microscopy (TEM), Field Emmision Scanning Electron Microscopy 

(FESEM), AC Impedance Analyzer, and Thermal Conductivity Analyzer.  

 
 

The used of CdS nanoparticles as nanofiller have received great attention 

because of their unique electrical and optical properties. The selected approach of 

synthesis  methods and the intrinsic of chemical properties of selected polymers will 

be produced on nanoscale CdS by encapsulated within polymer and attached on 

polymer matrices. The combination of CdS nanoparticles and the polymer have 

developed a CdS/polymer nanocomposite with a high dielectric constant and 

improved physicochemical properties. 

 
 
 
 

1.1 Background of Study 

 
 
Many researchers have developed methods for synthesis of high dielectric 

properties polymer nanocomposites. The first approach process for enhancing the 

dielectric constant of a polymer nanocomposites is to disperse a high dielectric 

constant insulating ceramic (ferroelectric materials), namely nanoceramic using 

barium titanate (BaTiO3) (Devaraju et al., 2005; Pant et al., 2006), lead titanate 

(PbTiO3), lead zirconate titanate (PZT) (Dong et al., 2006), strontium titanate 

(SrTiO3) (Prijamboedi et al., 2005), into polymers. In order to obtain a high value of 
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dielectric constant, large amount of the filler has to be loaded into polymer matrix, 

resulting in loss of flexibility and inhomogeneous nanocomposites.  

 
 
The second approach to obtain high dielectric constant polymer 

nanocomposites was achieved by dispersing conductive fillers into polymers. The 

common conductive materials used to produce the polymer nanocomposites are 

carbon nano-fibers, metals such as silver (Ag) nanoparticles (Lu et al., 2006), 

aluminium (Al) and nanoparticle aluminium (Xu and Wong, 2007), cadmium oxide 

(CdO) (Pant et al., 2006), zink sulfide (ZnS) (Ghosh et al., 2005b), polymers such as 

polyaniline (PANI) (Lu et al., 2007), and organic acids such as sulfamic acid 

(Ameen et al., 2007) and copper pthalocyanine. The polymer nanocomposites have 

successfully increased the dielectric constant of the polymer. The increased dielectric 

constant observed in such composites arises from conducting particles isolated by 

very thin dielectric layers to form micro-capacitors. However, the dielectric loss is 

very high and difficult to control, because the particles can easily form a conductive 

path in the composite as the filler concentration nears the percolation threshold. 

 
 
The third approach to increase dielectric properties of polymer was to utilize 

an inorganic and organic materials such as, titanium oxide (TiO2) (Li et al., 2006; 

Yang and Kofinas, 2007; Mo et al., 2008; Dey et al., 2004), aluminium oxide 

(Al2O3) (Li et al., 2007), clay (Zhang et al., 2005), zinc oxide (ZnO2) (Hong et al., 

2005) and also other polymers such as poly(trimethylene terephtalate) (PTT) 

(Kalakkunnath and Kalika, 2006). The results showed that the dielectric constant of 

the polymer did not increase significantly. 

 
 
The challenge to produce dielectric polymer nanocomposites relies on the 

ability to manipulate the fraction, characteristic length, and arrangement of dielectric 

component inside the engineered nanocomposites. No systematic studies to date have 

been published on the influence of effective volume fraction, characteristic length, 

and arrangement of dielectric components on the effective dielectric constant of the 

composites. This is due the intrinsic incompatibility between inorganic particles and 

organic matrices. Most of the previous studies have utilized the conventional method 

of blending a high dielectric constant material into polymer, which has no real 
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control on particles size and distribution within the polymer matrix (Yang and 

Kofinas, 2007). 

 
 
The study, synthesis and characterization of semiconductor nanoparticles 

have attracted intense research lately owing to the unique chemical and physical 

properties of the nanoparticles and also the vast potential for practical application of 

the composite system incorporating the nanoparticles. Semiconductor nanoparticles 

have physical and chemical properties that may differ significantly from those of the 

bulk material. Such deviations are attributed to the small particle size and the 

accompanying surface structure effects. By controlling the particle size and surface 

structures of the semiconductor materials, electronic, optical, magnetic, mechanical, 

and chemical properties can be modified to suit a wide range of device application in 

various fields (Zhao et al., 2001).  

 
 
Semiconductor nanoparticles have interesting applications in electronic, 

optical, electro-optical devices, catalysis (Yanagida et al., 1990; Graetzel and 

Graetzel, 1979), and optics (Wang, 1991). More particularly, cadmium sulfide (CdS) 

nanoparticles have made a great impact in applications including pigments, battery, 

optoelectronic devices, photocatalyst (Yanagida et al., 1990; Graetzel et al., 1979; 

Hirai et al., 2002a, 2001, Hirai and Bando, 2005 and Yang, 2005), photosensitive 

matrices, and resistor for light detecting laser. Dielectric properties of CdS 

nanoparticles and bulk CdS have also been studied and reported (Zhou, 2003; Tiwari 

and Tiwari, 2006). 

 
 
Polymers as matrices have several advantages for producing CdS 

nanoparticles and CdS/polymer nanocomposites. On the other hand, polymers with a 

type of spatial conformation can be used as template to make nanoparticles in 

solution with narrow size distribution and uniform confinement throughout their 

periodic micro-domain. Besides that, polymers are able to achieve surface 

passivation, prevent particles from agglomeration and maintain the particles degree 

of dispersion of particle, which are well-known for their ability in controlling the 

particle size and size distribution effectively (Yang et al., 2003). 
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Based on these above explanations and reasons, studies on the synthesis, 

characterization, and elucidation of the dielectric and electrical properties of 

CdS/polymer nanocomposites are undertaken to develop a high dielectric constant 

material. The CdS/polymer nanocomposites were synthesized by combining several 

methods i.e. in-situ polymerization, ion exchange and precipitation.  The polymer 

matrices employed are poly(styrene-divinylbenzene) [P(S-DVB)], poly(methacrylic 

acid-ethyleneglycol dimethacrylic acid) [P(MAA-EGDMA)] and sulfonated 

poly(styrene-divinylbenzene) [SO3H-P(S-DVB)].  

 
 
 
 
1.2 Design and Strategy of Research  

 
 
The synthesis strategy for preparation of high dielectric constant 

CdS/polymer nanocomposites with selected polymer matrices is shown 

schematically in Figure 1.2. In this study, the CdS/polymer nanocomposites were 

synthesized using three kinds of polymer i.e. P(S-DVB), P(MAA-EGDMA) and 

SO3H-P(S-DVB).  

 
 
Polystyrene and polymethacrylic acid are common polymers used in 

preparation of encapsulated metal or metal oxide and solid phase extraction, 

respectively. The choice of the polymers is based on their different properties and 

degree of polarity. Among the polymers employed in the present study polystyrene 

has no functional group, polymethacrylic acid has a weak acid functional group (-

COOH), while sulfonated-polystyrene has a strong acid functional group (-SO3H). 

Based on the different chemical properties of the polymers, hence different 

procedure of synthesis was applied in order to disperse CdS nanoparticles on the 

polymer surface or encapsulated within the polymer matrix. 
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Figure 1.2: Schematic representation of the synthesis of CdS/polymer 

nanocomposites 

 
 
In this study, CdS/poly(styrene-divinylbenzene) [CdS/P(S-DVB)] 

nanocomposites were synthesized by in-situ polymerization in miniemulsion system. 

First, the CdS nanoparticles were prepared by reverse micelles in miniemulsion 

system using CTABr as the surfactant, styrene-divinyl benzene as the oil-phase, 2-

propanol as the co-stabilizer, and also water. While, the CdS/poly(methacrylic acid-

ethyleneglycol dimethacrylic acid) [CdS/P(MAA-EGDMA)] nanocomposites were 

synthesized by combination of three methods i.e. in-situ polymerization to produce 

P(MAA-EGDMA) nanoparticles, ion exchange and precipitation process to produce  

CdS/P(MAA-EGDMA)  nanocomposites, respectively. The CdS/sulfonated-

poly(styrene-divinyl benzene) [CdS/SO3-P(S-DVB)] nanocomposite were 

synthesized by combining four methods i.e. in-situ polymerization to produce P(S-

DVB) nanoparticles, sulfonation reaction with fuming sulfuric acid (H2S2O7) to 

Nano/micron polymer matrix CdS nanoparticles 

 

CdS/polymer nanocomposites with high dielectric constant 

Intramolecular interaction 

Intermolecular interaction 
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produce SO3H-P(S-DVB), ion exchange and precipitation processes to produce 

CdS/SO3-P(S-DVB) nanocomposites, respectively.  

 
 
 
 
1.3     Objective of The Study 

 
 

The main goals of this research are to synthesize, characterize and evaluate the 

dielectric and electrical properties of the CdS/polymer nanocomposites. 

 

The objectives of the research are: 

1. To synthesize and characterize CdS nanoparticles prepared by reverse 

micelles in miniemulsion system using monomer as the oil-phase 

2. To synthesize and characterize pure P(S-DVB) and P(MAA-

EGDMA) prepared by in-situ polymerization in miniemulsion system. 

3. To synthesize and characterize CdS/P(S-DVB) nanocomposites 

prepared by in-situ polymerization in miniemulsion system using 

monomer as the oil-phase 

4. To synthesize and characterize CdS/P(MAA-EGDMA) 

nanocomposites prepared by ion exchange and precipitation 

processes. 

5. To synthesize and characterize CdS/SO3-P(S-DVB) nanocomposites 

prepared by sulfonation reaction, ion exchange and precipitation 

processes. 

6. To evaluate and to compare the dielectric properties, electrical 

properties, thermal properties and thermal conductivity of these 

CdS/polymer nanocomposites. 

 
 

 
 
1.4       Scope of The Study 

 
 

The scope of the study is focused on the following aspects i.e. synthesis of 

CdS nanoparticles, synthesis of pure P(S-DVB) and P(MAA-EGDMA), preparation 
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of CdS/P(S-DVB) nanocomposites, preparation of CdS/P(MAA-EGDMA) 

nanocomposites, preparation of CdS/SO3-P(S-DVB) nanocomposites, and evaluation 

of dielectric properties, electrical properties, thermal properties and thermal 

conductivity. 

 

Table 1.1: Outline of results and discussion 

 
Outline of results and discussion Section in chapter 

 

CdS/P(S-DVB) nanocomposites 

• Optimization of CdS synthesis and synthesis of 

CdS/P(S-DVB) 

• Physicochemical properties of CdS/P(S-DVB) 

• Dielectric properties of CdS/P(S-DVB) 

4.1 

 

CdS/P(MAA-EGDMA) nanocomposites 

• Physicochemical properties of CdS/P(MAA-EGDMA) 

• Dielectric properties of CdS/P(MAA-EGDMA) 

4.2 

 

 

CdS/SO3-P(S-DVB) nanocomposites 

• Physicochemical properties of CdS/SO3HP(S-DVB) 

• Dielectric properties of CdS/SO3-P(S-DVB) 

4.3 

Comparison of physicochemical and electrical 

properties of CdS/polymer nanocomposites 

4.4 

 

This research involves the synthesis of CdS nanoparticles by reverse micelles 

in miniemulsion using styrene-divinyl benzene as oil-phase, followed by the 

synthesis and characterization of CdS/P(S-DVB) nanocomposites via in-situ 

polymerization in the miniemulsion system. The miniemulsion system is prepared 

using CTABr as surfactant, monomer as oil-phase, 2-propanol as co-stabilizer and 

water. The formation, stabilization and particle size of CdS nanoparticles in the 

miniemulsion system were characterized using UV – Vis spectroscopy. Outcomes of 

this work are reported in Chapter 4. Chapter 4 also reports the synthesis and 

characterization of dielectric properties of CdS/P(MAA-EGDMA) nanocomposites 
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and observation on the preparation and characterization of dielectric properties of 

CdS/SO3-P(S-DVB) nanocomposites. The outline of the results and discussions 

section are shown in Table. 1.1. 

 
 
Chapter 5 presents the conclusions of the synthesis, characterization and 

dielectric properties of all the nanocomposites of the prepared CdS/polymer 

nanocomposites.  




