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ABSTRACT 

 

 

 

 

Polyvinyl alcohol (PVOH) blends with cassava starch (CSS) is a 

biodegradable polymer compound. This polymer compound is suitable to be used as 

biodegradable material to reduce the accumulation of synthetic petroleum-based 

polymer solid wastes. In this study, the fundamental blending characterizations of 

PVOH-CSS were investigated by molecular modeling to unveil the hydrogen 

bonding interactions among the blending components. In addition, infrared 

spectroscopy (FT-IR), differential scanning calorimetry (DSC), and 

thermogravimetric analysis (TGA) were conducted to support the molecular 

modeling outcomes. The processability behaviour of the PVOH-glycerol-CSS 

compounds (PGCS) such as specific heat capacity, pressure-volume-temperature, 

and shear rate-viscosity were studied as well. These data were imported into 

Moldflow software for injection moulding simulation based on a name tag article 

design (NTA). Subsequently, the simulated outcomes were validated by actual 

injection moulding process using statistical analysis. The fundamental blending 

characterizations results showed that blending of PVOH and CSS are synergistically 

compatible. However, the incorporation of glycerol has weakened the genuine 

interactions between PVOH and CSS. Meanwhile, the processability study of PGCS 

showed that 40 wt.% and 50 wt.% CSS compounds are favourable to be injection 

moulded. Finally, the statistical outcomes have concluded that optimum processing 

can help to produce NTA with low volumetric shrinkages at acceptable variabilities. 

In conclusion, PVOH-CSS blend is a compatible polymer compound. It is also a high 

potential injection moulding processable biodegradable starch-based polymer 

compound.  
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ABSTRAK 

 

 

 

 

 Adunan polivinil alkohol (PVOH) dan kanji ubi kayu (CSS) merupakan 

adunan polimer biodegradasi. Adunan polimer ini adalah sesuai digunakan sebagai 

bahan biodegradasi untuk tujuan mengurangkan pengumpulan bahan buangan 

polimer yang berasal dari sintetik petrolium. Dalam kajian ini, pencirian asas 

terhadap adunan dikaji dengan menggunakan permodelan molekul untuk melihat 

interaksi ikatan hidrogen diantara komponen adunan. Tambahan pula, teknik-teknik 

seperti spektroskopi infra-merah (FT-IR), kalorimeter imbasan kebezaan (DSC), dan 

analisa thermogravimetrik (TGA) dijalankan untuk menyokong keputusan 

permodelan molekul. Selain itu, kebolehan pemprosesan untuk adunan PVOH-

gliserol-CSS (PGCS) seperti muatan haba tentu, tekanan-isipadu-suhu, dan kadar 

ricih-kelikatan juga dikaji. Data-data ini kemudian dimasukkan ke dalam perisian 

Moldflow untuk simulasi acuan suntikan dengan berdasarkan kepada rekabentuk 

tanda nama (NTA). Seterusnya, keputusan simulasi disahkan melalui proses suntikan 

acuan sebenar dengan menggunakan analisa statistik. Keputusan pencirian asas 

adunan menunjukkan bahawa adunan PVOH dan CSS adalah serasi secara 

sinergistik. Bagaimanapun, penambahan gliserol telah melemahkan interaksi asal 

antara PVOH dan CSS. Pada masa yang sama, kajian kebolehan pemprosesan PGCS 

menunjukkan bahawa CSS adunan 40 berat% dan 50 berat% adalah baik untuk 

diproses secara acuan suntikan. Akhirnya, keputusan statistik menunjukkan bahawa 

pemprosesan optimum boleh membantu menghasilkan NTA yang mempunyai 

penyusutan isipadu yang rendah pada kebolehubahan yang boleh diterima. 

Kesimpulannya, adunan PVOH-CSS ialah adunan polimer yang serasi. Adunan ini 

merupakan adunan biodegradasi berasaskan kanji yang berpotensi tinggi dan dapat 

diproseskan secara suntikan acuan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Project 

 

 

 Plastics are extensively used in nearly all areas of daily life and their 

productions and fabrications are major worldwide industries. They become materials 

of choice for many applications because of light weights, cheap, durable and easily 

being processed to desired forms. However, people tend to exploit the usage of 

plastics by producing easy-disposable products. Synthetic polymeric materials such 

as polyethylene, polypropylene, polystyrene, polyvinyl chloride are non-degradable 

when being exposed in natural environment. Petroleum-based synthetic polymers 

require hundreds of years to fully degrade into harmless substances. The disposals of 

synthetic polymer materials have caused diminish of landfill. Living lives are prone 

to expose of toxic chemicals leakages due to contamination of groundwater. 

Meanwhile, the incineration is sometimes considered to be a good alternative to 

manage polymeric wastes. However, toxic gases emissions such as benzene, toluene, 

polychlorinated biphenyls can cause severe health problems (Rowat, 1999). One of 
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the alternatives to reduce harmful impacts of synthetic polymer is through 

substitution of petroleum-based polymers by natural biodegradable polymers. 

Biodegradable polymers can easily decompose into harmless substances when 

expose to natural environment. Currently, there are several types of biodegradable 

polymer materials available in the market such as polylactic acid, 

poly(�-caprolactone), polyvinyl alcohol (PVOH), starch polymers and oxo-additive 

petroleum based synthetic polymer (Bohlmann, 2005). Biodegradable polymers or its 

compounds do not degrade during the application period. These polymers will only 

begin to decompose rapidly when being exposed under the action of microbial and 

enzymes for digestion into fully harmless substances (Zee, 2005).  

 

 

 Current development shows that starch based biodegradable polymers have 

gained broad academic and industrial interests (Mani and Bhattacharya, 1998; Raj et 

al., 2004; Cyras et al., 2006; Wang et al., 2006; Novamont, 2007; Schlemmer et al. 

2007; Plantic, 2007; Liu et al., 2009; Chung et al., 2010; Yu et al., 2010). Starch is a 

mixture of natural ingredients- amylose and amylopectin. Both amylose and 

amylopectin are consisted of D-glucose repeating unit (Wade, 1999; Liu et al., 2009). 

Starch is polar substance with vast amount of hydroxyl (-OH) groups present in the 

molecules. As a result, polar polymers such as PVOH, polyethylene oxide and 

polyethylene vinyl acetate possess polar pendant groups are compatible with starch. 

When blending of polar polymers and starch together, hydrogen bonds are very 

likely to form in between the polar side groups of the polymers and the starch 

molecules. Cenovese and Shanks (2001) reported that the presence of hydrogen 

bonding in polymeric material is able to enhance morphological and structural 

properties of the blending. In spite of that, blending of polar polymers with starch 

can overcome the existing physical limitations of thermoplastic starch (TPS) such as 

water solubility, poor mechanical properties and brittleness while retaining its 

biodegradable property (Mao et al., 2000).  
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 It is known that blending of starch with synthetic polymer helps to improve 

biodegradability. However, starch is a polar substance. Blending starch with 

non-polar synthetic polymer such as polyethylene is not compatible. Jagannath et al. 

(2006) reported that starch filled low density polyethylene showed deterioration in 

mechanical properties. In order to overcome this problem, it is better to blend an 

inherent polar polymer with starch, so that the compatibility of the blending complex 

will not be disrupted. Hence, in this study, polar polymer PVOH was blended with 

starch. To date, little study has been performed on the molecular level and processing 

behaviour of PVOH-starch blending complex. Most of the works are limited to 

mechanical properties and biodegradability of PVOH-starch compounds.  

 

 

A thorough study of molecular level and macroscopic properties of 

PVOH-cassava starch (written in abbreviation as CSS in particular term or starch in 

common term) was performed to ensure the compounds can be widely applied across 

the plastic industries. Besides that, this study was also aimed to reveal the 

processability of PVOH-starch using injection moulding technology. Since most of 

the injection moulding facilities is mainly used for production of petroleum-based 

polymer products, the industrial practitioners are unwilling to shift their well setup 

production lines to novel starch-based biodegradable polymer materials which tend 

to cost them a lot of efforts when implement new production procedures. Thus, in 

this study, the processing behaviour of PVOH-starch was studied also with the aids 

of injection moulding simulation analysis. The shear rate-viscosity and PVT 

characteristics of PVOH-starch compounds were modeled and embedded into 

Moldflow® program for injection moulding simulation analysis. The simulation 

analysis outcomes helped to predict the injection moulding processing parameters of 

PVOH-starch compounds as well as reducing cost and time spent on the online 

trial-and-error production (Sapuan, 2005). These outcomes are not only favorable for 

industrial implementation, but it also helps to encourage further development and 

improvement of biodegradable starch-based polymer compounds. 
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1.2 Problem Statements 

 

 

Based on the lack previous studies about the genuine interactions of 

PVOH-starch blends as well as the processability of PVOH-starch compound, 

therefore, the following problems have been identified: 

 

1. What are the differences of binding energy, vibrational frequency of 

hydroxyl (-OH) group and the solubility parameters of PVOH-starch and 

their original components? What are the percentage combinations of 

PVOH-starch to produce the best theoretical stability?  

2. What are the thermal stability and extent of hydrogen bonds formation in 

PVOH-starch blends? Do the experimental results agree with theoretical 

computational modeling outcomes? 

3. What are the pressure-volume-temperature (PVT), thermal properties and 

rheology shear rate-viscosity of melt blended PVOH-glycerol-starch 

compounds (PGCS)? 

4. What are the optimum processing parameters to produce PGCS articles by 

injection moulding technology? 

 

 

1.3 Objectives 

 

 

 The main objective of this project is to develop a molecular stable 

biodegradable PVOH-starch compound and this compound can be well processed by 

injection moulding technology. Actually, the application of starch-polymer blend is 

not limited to biodegradable packaging material but also apply in advance 

biomaterial field as tissue engineering scaffold (Neves et al., 2005; Sinha et al., 

2007), hydrogels for use as bone cements or drug-delivery carriers (Zhai et al., 2002), 



 

 

5 

and protein immobilization (Melo-Junior et al., 2008). Therefore, the main objective 

was not limited to obtain an individual starch based biodegradable product, but the 

results will also help to explore the fundamental interactions of polymer-starch 

system. This will lead towards further development of the starch based polymer 

compounds applications in the future. In order to achieve this objective, the 

following sub-objectives were identified. 

 

1. To determine the differences of binding energy, vibrational frequency of 

hydroxyl (-OH) groups, and solubility parameters of PVOH-starch and 

their components by quantum mechanics computational method. 

2. To investigate decomposition activation energy, enthalpy of melting and 

infrared spectroscopy of PVOH-starch. The results were compared with 

simulation outcomes for validation. 

3. To characterize the PVT, thermal properties and rheology shear 

rate-viscosity of PGCS for injection moulding simulation analysis. 

4. To identify the optimum injection moulding processing parameters of 

PGCS articles by Moldflow® simulation and verified by actual injection 

moulding process. 

 

 

1.4  Scope of Study 

 

 

 In general, this project was divided into five sections: molecular interactions 

simulation, samples compounding, fundamental and macroscopic properties 

characterizations, injection moulding simulation analysis, and 

validation-optimization of actual injection moulding process. 

 

 

 



 

 

6 

a) Molecular Interaction Simulation 

 

 

The molecular interactions simulation of PVOH-starch was conducted by 

HyperChem® Professional 8.0 (Hyperchem) and ChemSW® Molecular Modeling 

Pro (ChemSW). The investigations were limited to obtain binding energies, 

vibrational frequency of hydroxyl (-OH) group by quantum mechanics calculation 

(Hypercube, 2002) using Hyperchem. Meanwhile, the solubility parameters of the 

components were obtained using ChemSW. Since PVOH and starch are 

macromolecules with high molecular weights, thus PVOH and starch molecules were 

modeled into rather simple repeating unit basis. Basically PVOH were modeled into 

vinyl alcohol repeating unit and starch was represented by D-glucose unit. Vibrational 

analysis of molecules has provided a clear visualization about bending and stretching 

of the chemical bonds when subjected to infrared irradiation in virtual computer 

environment. 

 

 

b) Samples Compounding 

 

 

Blending of PVOH and starch were carried out by solution casting and melt 

blending methods. Solution casting samples were used for fundamental 

characterizations of PVOH-starch binary system and PVOH-glycerol-starch ternary 

system. The amount of glycerol added in this study was limited to 30 wt.%. This is 

the amount of glycerol needed to produce extrudable PVOH (Famili et al., 1991; 

Marten et al., 1991; Marten et al., 1992; Famili et al., 1994). 30 wt.% of glycerol 

was used in solution casting of PVOH-glycerol-starch ternary system so that it can 

generate analysis outcomes approaching the actual melt blending samples. Solution 

cast samples were used for fundamental characterization because this sample 

preparation method only involved moderate temperatures to dissolve and blending of 
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PVOH, starch, and glycerol together. Unlike melt blending of PVOH-starch which 

used a twin screws extruder, it required incorporation of lubricants and some 

additives to encourage mixing at relative higher temperatures as compared to 

solution casting method. Incorporation of additives would disturb the genuine 

interactions of PVOH-starch. In addition, high processing temperature also induce 

side-reaction to occur which would create disturbance to the fundamental properties 

study. Therefore, melt blending samples were used for macroscopic characterizations 

such as thermal and rheology properties of PVOH-starch compound. Meanwhile, 

solution casting samples was used to characterize the decomposition activation 

energy, enthalpy of melting and detection of hydrogen bonds by Thermogravimetry 

Analysis (TGA), Differential Scanning Calorimetry (DSC), and Fourier Transform 

Infrared Spectroscopy (FT-IR), respectively. 

 

 

c) Fundamental and Macroscopic Properties Characterizations 

 

 

PVOH-CSS blends were divided into fundamental and macroscopic 

characterizations. 

 

 

I. Fundamental characterizations for solution cast samples 

 

i. Detection of hydrogen bonding effects (shifting of O–H stretching 

wavenumber) by FT-IR. 

ii. Determination of thermal decomposition activation energy at 20% mass 

losses by TGA. 

iii. Determination of enthalpy of melting by DSC. 
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II. Macroscopic characterization for melt blending samples 

 

i. Shear rate-viscosity analysis by capillary rheometer. 

ii. PVT analysis by SWO PVT apparatus. 

iii. Specific heat capacity analysis by DSC. 

 

 

d) Injection Moulding Simulation 

 

 

Injection moulding simulation analysis was conducted by Moldflow® Plastics 

Insight 5.0 (Moldflow). Name tag article (NTA) was designed by SolidWorks®. The 

simulation included flowing and packing analyses. Data obtained in macroscopic 

characterizations were embedded into Moldflow database. Shear rate-viscosity 

relationship of PVOH-starch was modeled into Cross-WLF equation. Meanwhile, 

PVT data were modeled into Two-Domain Modified Tait equation.  

 

 

e) Validation-Optimization in Actual Injection Moulding Process 

 

 

The outcomes generated from Moldflow injection moulding simulation analysis 

were validated and optimized in actual injection moulding machine. Basically, four 

process factors were studied at 2-levels full factorial design method. The four process 

factors were injection temperature, injection pressure, injection speed and packing 

pressure. The response of interest of the experiment was volumetric shrinkage of the 

NTA. 




