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ABSTRACT 

 

 

 

 Six-phase transmission line (SPTL) system can be an alternative method to 
increase the existing transmission line power transfer capability to meet the 
increasing electrical energy demand of the future. In Malaysia, understanding and the 
knowledge of high phase conversion can be considered very shallow to contribute 
toward the realization of the six-phase transmission line. Tests on actual line settings 
and configuration which are needed during a study are the main challenges to 
researchers who have limited access to the lines. This is due to the fact that any 
changes to the actual line settings and configurations while the systems is running 
normally will not be appreciated by the power utilities who are committed to 
minimizing any cause of interruption to their supply system. To overcome this 
problem, this research project came out with broadly two programs. The first part is 
to carried out simulation studies of the SPTL, and the second part of this project 
focuses on construction a scaled down model of SPTL. The strategy is to compare 
the result of the study from the experimental point of view with the results obtained 
from simulation. Thus, the research could come out with the full understanding of 
SPTL system in term of its steady state and switching transient phenomena. In order 
to realize the SPTL system, the simulation study uses the ATP/EMTP incorporates 
two sets of three-phase transformer with other apparatus of the high voltage 
transmission system to come out with SPTL system model. In the experimental 
setup, the Tenaga Nasional Berhad (TNB) 132kV transmission line running from 
Kuala Krai to Gua Musang was used as the basis for the development of the scaled 
down power transmission line model (SDPTLM) of the SPTL system. From the 
research studies, it was found that the magnitude of phase-to-ground and phase-to-
phase switching surges of the converted system is much higher compared to the 
allowable crest voltage value of parent system. It was approximately 2.02 – 8.20 pu 
for both switching energization and switching de-energization. The percentage 
difference between the experimental and simulation was in the range 1.42 to 2.22. 
The switching energization and de-energization as well as steady state studies carried 
out in this work can be used by utility companies such as TNB as feasibility studies 
when converting their existing three-phase transmission lines to SPTL in future. 
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ABSTRAK 

 
 
 

 Sistem Talian Penghantaran Enam Fasa (STPEF) boleh menjadi satu kaedah 
alternatif untuk meningkatkan keupayaan pemindahan kuasa talian penghantaran 
sediaada bagi memenuhi peningkatan permintaan tenaga pada masa hadapan. Di 
Malaysia, kefahaman ilmu masyarakat terhadap penukaran fasa tinggi amat rendah 
bagi menyumbang kepada kesadaran terhadap penggunaan STPEF. Ujian dan 
konfigurasi pada talian sebenar diperlukan ketika kajian dilakukan merupakan satu 
cabaran utama kepada penyelidik-penyelidik yang mempunyai pendedahan terbatas 
terhadap talian tersebut. Ini adalah kerana, sebarang perubahan terhadap konfigurasi 
dan pengesetan pada talian sebenar pada sistem yang sedang beroperasi secara baik 
tidak dibenarkan oleh pihak pembekal kuasa yang lebih mengutamakan pengurangan 
punca ganguan terhadap sistem kuasa mereka. Untuk mengatasi masalah ini, projek 
penyelidikan ini menekankan dua bahagian utama dalam kajiannya. Bahagian 
pertama adalah menjalankan kajian simulasi terhadap STPEF, dan pada bahagian 
kedua adalah menghasilkan model skala kecil STPEF. Strateginya adalah dengan 
membandingkan hasil keputusan dari kajian ujikaji makmal dengan keputusan dari 
ujian simulasi. Ini akan menghasilkan satu kepahaman penuh terhadap sistem STPEF 
dari sudut fenomena keadaan fana dan ubahtika pensuisan. Di dalam kajian simulasi, 
untuk memahami sistem STPEF, perisian ATP/EMTP digunakan bagi 
menggabungkan dua set alat ubah tiga fasa dengan sistem talian penghantaran voltan 
tinggi dengan menghasilkan model sistem STPEF. Manakala bagi persiapan ujikaji 
makmal, talian penghataran TNB bervoltan 132 kV yang beroperasi dari Kuala Krai 
ke Gua Musang telah digunakan sebagai panduan dan rujukan bagi pembinaan model 
STPEF berskala kecil. Daripada kajian yang dijalankan, adalah didapati bahwa 
magnitud pusuan pensuisan untuk fasa ke bumi dan fasa ke fasa bagi sistem STPEF 
adalah lebih tinggi berbanding dengan nilai voltan sistem yang dibenarkan pada 
sistem sediaada. Ianya adalah dianggarkan antara 2.02 pu – 8.20 pu untuk kedua-dua 
pensuisan pentenagaan dan pensuisan dinyah tenaga. Peratus perbezaan antara ujikaji 
makmal dan simulasi adalah dalam julat 1.42% to 2.22%. Hasil ujikaji pentenagaan 
dan nyah tenaga dan juga kajian keadaan mantap yang telah dijalankan di dalam 
kajian ini boleh digunakan oleh syarikat pembekal tenaga seperti TNB sebagai kajian 
kebolehlaksanaan apabila penukaran system talian penghantaran tiga fasa sedia ada 
kepada SPTPEF dilaksanakan dimasa hadapan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

The transmission line is part of an electric power system network. It serves to 

transfer electric energy from generating units located at various locations to load 

centres via the distribution system. The transmission lines also interconnect 

neighbouring utilities which permits not only economic dispatch of power within 

regions during normal conditions, but also the transfer of power between regions 

during emergencies (Saadat,1999).   

 

The increasing demand for power, coupled with the difficulty in obtaining 

new rights-of-way, the electric power utilities are often faced with the challenge of 

increasing power transfer capabilities using the existing transmission lines. Beside 

the cost of development of new transmission line project is high, other reason 

responsible for the slow increase of transmission is the growing difficulty in getting 

permits for new lines. Hence, that reason dictates the feasibility of upgrading the 

capacity of the existing lines. In upgrading the capacity of a line, the possible options 

among others include installing larger conductors on existing structures, increasing 

the operating voltage, increasing operating temperature, increasing the reliability, or 

a combination of above (Rural Utilities Service, 1984). However, they typically 

involve one or more conditions that exceed the original design capabilities of the 

existing electrical and structure aspects. An upgrading involves increased mechanical 
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loads or electrical insulation clearance, a number of factors should be considered that 

can minimize the extent of modification (Simpson, 1990). 

1.2 Research Background 

Malaysia is a developing country where initially its economy is primarily 

depending on agriculture, but now industrial activities have contributed more to the 

economy. Through the “Malaysia Incorporated” concept, Malaysia has successfully 

changed from an agricultural-based economy to an industrial one, within just two 

decades (Khairul, 2003). For example, from January to August 2008, investments 

amounting to RM49.8 billion were approved in Malaysia's manufacturing sector. 

Investments for the first eight months of 2008 have also surpassed the record for the 

whole of 2007, which was RM33.4 billion (MIDA, 2008). This strategy encourages 

foreign investor to set up production, assembly and packaging plants in the country 

to move the manufacturing sector. To promote such import-substituting industries, 

the government, directly and indirectly, encourages the establishment of new 

factories and protects the domestic market. The Malaysian government policy is 

some ways help to develop new automotive factories, electronic or other factories.  

 

Growth prospects for the Malaysian economy remain favorable in 2007, 

despite uncertainty in the global economic environment. Strong domestic economic 

fundamentals will enable the economy to grow at 6.0% in 2007 compare 5.9% in 

2006 (Ministry of Finance Malaysia, 2007) and remained sturdy with a growth of 

7.1% in the first quarter of 2008 (Ministry of Finance Malaysia, 2008). The strongest 

growth will be from the industry (mainly the manufacturing sector) and the services 

sectors, attributing shares of expected 54% and 46%  to total Gross Domestic 

Product (GDP) in 2030  respectively (APEC, 2006). The growth in electricity 

demand is heavily influenced by the strong demand from the industrial sector, which 

is projected to increase at 5.4% annually over the decade. Electricity demand for the 

residential sector will also experience strong growth of 4.9% per year due to 

improving living standards. And electricity demand of Malaysia will be expected to 



 3

increase by 4.7% per year over the period of concern, to reach 274 TWh in 2030 

(APEC, 2006). 

 

Demands of electric power energy in Malaysia supplied by Tenaga Nasional 

Berhad (TNB) have increased nearly exponentially over the last two decades (TNB, 

2000).  Table 1.1 shows the statistical data of Sales of Energy by TNB (Jabatan 

Bekalan Elektrik & Gas Malaysia, 1999 and Suruhanjaya Tenaga, 2005).  

 

Table 1.1: Statistical data of Sales of Energy in GWh 

No Year Domestic Commercial Industrial Public 
Lighting 

Mining 

1 1994 5,006 7,892 15,932 208 93 
2 1995 5,800 9,132 18,414 229 81 
3 1996 6,655 10,352 20,704 255 68 
4 1997 7,203 12,070 24,606 290 76 
5 1998 8,516 13,151 24,447 358 68 
6 1999 8,507 13,821 27,051 498 64 
7 2000 9,093 14,747 29,818 527 69 
8 2001 10,315 16,196 30,754 590 67 
9 2002 10,939 17,032 31,371 629 64 
10 2003 11,765 18,367 33,440 663 56 
11 2004 12,530 19,967 35,732 682 54 
12 2005 14,365.5 23,858.6 37,835.3 853.9 38.1 
13 2006 15,058.7 24,311.7 37,979.4 876.3 41.5 
14 2007 16,051.8 26,323.3 39,289.1 926.9 34.4 

 

   

 To meet the ever-increasing demand for electricity, large and larger power 

stations are being planned, built, and commissioned for efficient utilization of 

hydropower and conventional fuel. TNB’s total installed generation capacity remains 

at 8,416 MW. It comprises of 6,505 MW thermal and 1,911 MW hydroelectric power 

plants. With an additional capacity of 2,400 MW from Kapar Energy Ventures, TNB 

contributes 56.96 per cent of the total installed capacity in Peninsular Malaysia. 

Table 1.2 shows total sales, maximum demand and installed generation capacity 

managed by TNB. The maximum power demand in Peninsular Malaysia in 2007 was 

13,620 MW, recorded on 8 August 2007. The year-on-year capacity demand growth 

rate of 4.85% indicates a rise 3.98% from 2006 (TNB, 2008). 
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Figure 1.1 Peninsular Malaysia Transmission Network 

(Adopted from TNB Annual Report 2007, page 138) 

As a consequence of the increasing generation capacity, at the same time 

longer new transmission lines are to be constructed resulting from the increased 

demand for electrical power, its increased cost and restriction on Rights-of-Way 

(ROW) and higher transmission efficiency are some of the major reasons for 

building Extra High Voltage (EHV) lines. The electric power transmission system in 

Peninsular Malaysia, consists of four transmission levels, 500 kV, 275 kV, 132 kV 
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and 66 kV transmission systems which form an integrated network known as the 

National Grid as a Figure 1.1. 

 

The National Grid consists of approximately 17,836 kilometers of overhead 

transmission lines, 741 kilometers of underground transmission cables and 385 

substations with transformation capacity of 75,828 MVA (TNB, 2008). The 132kV 

was introduced in 1963 whilst the first 275kV lines were commissioned in 1971. The 

66kV network is slowly being phased out and parts of 132kV network are being 

relegated to sub transmission lines. The 500kV system as the new backbone of the 

National Grid constructed from Bukit Tarek to Janamanjung to channel power from 

the new Janamanjung Power Station and cater for the increasing demand for 

electricity (TNB, 2002). 

 

Table 1.2: Total Sales, Generation, and Electric Demand 

Year 2007 2006 2005 2004 2003 2002 2001 
Sales 

(GWh) 
86,545 82,218.8 78,933.4 72,921.4 68,254.3 63,533.6 59,417.4

Generation 
(MW) 

11.514.5 11,464.8 11,497.8 11,137.5 10,854.5 9,383.2 9,148.2 

Max 
Demand 
(MW) 

 
13,620 

 
12,990 

 
12,493 

 
12,023 

 
11,329 

 
10,783 No 

Data 

1.3 Power Transfer Capability of Transmission Lines 

The amount of power on a transmission line is the product of the voltage and 

the current of transmission system (Walter, 1981 and EIA Report, 2002) as well as 

the limitation inherent to system constraint such as stability on maximum capacities 

of substation terminal equipment, circuit breakers, current transformer and etc 

(Kiessling, F., et. al, 2002). Additional power can be transmitted reliably if there is 

sufficient available transfer capability on all lines in the system over which the power 

would flow to accommodate the increase and certain contingencies or failures that 

could occur on the system. The power transfer capability of the existing power 
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transmission systems commonly is limited by thermal related constraints, voltage 

related constraints, and system operating related constraints (Jose. R.D and Daniel. 

C.L., 2003).  

1.3.1 Thermal  Related Constraints 

The thermal related constraints must be given priority aiming to avoid 

overheating of transmission lines conductor. Overheating of transmission line 

conductors can produce aluminum annealing (loss of conductor mechanical strength) 

and excessive sags (violation of minimum conductor-to-ground clearance). For 

transmission line, it is important to select an adequate maximum allowable conductor 

operating temperature, which could be related to current rating of conductor. The 

transmission lines are typically divided into three thermal constraints: a normal 

operation rating, a long-term emergency rating (4 hours) and a short-term emergency 

rating (15 minutes). It is possible to increase the power transfer capability of a 

transmission system by increasing the current carrying capacity of its transmission 

lines and substation equipment (Jose. R.D and Daniel. C.L., 2003). 

1.3.2 Voltage Related Constraints 

The over-voltages can cause insulation failure, leading to short circuits and 

severe corona performance, while under-voltages can produce inadequate operation 

of equipment and damage of motors at customer’s facilities. The transmission 

systems are typically limited to two voltage constraints: a maximum operating 

voltage equals to 105% of the nominal voltage and a minimum operating voltage 

equals to 95% of the nominal voltage. It is possible to increase the power transfer 

capability of a transmission system by increasing the operating voltage within a 

voltage class, by controlling reactive power flows and consequently reducing voltage 
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drops, and by increasing the operating voltage of its transmission lines and substation 

equipment (Jose. R.D and Daniel. C.L., 2003). 

1.3.3 System Operating Related Constraints 

It is necessary to limit the active and reactive power transfers to avoid 

problems of transient instability, steady-state instability and voltage instability. These 

are some of the usual transmission systems operating related constraints. These 

constraints can be alleviated by using the following resources: changing connections 

of lines at substations, inserting switching stations along transmission lines, installing 

series capacitors and phase-angle regulators in transmission lines, using small inertia 

generators and distributed generation, installing Flexible Alternating Current 

Transmission Systems (FACTS) devices, taking advantage of automatic voltage 

regulators and governor control systems, changing from preventive operating 

procedure to corrective operating procedure (Jose. R.D and Daniel. C.L., 2003). 

1.4 Six-Phase Conversion Transmission Line 

There are several practical and theoretical alternatives for increasing the 

amount of power transmitted through the existing transmission line circuits are as 

follows (Simpson, 1990) (El-Marsafawy, 1991)(Woodford, 1975)(Grant, 1982): 

a) increase the voltage line, 

b) increase the current line, 

c) addition of series and shunt compensation, and 

d) three-phase to six-phase conversion of three-phase double-circuit 

transmission line. 

 

There are many factors in considering the alternatives for increasing power 

transfer capability, the major factors are (Cluts, 1974): power to be transmitted, 
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clearance required for the voltage selected and clearance available on existing 

structures, mechanical capability of existing structures, and economics of various 

alternatives. Increasing voltage involves modifying both electrical and structural 

aspects of an existing line. The first electrical consideration is the need for the 

increase ground clearance due to longer insulator strings and higher voltage. 

Consequently, the conductor attachment points need to raises and increase conductor 

tension. Raising conductor attachment points requires extensive structure 

modifications. For the increasing current line by means of increasing conductor size 

or number of conductors and retaining the same voltage does not change the 

electrical parameters but existing structural capacity should be considered (Hanson, 

1991).  These two methods are not economical due to time constrain and the 

requirement of new equipment at the substation. 

 

Due to the reasons described in Section 1.3, consideration of the fundamental 

limits on power transfer capability in restricted rights-of-way (ROW) led to a 

concept of increasing the number of phases in a transmission line system circuit 

known as High Phase Order (HPO). The concept of six-phase transmission lines was 

introduced by Barns & Barthold (Barthold, 1972). This concept involves the 

conversion of existing three-phase double-circuit system to six-phase single-circuit 

system. The six-phase system is accomplished by installing phase transformers 

converter at both sending-end and receiving-end substations. This concept is a cost-

effective and minimum time in implementation compared to the increase system 

voltage because reconfiguration is located only at the sending and receiving 

substation without require tower or tower insulator modification. One of the main 

advantages of six-phase transmission is that a six-phase line can carry up to 73% 

more electric power than a three-phase double-circuit line on the same transmission 

ROW (Guyker, 1978), without changing the transmission towers and insulation 

tower. For this reason, the current research has been carried out to have a better 

picture and clearer understanding of the six-phase power transmission system.  
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1.5 Problem Statement  

At present if additional power is required in an area, power utilities must add 

more power lines. Unfortunately in order to add additional power lines, additional 

rights-of-way (ROW), and land used to hold power transmission structures must be 

purchased to support the additional power transmission towers. The power 

transferability of an existing three phase double-circuit transmission line can be 

increased by upgrading the existing transmission voltage or by converting it into a 

six-phase single-circuit line. However, both methods the conversion and voltage 

upgrading will have impact among other on the insulation of the tower and substation 

equipment (transformer, switchgear) at both ends of the line.  

 

The conversion of three phase double-circuit transmission line into six-phase 

single-circuit line is chosen because the conversion is located only at both sides of 

substation. It is utmost important to consider construction to be done within a 

reasonable length of time as well as location of work, since the power transmission 

capacity of the line would be discontinued during the reconfiguration works.  

 

Tests on the actual line settings and topology which are part and parcel for 

this study are the utmost challenges to researchers who have limited access to the 

lines. It will be more challenging especially reconfiguration exercises for conversion 

of three phase to six phase system. This is due to the fact that as the continuous and 

quality of supply is of utmost importance to utilities. Any changes to the actual line 

settings and configurations while the systems is running at normal is not appreciated 

by power utilities who are committed to minimizing causes for any interruption to 

supply system. The problem being addressed by this research can be stated as 

follows: 

 

 “To design, simulate and develop a prototype of a Scaled-Down Power 

Transmission Line Model (SDPTLM) of three-phase double-circuit TNB 

transmission network for existing insulation adequacy assessment before actual line 

is converted into the six-phase system”. 
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1.6 Research Objective 

This research is aimed to conduct a feasibility study for six-phase conversion 

of the three-phase 132 kV double circuit TNB transmission line. The conversion into 

a six-phase system is affected by interfacing both end of the line with phase 

conversion transformers. The research work will accomplish by modeling, simulation 

and laboratory experimental studies.  

 

If the 132 kV three-phase double-circuit system converted to six-phase 

system with same operating voltage, the voltage between any two adjacent phases, 

between any phase and the ground of six-phase system will be 132 kV while it will 

be the maximum i.e. 264 kV between some of the nonadjacent phases. Thus, 

potential field distribution on the insulators, tower members, line conductors, 

transformer conductors and bushings will be substantially different from those in the 

132 kV three phase mode. Hence the evaluation of insulation strength for the high 

phase order conversion is so necessary. The evaluation study is based on the 

following: 

i. To study on the insulation dependent phenomena/criteria such as critical flash 

over voltage, Basic Switching Insulation Level (BSL) and switching surge 

impacts.  

ii. To conduct modeling and simulation study on the insulation strength of the 

conversion three-phase to six-phase transmission line under steady state 

power frequency and switching transient condition. 

iii. To develop of a prototype of a six phase transmission line by using “scaled 

down” concept (operating voltage, tower size, insulator dimension, etc). 

iv. Testing on the prototype which will be subjected to scaled down operating 

voltage applying at its sending end with 2.887 kV phase-to-grond (equal to 5 

kV line-to-line of three-phase system) magnitudes of AC voltage.  

v. To determine the adequacy of existing insulation strength under steady state 

and switching transient condition for six-phase conversion. 
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1.7 Scope of Work 

One of TNB Transmission Line networks was chosen that forms the basis of 

the research model. The line chosen was the 132kV three-phase double-circuit 

transmission line between Gua Musang and Kuala Krai, Kelantan with a line length 

of 113.1 kilometres to be converted into six-phase single-circuit network. 

  

The scope of this research work includes the following; 

1. Computer simulation. 

2. Development of prototype SDPTLM 

3. Test on the prototype 

4. Comparison of simulation and experimental results 

1.8 Thesis Organisation 

The thesis consists of seven chapters; Chapter 1 presents research 

background, general introduction to transmission line, and objectives of this work. 

Chapter 2 describes general overview of power system in Malaysia, overhead line 

parameters, modeling method of transmission line and stress on the insulator. 

Chapter 3 describes the literature survey and previous works of six-phase 

transmission line. Chapter 4 describes the methods used to simulate the six-phase 

system. The simulation start from gathering the information of line parameters 

included tower dimension to building the models in ATP are described. Chapter 5 

introduces scaling electrical parameter using per unit method. The simulator 

components for the line models with the inclusion of inductor verification and 

calibration test are described. Chapter 6 presents experimental results. Chapters 7 

presents summary of the results, discussion, the conclusions and suggestion for 

further research. 




