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ABSTRACT 

Membrane bioreactor (MBR) is a promising technology which has been 
applied to treat a wide range of municipal wastewater in different regions around the 
world. However, it has not yet been employed in arid and semi arid areas such as 
Arabic Gulf Cooperation Council States (AGCCS). The application of MBR process 
in treating high temperature municipal wastewater (HTMW) has not been 
documented and could pose as an obstacle. Therefore, the aim of this study was to 
investigate the effect of high temperature on MBR process in treating municipal 
wastewater. The objectives were to study the biomass properties, the membrane 
fouling tendency and the biological and final removal efficiencies (Bio and Fin R E) 
of COD, NH3-N and turbidity. In this study, a 3.6 L lab-scale aerobic MBR was 
seeded with 1.5 L activated sludge inoculum from Oman and was fed with a real 
municipal wastewater from Taman Pulai Utama sewage treatment plant in Johor. The 
system was then run under four main experimental stages. For the first three stages, it 
was run at three various temperatures (25, 35 and 45°C) and two different fluxes (10 
and 15 LMH). In the fourth stage, it was run at drastic temperature changes with 
constant flux (10 LMH). The study demonstrated that the increase in temperature 
caused biomass shock. This resulted in the biomass reduction, lowered sludge 
settling properties and higher supernatant’s turbidity. Due to biomass reduction (low 
richness and diversity), DO and ML pH increased. The temperature increase led to 
increase in SMP carbohydrate and protein, and decrease in EPS protein. Biomass 
reduction, high pH, SMP concentration increase and EPS decrease were the factors 
that caused relatively high membrane fouling. TMP and BWP ascended critically 
with temperature and flux increase. The highest TMP values scored were 348 mbar 
at 10 LMH flux and 429 mbar at 15 LMH flux, and both of them were at 45°C. 
Membrane openings widen with temperature increase, thus membrane fouling tended 
to be internal rather than external at higher temperatures. As a result of biomass 
shock the removal efficiencies dropped temporarily and then improved gradually 
with the acclimatization despite the flux increase. COD Bio R E was 90%, 84% and 
62%, while Fin R E was 95%, 91% and 79% at 25°C, 35°C and 45°C respectively. 
Both NH3-N removal efficiencies were very high up to 100% at 25 and 35°C, while 
at 45°C they were 52% Bio R E and 56% Fin R E as high nitrification has not yet 
been achieved at high temperatures. Despite the higher biomass shock at drastic 
temperature changes stage, COD and turbidity Fin R E were very high up to 90% and 
100% respectively, while NH3-N Fin R E was nearly 50%. The viscosity decreased 
with the increased in temperature and SVI. In spite of the critical operating 
conditions, the use of hollow fiber membrane module was able to achieve 
comparatively good removal efficiencies, however at the highest temperature i,e 
(45°C) the membrane fouling was the highest. 
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ABSTRAK 

Bioreaktor membran (MBR) merupakan satu teknologi yang berpotensi untuk 
mengolah air sisa munisipal dan telah diguna secara meluas di beberapa kawasan di 
dunia. Walau bagaimanapun teknologi ini belum digunakan di kawasan beriklim 
panas seperti “Arabic Gulf Cooperation Council States” (AGCCS). Aplikasi MBR 
yang masih belum diterokai untuk proses olahan air sisa munisipal bersuhu tinggi 
merupakan satu halangan. Oleh itu, tujuan kajian ini adalah untuk menyelidik kesan 
suhu tinggi terhadap proses MBR dalam olahan air sisa munisipal. Objektif kajian 
adalah untuk mengkaji sifat-sifat biojisim, kecenderungan kesumbatan membran dan 
kecekapan penyingkiran biologi dan penyingkiran akhir (Bio and Fin R E) COD, 
NH3-N dan kekeruhan. Dalam kajian ini satu MBR aerobik berskala makmal, 3.6 L 
telah dibenihkan dengan 1.5 L inokulum enap cemar teraktif yang diperolehi dari 
Oman dengan suapan air sisa yang diambil dari loji kumbahan di Taman Pulai 
Utama, Johor. Seterusnya sistem tersebut beroperasi menggunakan empat peringkat 
ujikaji. Untuk tiga peringkat ujikaji, tiga suhu berbeza (25, 35 and 45°C) dan dua 
fluks (10 and 15 LMH) telah digunakan. Untuk peringkat keempat, reaktor 
beroperasi pada perubahan suhu mendadak dan fluks tetap (10 LMH). Kajian 
menunjukkan kejutan biojisim terjadi dengan peningkatan suhu. Ini menyebabkan 
pengurangan biojisim, penurunan sifat pemendapan enap cemar dan peningkatan 
kekeruhan supernatant. Disebabkan oleh pengurangan biojisim (rendahnya 
pengayaan dan kepelbagaian) nilai DO dan pH ML bertambah. Peningkatan suhu 
menyebabkan peningkatan karbohidrat dan protein dalam SMP serta pengurangan 
protein dalam EPS. Pengurangan biojisim, pH tinggi, peningkatan kepekatan SMP 
dan pengurangan EPS merupakan faktor yang mengakibatkan kesumbatan membran 
yang agak tinggi. TMP dan BWP meningkat dengan kritikal apabila suhu dan fluks 
meningkat. Nilai TMP yang tertinggi adalah 348 mbar pada fluks 10 LMH dan 429 
mbar pada fluks 15 LMH di mana kedua-duanya diperolehi pada suhu 45°C. 
Pembukaan membran menjadi lebih luas dengan kenaikan suhu oleh itu kesumbatan 
membran berlaku secara dalaman dan bukan luaran pada suhu tingi. Kecekapan 
penyingkiran menurun untuk sementara waktu disebabkan oleh kejutan biojisim ini. 
Seterusnya kecekapan naik semula apabila berlaku penyesuaian walaupun terdapat 
peningkatan fluks. COD Bio R E adalah 90%, 84% dan 62%, sementara Fin R E 
adalah 95%, 91% dan 79% pada 2°C, 35°C dan 45°C. Kedua kecekapan 
penyingkiran NH3-N adalah tinggi sehingga 100 % pada 25 dan 35°C, sementara 
pada 45°C kecekapan adalah 52% Bio R E dan 56% Fin R E kerana nitrifikasi masih 
belum tercapai pada suhu tinggi. Walaupun kejutan biojisim yang tinggi pada 
peringkat perubahan suhu mendadak, COD dan kekeruhan Fin R E adalah tinggi 
sehingga 90% and 100%, sementara NH3-N Fin R E adalah 50%. Kelikatan 
berkurangan dengan peningkatan suhu dan SVI. Meskipun pada keadaan operasi 
kritikal, penggunaan modul membran gentian berongga telah dapat mencapai 
keberkesanan penyingkiran yang baik. Walau bagaimanapun, pada suhu 45°C, 
kesumbatan pada membran adalah yang tertinggi. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Membrane technology did not exist before the sixties of the last century 

(Richard, 2000).  Despite that, Prof. Enrico Drioli in his keynote lecture at the Water 

Environment Membrane Technology Conference (2004) in Seoul said "Membrane 

technology is the call for the future".  Furthermore, Christian (2005) has reported 

that in three decades, 50% of all separation processes will be accomplished by 

membranes. 

First systematic studies of membrane phenomena are ascribed to the 18th-

century philosophers and scientists, when Abbe Nolet in 1748 found the word 

osmosis to describe permeation of liquid through a diaphragm (Richard, 2000).  The 

same researcher also reported that, through the 19th and early 20th centuries 

membranes had no industrial or commercial applications, but they were used as 

laboratory tools to study physical and chemical theories.  Loeb-Sourirajan in the 

early 1960's, through his process, for creating defect-less and high flux reverse 

osmosis membrane, managed to transform membrane filtration from a laboratory 

technique to an industrial application (Wallace, 1967). 
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Since 1960 interest in membrane filtration process has grown gradually, and 

membrane technology now is the object of substantial universal research, 

development, commercial activity and full-scale application (Joël et al., 1996).  

Hence, membrane filtration is on the edge of becoming a mainstream filtration 

process and it is already competing with the conventional system techniques 

(Christian, 2005). 

Many researchers have defined membrane with different words.  Joël et al. 

(1996) defined it as a thin layer of material that is capable of separation materials as 

a function of their physical and chemical properties when a driving force is applied 

across the membrane.  Otherwise, membranes are often most of the times the first 

choice because of their decreasing costs, superior performance for improving a broad 

range of water qualities, use of less disinfection chemicals and smaller storage tanks, 

and feed facilities (Christian, 2005). 

Membrane filtration process has been utilized in a big range of applications.  

Membrane bioreactor (MBR) is one of them.  MBR is a modification of the 

conventional activated sludge system (AS), which uses membrane instead of a 

clarifier to accomplish the process of separating treated water from the mixed liquor 

(Cicek et al., 1999).  MBR technology combines the biological degradation process 

by AS with a direct solid-liquid separation by micro or ultrafiltration membrane 

technology (with a pore-size range of 0.05 to 0.4 �m) (Pierre et al., 2006).  The 

application of AS in wastewater treatment dates back to the late 1800s, upon the 

introduction of filters, contact beds, trickling filters and septic tanks.  Two decades 

later, the first full scale fill and draw AS plant treating 80,000 gpd was built in 

Salford, England in 1914 (Ng., 2002).  By Smith et al. in 1969, the membrane 

application in wastewater treatment was first described when the sedimentation in 

the AS was replaced by ultrafiltration. 

Unlike the conventional AS process which depends on a gravity settlement, 

MBR uses membrane filtration unit for the separation of biomass.  Therefore, it is 

competent to complete biomass retention in the bioreactor and thus to retain 
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potentially pathogenic organisms (Seung., 2004).  In AS system, only the fraction of 

activated sludge that forms flocs and settles can be retained.  While in MBR all 

components of the biomass that are larger than the membrane cut-off are retained.  

Thereby, MBR produces a high-quality and cell-free effluent, and reduces the need 

for disinfection necessities of treated wastewater effluents (Cote et al., 1998; 

Jefferson et al., 2000).  Long sludge retention time (SRT) in the MBR process averts 

the washout of slow-growing microorganisms such as nitrifying bacteria and other 

bacteria responsible for degrading complex compounds.  Therefore, MBRs enhance 

the nitrifying function and complex organic contaminant degradation ability 

compared to a conventional biological wastewater process of AS system at short 

HRT (Muller et al., 1995).  Beside the superior effluent quality and the absolute 

control of solids retention and hydraulic retention times, the smaller volume and 

footprint is one of the main advantages of MBR. 

In recent years, MBR technology has been playing a very important role in 

water and wastewater treatment.  Presently, MBR technology is more widely applied 

due to the development of less expensive membranes, the lack of fresh water and the 

surge in water reuse.  Therefore, it has been used to treat a wide range of municipal 

and industrial wastewaters.  Currently, there are more than 1000 MBR plants 

installed in Asia, Europe, and North America with many newly proposed or under 

construction (Schier et al., 2009). 

1.2 Problem Statement 

MBR is an ideal option for municipal and industrial wastewater treatment 

applications, particularly in mesophilic condition.  It has been exploited widely to 

treat various kinds of wastewater in many cities around the world.  Nevertheless, 

MBR has not yet been utilized in the treatment applications of high-temperature (35 

°C and above) municipal wastewater. 
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There are numerous high-temperature wastewaters in the practical life, and 

they are from different sources.  In general, wastewaters can be divided into two 

main types according to the source, industrial wastewater and municipal wastewater.  

The high-temperature industrial wastewaters are such as from pulp, paper, 

newspaper and distillery industries.  On the other side, the high-temperature 

municipal wastewaters are normal municipal wastewaters (sewage) affected by the 

atmosphere temperatures.  For example, municipal wastewater in the arid and semi-

arid regions, a type of which is the Arabic Gulf Cooperation Council States  

(AGCCS) wastewater, particularly during the summer time. 

AGCCS is located in the Arabian Peninsula in the Middle East, to the south 

of Iran.  It consists of six countries, which are Saudi Arabia, Oman, UAE, Qatar, 

Bahrain and Kuwait.  The majority of AGCCS lands are deserts and semi-arid 

territories with a dry-hot climate and high temperatures in the summer time.  It is one 

of world areas, where temperatures above 48°C/120°F are not exceptional.  In the 

Omani capital city Muscat, the temperatures during the summer time vary from 40 to 

50°C.  In Saudi Arabia, the average summer temperature is 45°C, but temperatures 

up to 54°C are common.  In Kuwait, the temperatures during the summer time 

continues rising up to 53°C under the shade (Department of Economic Studies and 

Statistics, 2006; Omani Meteorological DDG, 2008) (Fig 1.1).  According to the first 

source, climatic conditions are contributed to the absence of permanent rivers, water 

bodies, minimal rainfall and limited amount of groundwater. These factors are 

behind the lack of water and water resources in AGCCS.  As a result, the limited 

natural water resources give a significant importance for the applications of water 

conservation and wastewater/seawater treatment in AGCCS. 
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Figure 1.1 The temperatures map in AGCCS and Middle East. 
(http://www.findlocalweather.com/weather_maps/imagefetch.php?size=640x480&type=currents&im
g=mide_temperature_i1.png) 

Although, AGCCS are considered an underdeveloped countries, they are still 

clean countries and there are a real concern and conservation for the environment 

and the public health.  Many programs have been developed in AGCCS, to enhance 

the public aware about the environment, especially water-resources.  Therefore, they 

have been founding organizations for environment and water-resources protection 

and establishing projects on seawater desalination and wastewater treatment. 

In fact, there is a big usage of membranes for water and seawater treatment 

(desalination) in AGCCS, but not for wastewater treatment.  Except Al-Ansab MBR 

treatment plant in Muscat city, which is under construction there is no full-scale 

MBR plants in AGCCS.  Notwithstanding, the many properties of MBR, it has not 

yet gained popularity in AGCCS, where conventional AS treatment systems are still 

widely used.  Therefore, it is very important and necessary to study the feasibility of 
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MBR in treating high-temperature municipal wastewater, especially when there are 

no real studies on such subject. 

Many researchers have been exploring the different applications of MBR 

process during last two decades.  Majority of them focused on the performance of 

MBR at mesophilic conditions and low temperatures (Darren et al., 2005; Aloice and 

Tatsuya, 1996; Zhang et al., 2006).  Groups of researchers have studied the 

efficiency of MBR in treating various kinds of industrial wastewater, while other 

groups were involved in investigating the phenomena of membrane fouling (Ognier 

et al., 2002; Pierre et al., 2006; Fangang et al., 2006).  In spite of the efforts spent on 

studying the applications of MBR in treating high temperature industrial and 

synthetic wastewater (João et al., 2005 Zhang et al., 2005; Kurian & Nakhla, 2006;), 

the application of MBR in treating high temperature municipal wastewater remains 

very limited.  Therefore, this study is conducted to investigate such area of 

knowledge in details (for more details see Table 2 in chapter 2). 

1.3 Aim and Objectives 

Despite the big number of the previous studies related to the subject of MBR 

applications, the knowledge area of MBR treating high temperature municipal 

wastewater (HTMW) has not yet been investigated before this study.  The question 

of “What is the effect of temperature on the performance of MBR system treating 

municipal wastewater” has not yet been answered.  Thus, the overall aim of this 

research was to study and evaluate the feasibility of MBR process application in 

treating high-temperature municipal wastewater for the purpose of reuse and recycle.  

This can be achieved by the following specific objectives:- 

I. To study the effect of high temperatures on the process of 

biodegradation (biological removal efficiency) and membrane 

filterability (final removal efficiency) in MBR system treating 
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municipal wastewater, in terms of Chemical oxygen demand, 

Ammonia nitrogen, Suspended solids, Turbidity and Effluent colour. 

II. To study the effect of high temperatures on the biological properties 

in terms of Biomass growth, Sludge volume index, Hydraulic 

viscosity, Soluble microbial products and Extracellular polymeric 

substances ratio, pH and Supernatant turbidity. 

III. To investigate the phenomena of membrane fouling at high 

temperature conditions in terms of Soluble microbial products and 

Extracellular polymeric substances ratio, and Transmembrane 

pressure and Backwash pressure, and to determine the dominant 

fouling factors. 

IV. To evaluate the performances of MBR process treating high 

temperature municipal wastewater under two different (high and low) 

membrane hydraulic fluxes.  

V. To study the effect of drastic temperature changes on the performance 

of MBR process treating municipal wastewater, in terms of Removal 

efficiencies, Biological properties and Membrane fouling phenomena 

at low membrane hydraulic flux. 

 

1.4 Scope of the Study 

The main aim of this research is to study and investigate the performance of 

MBR process in treating HTMW under two different hydraulic fluxes.  To achieve 
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the main aim and the specific objectives of this research, the scope of the work 

includes the following tasks. 

A significant work has been conducted on MBR applications for high 

temperature wastewater treatment.  However, the relationship between temperature 

and MBR process in municipal wastewater treatment has not yet been fully studied.  

Many areas need to be investigated such as the relationship between the temperature 

and each of AS properties, biological removal efficiency, final removal efficiency, 

membrane fouling.  The effect of drastic temperature changes on the MBR process is 

also required more investigations.  Therefore, this research was initiated by 

conducting a thorough literature review on the use of MBR applications for different 

kinds of high temperature wastewater treatment.  Operational factors that affect the 

process, removals efficiencies, membrane fouling phenomena and biomass 

characterization are the issues have been extracted from the literature review.  This 

literature review found out unanswered questions related to the application of MBR 

in treating HTMW.  Therefore, this study has been carried out to present reliable 

answers for such questions. 

Based on the research objectives, the second task was involved in setting up 

and developing an appropriate lab-scale system to conduct the experimental study.  

This system was a submerged aerobic MBR and it was equipped with an aeration 

system and heating system.  The plan of experimental work included operating of 

three different temperature stages (25, 35 and 45 °C) and one drastic temperature 

changes stage.  A 3.8 litre lab-scale glass reactor was seed with an inoculum of AS 

(seed sludge).  The inoculum was obtained from the return’s activated sludge (RAS) 

line of Al-Ansab municipal wastewater treatment plant at Muscat City in Oman.  The 

system was fed with a screened row wastewater obtained from Pulai Utama full scale 

municipal wastewater treatment plant.  To increase the concentration of the feed 

wastewater it was mixed with a certain quantity of synthetic wastewater.  All 

analytical measurements performed in this study were conducted according to 

Standard Methods for Examination of Water and Wastewater (APHA, 2005). 
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The third task contained the analysis of the results that were obtained from 

the experimental work.  This task included also a detailed discussion of the analysis.  

Finally, the main findings of this study were summarized in a conclusion to present 

the study contribution in view of the objectives. 

1.5 Research Significance 

The urgent need to fresh water resources and good-quality treated water in 

AGCCS and other regions around the world could obviously reflect the importance 

and the significance of this research.  The main obstacle preventing MBR technology 

from reaching AGCCS is the unknown end of the direction of treating HTMW by 

using MBR system.  Therefore, discovering such area of knowledge and answering 

such important questions of this application would be very helpful in making the 

correct decision.  In specific, the importance of this study is as follows:- 

I. This study fills an important gap found clearly in the literature of 

MBR process. 

II. This study answers the question of “What is the performance of MBR 

in treating HTMW”? 

III. This study evaluates the effect of high temperatures and drastic 

temperature changes at different hydraulic fluxes on the MBR 

process. 

IV. This study provides a complete view about the possibility of MBR 

application in treating HTMW and suggests the reliable solutions to 

enhance the process and overcome the potential problems. 
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1.6 Organization of the Thesis 

This thesis consists of six chapters. The first chapter introduces the 

technology of membrane bioreactor and its importance in wastewater treatment.  It 

also includes the problem statement and the objectives, significance and the scope of 

the study.  Chapter 2 gives an overview of the theoretical background of studies 

conducted on wastewater treatment systems, especially compact systems.  It reviews 

the various issues of MBR and its applications.  Chapter 3 presents a perspective and 

an outline of the study, materials and methods as well as detailed procedures of each 

experiment conducted. 

The fourth chapter analyses the results of the experimental studies that have 

been illustrated in chapter 3.  It also discusses the results obtained from MBR 

application in treating municipal wastewater at temperatures of 25 °C, 35 °C and 45 

°C and at drastic temperature changes condition.  The last chapter presents the 

conclusions of this study and the recommendations for future works. 
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