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ABSTRACT 

 
 
 
 

Unconventional methods for the numerical solution of first order initial value 

problems (IVPs) are well established in the past decades.  There are two major 

reasons that motivate the developments of unconventional methods: firstly, 

unconventional methods are developed to solve certain types of IVPs, such as IVPs 

with oscillatory solutions or IVPs whose solutions possess singularities, where in 

most of the time, conventional methods will perform poorly; and secondly, 

unconventional methods might possess some outstanding features that could never be 

achieved by conventional methods.  These features include achieving high order of 

numerical accuracy with less computational cost, stronger stability properties and so 

on.  In this thesis, some studies are made of the unconventional methods based on 

rational functions and mean expressions.  The study has led to the discovery of some 

new exponential-rational methods and rational multistep methods which can be used 

effectively for numerical solution of first order IVPs.  The study continues with the 

discoveries of some new pseudo Runge-Kutta methods based on harmonic and 

arithmetic means; and a multistep method based on centroidal mean, which are found 

to be effective for the numerical solution of first order IVPs.  This thesis also 

includes the study of implicit Runge-Kutta (IRK) methods, which led to the 

developments of three new classes of IRK methods based on Kronrod-type 

quadrature formulae.  Each new method developed in this thesis is furnished with 

local truncation error and absolute stability analysis.  In addition, each new method is 

tested on some test problems and also compared with other conventional or classical 

methods in the same order. 
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ABSTRAK 

 
 
 
 

Kaedah-kaedah tak konvensional untuk penyelesaian masalah-masalah nilai 

awal (MNA) peringkat pertama secara berangka sudah wujud beberapa dekad yang 

lalu.  Terdapat dua sebab utama yang memotivasikan pembangunan kaedah-kaedah 

tak konvensional: pertamanya, kaedah-kaedah tak konvensional dibangunkan untuk 

menyelesaikan MNA yang tertentu seperti MNA yang mempunyai penyelesaian 

yang berayun atau MNA yang mempunyai penyelesaian singular, sedangkan kaedah-

kaedah konvensional tidak dapat diaplikasikan dengan baik; dan keduanya, kaedah-

kaedah tak konvensional mungkin memiliki beberapa sifat yang unggul yang tidak 

dapat dimiliki oleh kaedah-kaedah konvensional.  Sifat-sifat ini termasuk pencapaian 

ketepatan berangka yang tinggi dengan kos pengiraan yang rendah, kestabilan yang 

lebih baik dan sebagainya.  Dalam tesis ini, beberapa kajian telah dilakukan ke atas 

kaedah-kaedah tak konvensional yang berasaskan fungsi-fungsi nisbah dan 

ungkapan-ungkapan min.  Kajian tersebut telah membawa kepada penemuan 

beberapa kaedah eksponen-nisbah dan kaedah multilangkah nisbah yang baru, yang 

dapat digunakan secara berkesan untuk penyelesaian MNA peringkat pertama secara 

berangka.  Kajian diteruskan dengan penemuan beberapa kaedah Runge-Kutta jenis 

“pseudo” yang berasaskan min harmonik dan min aritmetik; dan suatu kaedah 

multilangkah yang berasaskan min sentroidal, yang didapati berkesan untuk 

penyelesaian MNA peringkat pertama secara berangka.  Tesis ini juga mengandungi 

kajian tentang kaedah Runge-Kutta tersirat (RKT), lalu membawa kepada 

pembangunan tiga kelas kaedah RKT yang berasaskan kuadratur jenis Kronrod.  

Setiap kaedah baru yang dibangunkan dalam tesis ini dilengkapi dengan ralat 

pangkasan setempat dan analisis kestabilan mutlak.  Selain itu, setiap kaedah baru 

telah diuji melalui beberapa masalah ujian dan juga dibandingkan dengan kaedah-

kaedah konvensional atau klasik dalam peringkat yang setara. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 
1.1 Background of the Study 

 
 

The first part of this section discusses special numerical methods that are 

based on non-polynomial interpolants and mean expressions while the second part is 

about implicit Runge-Kutta methods that are based on quadrature formulae. 

 
 
 
 
1.1.1 Special Numerical Methods for Initial Value Problems 

 
 

Conventional numerical methods for initial value problems of the form 

 � � � � � �, ,      ,y x f x y y a �� � �   (1.1) 

that have been widely used nowadays are those from the class of linear multistep 

methods and the class of linear Runge-Kutta methods.  These methods can further be 

categorized into explicit methods or implicit methods.  Besides methods from these 

two classes, there are other options such as the predictor-corrector methods, hybrid 

methods and extrapolation methods. 

 
 

All of the methods mentioned above are intended for application to the 

general initial value problems (1.1).  When the initial value problems or the solutions 

are known in advance to have some special properties, then we can use special 

numerical methods which make use of these properties.  The special properties may 
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be some analytical properties of the function � �,f x y  such as stiffness; or it may be 

the solutions of the real life problems such as problems with oscillatory solutions and 

problems whose solutions possess singularities (Lambert, 1973).  For example, if an 

initial value problem whose solutions are known to be periodic, or to oscillate with a 

known frequency, then numerical integration formulae based on trigonometric 

functions are particularly appropriate (Lambert, 1973).  On the other hand, if the 

problems whose solutions possess singularities, then numerical integration formulae 

based on rational functions will be much more effective.  Besides trigonometric 

functions and rational functions, other common used non-polynomial interpolants are 

logarithmic functions and exponential functions.  For excellent surveys and various 

perspectives on numerical methods based on various non-polynomial interpolants, 

see, for example, Shaw (1967), Lambert (1973), Lambert (1974), Fatunla (1976), 

Wambecq (1976), Evans and Fatunla (1977), Fatunla (1978), Lee and Preiser (1978), 

Fatunla (1982), Neta and Ford (1984), Fatunla (1986), Neta (1986), Van Niekerk 

(1987), Van Niekerk (1988), Wu (1998), Wu and Xia (2001), Ikhile (2001), Ikhile 

(2002), Ikhile (2004), Ramos (2007), Okosun and Ademiluyi (2007a), and Okosun 

and Ademiluyi (2007b). 

 
 

There is another class of special numerical methods for the numerical 

solutions of (1.1) which include mean expressions such as geometric mean, harmonic 

mean, centroidal mean and so on.  For theoretical aspects and various perspectives of 

conventional numerical methods that incorporate mean expressions, see, for example, 

Evans and Sanugi (1987a), Evans and Sanugi (1987b), Sanugi (1988), Evans and 

Sanugi (1989), Sanugi and Evans (1990), Evans and Yaacob (1995), Yaacob and 

Evans (1995), Sanugi and Yaacob (1995a), Sanugi and Yaacob (1995b), Yaacob and 

Sanugi (1995a), Yaacob and Sanugi (1995b), Yaacob (1996), Yaacob and Evans 

(1997), Yaacob and Phang (2001), Murugesn et al. (2002), Yaakub and Evans (2003), 

Bįldįk and İnç (2003), Ponalagusamy and Senthilkumar (2007) and Senthilkumar 

(2008).  Special numerical methods that include mean expressions are sometimes 

preferable due to cheaper computational costs with comparable or even better 

accuracy compare with conventional numerical methods for (1.1). 
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1.1.2 Implicit Runge-Kutta Methods for Initial Value Problems 

 
 

One-step Runge-Kutta method which is a self-starting numerical method 

gains tremendous popularity for the computations of numerical solutions of (1.1).  In 

most cases, explicit Runge-Kutta method is preferable because it allows explicit 

stage-by-stage implementation which is very easy to program using computer.  

However, numerical analysts also aware that the computational costs involving 

function evaluations increases rapidly as higher order requirements are imposed 

(Hall and Watt, 1976).  Another disadvantage of explicit Runge-Kutta method is that 

it has relatively small interval of absolute stability, which is not suitable to solve stiff 

initial value problems (Fatunla, 1988).  In view of this, we are thus taking interest in 

implicit Runge-Kutta method.  In an implicit Runge-Kutta method, the explicit stage-

by-stage implementation scheme enjoyed by explicit Runge-Kutta method is no 

longer available and needs to be replaced by an iterative computation (Butcher, 

2003).  Other than this computational difficulty, implicit Runge-Kutta method is an 

appealing method where higher accuracy can be obtained with fewer function 

evaluations, and it has relatively bigger interval of absolute stability.  For excellent 

surveys and various perspectives of implicit Runge-Kutta methods, see, for example, 

Dekker and Verwer (1984), Butcher (1987), Lambert (1991), Hairer and Wanner 

(1991), Butcher (1992), Hairer et al. (1993), Iserles (1996) and Butcher (2003). 

 
 
 
 
1.2 Statement and Scope of the Study 

 
 

Among special numerical methods based on non-polynomial interpolants 

mentioned above, we are particularly attracted to special numerical methods based 

on rational functions.  We address this kind of methods as rational methods.  Our 

rationale is that rational methods can solve a variety of problem including non-stiff 

problems, stiff problems and most importantly solving problems whose solutions 

possess singularities.  Various formulations of rational methods can be found in the 

following articles or texts: Lambert, (1973), Lambert (1974), Wambecq (1976), 

Fatunla (1982), Fatunla (1986), Van Niekerk (1987), Van Niekerk (1988), Ikhile 
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(2001), Ikhile (2002), Ikhile (2004), Ramos (2007), Okosun and Ademluyi (2007a), 

and Okosun and Ademiluyi (2007b).  However, numerical comparisons among these 

rational methods have not been carried out and we still do not know which 

formulations are outstanding and which are not.  In view of this, our studies are 

narrowed down in exploring the possibilities of developing new explicit rational 

methods which perform as effectively as the existing one or even better than the 

existing one. 

 
 

On the other hand, the findings of trapezoidal rules and explicit Runge-Kutta 

methods that incorporate mean expressions are also very impressive.  Therefore, in 

this study, we would like to explore the possibilities of incorporating mean 

expressions into some conventional numerical methods for (1.1) other than 

trapezoidal rules and explicit Runge-Kutta methods.  After some extensive literature 

reviews, we have found out that linear multistep methods and pseudo Runge-Kutta 

methods can be modified into special methods that incorporate mean expressions.  In 

this thesis, we regard all special numerical methods that are based on mean 

expressions as non-linear methods.  We shall discuss these matters in later chapters. 

 
 

Besides considering rational methods and non-linear methods based on mean 

expressions, we are also interested in implicit Runge-Kutta methods for the 

numerical solutions of (1.1).  According to Dekker and Verwer (1984), Butcher 

(1987), Lambert (1991), Hairer and Wanner (1991), Iserles (1996), Butcher (2003) 

and many others, there are three classes of Gauss-Legendre type implicit Runge-

Kutta methods that are based on three different Gauss-Legendre type quadrature 

formulae, namely Gauss-Legendre methods which are based on Gauss-Legendre 

quadrature formulae; Radau I, Radau IA, Radau II and Radau IIA methods which are 

based on Gauss-Radau quadrature formulae; and Lobatto III, Lobatto IIIA, Lobatto 

IIIB and Lobatto IIIC methods which are based on Gauss-Lobatto quadrature 

formulae.  At this moment, it is natural to ask whether we can devise other types of 

quadrature formulae in order to develop some new implicit Runge-Kutta methods 

that will perform equally well or even better than the Gauss-Legendre type implicit 

Runge-Kutta methods mentioned above.  Hence, in this thesis, we shall consider 

three different Kronrod-type quadrature formulae in constructing three new classes 
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of Kronrod-type implicit Runge-Kutta methods.  We note that Kronrod-type 

quadrature formulae include: the Gauss-Kronrod quadrature formulae, the Gauss-

Kronrod-Radau quadrature formulae and the Gauss-Kronrod-Lobatto quadrature 

formulae, which will be discussed in Chapter 2. 

 
 
 
 
1.3 Objectives of the Study 

 
 

From the statements and scopes made in Section 1.2, it is clear that we are 

studying three different kinds of numerical methods for (1.1), namely rational 

methods based on rational functions, non-linear methods based on mean expressions, 

and implicit Runge-Kutta methods that are based on quadrature formulae.  Hence, 

the specific objectives of our study are: 

a) To develop a new class of one-step rational methods based on rational 

function and exponential function for the numerical solutions of (1.1); 

b) To develop three new classes of 2-step explicit rational methods based on the 

works by Lambert (1973), Van Niekerk (1988) and Ikhile (2001) for the 

numerical solutions of (1.1); 

c) To formulate some new non-linear pseudo Runge-Kutta methods based on 

harmonic mean and arithmetic mean for the numerical solutions of (1.1); 

d) To formulate a new non-linear multistep method based on centroidal mean 

for the numerical solutions of (1.1); and 

e) To develop some new implicit Runge-Kutta methods based on three different 

Kronrod-type quadrature formulae for the numerical solutions of (1.1). 

 
 
 
 
1.4 Significance of the Study 

 
 

The first aim of our study is to derive a new class of one-step rational 

methods from the combination of rational function and exponential function.  At 

present, this kind of rational methods have never been reported else where.  Our 

study shows that these rational methods do provide alternatives to current one-step 
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rational methods shown in the literature.  Besides, we also show that rational 

methods in multistep setting are also possible.  The significance of our study in this 

particular research topic is that, we have introduced rational methods that contain 

exponential functions and also modified some existing one-step rational methods to 

their multistep counterparts. 

 

The second aim of our study is to introduce a new non-linear implicit 

multistep method and some non-linear explicit pseudo Runge-Kutta methods that are 

based on mean expressions for the numerical solutions of (1.1).  The significance of 

our study in this particular research topic is that, we have further extended some 

mean expressions to other types of conventional numerical methods, which have 

never been modified into their non-linear counterparts. 

 
 

Through these years, although rational methods and non-linear methods 

based on mean expressions are not as popular as conventional numerical methods 

(e.g. linear multistep methods and Runge-Kutta methods), they have proved to be 

reliable in solving initial value problems which arise from various fields of 

applications, and also being competitive with conventional numerical methods.  One 

can evaluate the efficiency of these numerical methods by referring to articles such 

as Ponalagusamy and Senthilkumar (2007); Senthilkumar (2008) and many others 

articles mentioned in the previous paragraphs.  Besides, these numerical methods 

may possess some desired numerical properties that cannot be achieved by 

conventional numerical methods.  Therefore, it is worthy to develop new rational 

methods and new non-linear methods based on mean expressions, which will provide 

new insights and new ideas for future research.  We also like to attract more 

researchers to study these particular research topics through the publications of our 

findings. 

 
 

The third significance of our study is the discovery of some new implicit 

Runge-Kutta methods that are based on three different Kronrod-type quadrature 

formulae.  This discovery has somehow shed some lights to future research where we 

suggest that more implicit Runge-Kutta methods based on quadrature formulae can 

be developed.  The newly develop implicit Runge-Kutta methods will serve as 
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counterparts of the classical Gauss-Legendre type implicit Runge-Kutta methods.  

All in all, our final aim is to provide different alternatives of implicit Runge-Kutta 

methods for the numerical solutions of (1.1). 

 
 
 
 
1.5 Outline of Thesis 

 
 

In Chapter 2, we review some rational methods found in the literature, 

together with their rational interpolants, local truncation error analyses and stability 

analyses.  The basic concepts of non-linear methods based on mean expressions and 

some examples of its kind are also given.  Implicit Runge-Kutta methods based on 

Gauss-Legendre type quadrature formulae and the concepts of Kronrod-type 

quadrature formulae are also discussed. 

 
 

Chapter 3 is about the developments of a new class of rational methods based 

on rational function and exponential function.  Local truncation error and absolute 

stability analyses are included as well.  These new methods are compared with other 

existing rational methods in solving some test problems. 

 
 

Chapter 4 is about the developments of three new classes of 2-step rational 

methods.  Local truncation error and absolute stability analyses are included as well.  

These 2-step rational methods are compared with other existing rational methods in 

solving some test problems.  Newly developed 2-step rational methods are then 

generalized to form r-step rational methods. 

 
 

In Chapter 5, we consider the developments of two 2-stage third order pseudo 

Runge-Kutta methods based on harmonic mean and a 3-stage fourth order pseudo 

Runge-Kutta method based on arithmetic mean.  Local truncation error and absolute 

stability analyses for these methods are included as well.  These methods are 

compared with conventional explicit Runge-Kutta methods and pseudo Runge-Kutta 

methods in the same order in solving some test problems. 
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In Chapter 6, we present the development of a 2-step fourth order implicit 

non-linear method based on centroidal mean, together with its local truncation error 

and absolute stability analyses.  As usual, this new method is compared with 

conventional linear multistep method in solving some test problems. 

 

Chapter 7 is about the developments of some new implicit Runge-Kutta 

methods that are based on three different Kronrod-type quadrature formulae.  Order 

condition for each new implicit Runge-Kutta method is verified.  Absolute stability 

analysis for each method is included as well.  Last but not least, all new Kronrod-

type implicit Runge-Kutta methods are compared with some classical Gauss-

Legendre type implicit Runge-Kutta methods in solving some test problems. 

 
 

Chapter 8 contains some summaries of our findings in this thesis and several 

recommendations for future research. 




