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ABSTRACT 
 
 
 
 

The existing reinforced concrete structures may require rehabilitation and 

strengthening to overcome defect and environmental deterioration. Fibre Reinforced 

Polymer (FRP)-concrete bonding systems can provide solution for the deficiencies, 

but the durability of the bonded joint needs to be investigated for structural 

reliability. This research studies the flexural performance of reinforced concrete 

beams strengthened with Carbon FRP and the interfacial bonding behaviour of 

CFRP-concrete system under tropical climate exposure. A 300 mm concrete prisms 

were bonded with CFRP plate and exposed for 3, 6, and 9 months to continuous 

natural weather, laboratory environment, and wet-dry exposure in 3.5% saltwater 

solution at room and 40 °C temperature. The prisms were subjected to tension and 

compression load under bonding test to determine the strain, stress distribution and 

shear stress transfer behaviour. The flexural performance was studied on 2400 mm 

length reinforced concrete beams strengthened with CFRP plate and fabric and 

exposed for six months to similar conditions as the concrete prisms without the 

higher temperature. The results of the bonding test showed that load transfer was 

fairly linear and uniform at lower load level and changed to non-linear and non- 

uniform at higher load level. The force transfers affected and shifted the shear stress 

distribution along the bonded length.  The flexural capacity of the reinforced 

concrete beams increased between 32% and 37% and for CFRP plate and between 

10% and 12% for CFRP fabrics. High interfacial stress developed near the cut-off 

point and decreased towards the centre of the beam.  Plate-end debonding dominated 

the failure pattern of the beam.  The combination of climate effects may have 

provided better curing of the bonded joints, but longer duration of exposure may be 

required to weaken the bond strength.  Nevertheless, the tropical climate and salt 

solution did not yield significant bad effect on the CFRP-concrete bonding system.  
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ABSTRAK 
 
 
 
 

Struktur konkrit sedia ada berkemungkinan memerlukan pemulihan dan 

pengukuhan bagi mengatasai kecacatan dan kemorosotan disebabkan persekitaran. 

Sistem ikatan Konkrit-Polimer Bertetulang Gentian boleh memberikan penyelesaian 

kepada kekurangan tersebut, tetapi ketahanan ikatannya perlu diselidiki untuk 

keutuhan struktur. Penyelidikan ini mengkaji prestasi lenturan bagi rasuk bertetulang 

konkrit yang diperkuat dengan Polimer Bertetulang Gentian Karbon dan kelakuan 

permukaan ikatan Konkrit-Polimer Bertetulang Gentian Karbon dalam iklim tropika. 

Prisma konkrit berukuran 300 mm diikat dengan plat dan didedahkan sepanjang 

masa di dalam cuaca semulajadi, persekitaran makmal,  dan kitaran basah-kering di 

dalam 3.5% larutan garam di dalam suhu bilik dan 40 °C  selama 3, 6, dan 9 bulan. 

Prisma tersebut dikenakan daya tegangan dan mampatan untuk ujian ikatan bagi 

mendapatkan terikan, pembahagian tegasan, dan kelakuan pemindahan tegasan ricih. 

Ujian prestasi lenturan dijalankan ke atas rasuk bertetulang konkrit sepanjang 2400 

mm yang diperkuat dengan plat dan fabrik karbon dan didedahkan selama enam 

bulan sama seperti keadaan prisma tanpa suhu yang dinaikkan. Keputusan ujian 

ikatan menunjukkan bahawa pemindahan daya adalah bersifat hampir lelurus dan 

seragam pada peringkat beban rendah dan bertukar kepada tidak lelurus dan tidak 

seragam pada peringkat beban tinggi. Pemindahan daya telah mempengaruhi dan 

mengalihkan agihan tegasan ricih di sepanjang ikatan. Rasuk yang diperkuat telah 

mengalami pertambahan kapasiti lenturan diantara 32% sehingga 37% untuk plat dan 

10% sehingga 12% untuk fabrik. Tegasan permukaan yang tinggi telah terbentuk 

berhampiran hujung ikatan dan berkurangan ke bahagian tengah rasuk. Ikatan yang 

tertanggal di hujung rasuk menguasai corak kegagalan rasuk. Kombinasi kesan iklim 

mungkin telah menghasilkan pembaikan pengawetan ikatan, tetapi tempoh dedahan 

yang lebih panjang mungkin diperlukan untuk melemahkan kekuatan ikatan. Namun, 

iklim tropika dan larutan garam tidak memberikan kesan buruk ketara kepada sistem 

ikatan Konkrit-Polimer Bertetulang Gentian Karbon. 
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CHAPTER 1  
 
 
 
 

INTRODUCTION 
 
 
 
 
1.1 Background 
 
 

A large numbers of bridges, building, and other structures require 

rehabilitation and strengthening due to continuous deterioration during its service 

life.  Reinforced concrete made by an ideal combination of concrete and reinforcing 

bars has been used as the main structural material in the construction of these 

structures.  Some of these structures may be subjected to increases in service loads, 

changes in the use of the structure, design or construction errors, degradation 

problem, changes in design codes regulation and seismic retrofits that can possibly 

lead to the need for rehabilitation of the existing structure. 

 
 

An appreciable worldwide interest has been given to the use of Fibre 

Reinforced Polymer (FRP) in the rehabilitation of concrete structures to extend their 

service life.  Fibre Reinforced Polymer system comprises of continuous fibres of 

high tensile strength within a polymer matrix.  The matrix has two functions in which 

it enable the loads to be transferred among the fibres and the matrix also acts to 

protect the fibres against environmental attacks and mechanical damage during 

handling.  These fibres have beneficial properties such as high stiffness to weight 

ratio, high strength to weight ratio, superior environmental durability, resistance to 

corrosion, high durability, ease of application and low maintenance [1, 2].  The 

properties have made them a competing alternative to the conventional strengthening 

and repair materials.  External pre-stressing and bonding of steel plates to the tension 

face of the concrete beams are some of the methods applied in strengthening and 
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repairing deteriorated concrete structures in order to improve the stiffness and 

strength.  

 
 
 
 
1.2 Problem Statement 
 
 

Strengthening of existing reinforced concrete structures may be necessary in 

order to overcome the increase in loading capacity and also due to the effect of 

environmental degradation.  Over the years, reinforced concrete structures are 

subjected to deterioration due to, among others, alkali-aggregates reaction, chloride 

induced corrosion, and carbonation. The damaged structures need to be addressed 

with rehabilitation.  

 
 
Since 1980s, the use of fibre reinforced polymers for the strengthening of 

reinforced concrete members has taken momentum and a significant number of 

studies on flexural and shear strengthening of beams, axial strengthening of columns 

and more recently, strengthening of joints have been conducted.   FRP has been used 

and studied in different configurations, techniques and environment to utilize the 

material effectively and to prolong the service life of selected structural system [3-

10].  

 
 
This present research focuses on the effect of tropical climate exposure as 

well as salt solution on the flexural performance and bond durability of externally 

bonded Carbon Fibre Reinforced Polymer (CFRP) plate and fabric on reinforced 

concrete beams and concrete prisms.  Durability and ductility are essential to the 

long-term sustainable service life of FRP material and concrete structural members 

with FRP reinforcement [11].  Structural reliability and durability imply good 

performance of material that is able to resist degradation and capable to avoid 

structural damage.  The strengthening of concrete structures through the use of 

externally bonded FRP composite system raises a two-prong concern on the 

durability of the system.  The first one is the durability of the FRP material itself and 

the other is the durability of bonding between the FRP material and concrete 



 3

substrate.  The latter concerns with the durability of the interface bond in the FRP-

concrete bonding system [12-14].  

 
 
There is an enormous concern with regards to the reduction in the 

performance of externally bonded FRP systems over long period of time.  Tropical 

climate countries which experience high average annual temperature, humidity, 

rainfall and relatively constant ultra violet ray (UV) may have detrimental effect on 

the usage of FRP composite either externally or internally retrofitted.  The amount of 

information on the durability of FRP subjected to environmental condition especially 

in the tropical climate environment is still very limited.  The outcomes of the past 

researches show inconsistencies in the results on the degradation effect.  Therefore, it 

is crucial to study the tropical climate effect on FRP and its matrix material in 

structural element in order to gain acceptance in a country which is experiencing 

tremendous wet and dry cycle through rain, moisture and dry season.  This is 

essential because many of the applications of FRP as strengthening or repair 

materials are for outdoor exposure.  However, there is another concern on the use of 

FRP as external strengthening material which is the interfacial fracture along the 

bonded joints that can limit the strengthening performance of FRP materials.  A 

reinforced concrete beam strengthened with an external FRP plate or fabrics and 

subjected to flexural loading causes a development of a high tensile and bond shear 

stress in the concrete or near the adhesive layer.  This high stress can possibly lead to 

the debonding of FRP plate from concrete.  It is important for the long term 

behaviour of the structural bonded joints in civil engineering structures be guaranteed 

between 50 to 100 years for the acceptance of this bonded system in the construction 

industry [15].  

 
 
 
 
1.3 Aim and Objectives of Research 
 
 

The aim of the investigation is to study the flexural behaviour of reinforced 

concrete member strengthened with Carbon Fibre Reinforced Polymer (CFRP) plate 

and fabric and also the interfacial bonding of the CFRP-concrete system exposed to 
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tropical climate.  The shortcomings of the published literature in this field were the 

rationale behind the investigation. 

 
 
Related objectives of the research investigation are as follows: 
 

i) To examine the basic mechanical properties of concrete, CFRP plate, and 

adhesive in normal laboratory condition and climatic exposure as well as 

seawater solution. 

 

ii) To determine the effect of tropical climate exposure and saltwater solution (at 

normal laboratory and higher temperature) on the bonding performance 

(interfacial bonding) of the concrete prism strengthened with CFRP plate. 

 

iii) To investigate the short term flexural behaviour of reinforced concrete beam 

strengthened with externally bonded CFRP plate and fabric.  

 

iv) To determine the effect of tropical climate exposure as well as saltwater 

solution on the flexural behaviour of RC beam strengthened externally with 

CFRP fabrics and plate. 

 

v) To determine the effect of tropical climate exposure as well as saltwater 

solution on the interfacial bond of CFRP-reinforced-concrete bonding system 

using epoxy as adhesive for externally strengthened RC beams.  

 
 
 
 
1.4 Scope of Research 
 
 

The scope of research for this particular experimental study included:  

 
i) Tests on basic properties of materials used for laboratory and exposure 

condition (tensile strength, modulus and strain for CFRP plate, adhesive, steel 

reinforcement; sieve analysis and moisture content for aggregates; 

compression for concrete). 
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ii) CFRP plate and fabrics were used as the external reinforcement for RC beam 

for flexural strengthening and only CFRP plate for bond load test with epoxy 

as adhesive. 

 
iii) The environmental response parameters studied both for concrete prism and 

RC beams were exposure to tropical weather, saltwater solution and dual 

exposure of tropical weather and saltwater solution and subjected to 

continuous and cyclic exposure. 

 
iv) Selected RC beam was pre-cracked before bonding the CFRP plate and 

fabrics to simulate in-service damage condition before being subjected to 

environmental exposure. 

 
v) All beams were subjected to four point load test for flexural studies to 

determine the load carrying capacity, load deflection behaviour, strain, failure 

modes, cracking behaviour (inclusive micro-cracking) and interfacial stress 

behaviour. 

 
 
 
 
1.5 Significant of Research 
 
 

The results obtained from this research are expected to make contribution in 

understanding the behaviour and performance of concrete structures strengthened 

with FRP composite that is very much needed in tropical climate environment. As 

such, the significant of the current research may include the following outcomes:  

  

i) The availability of new information in FRP strengthening system of 

reinforced concrete structures in the aspect of flexural can contribute to better 

understanding of the design and industrial application. 

 

ii) Added information on the characteristics of FRP strengthened structures due 

to tropical environmental exposure will contribute significantly to the 

acceptance of this material in the relevant locality. 
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iii) Enhancing the understanding on interfacial stress behaviour between FRP and 

concrete using epoxy as adhesive due to tropical climate exposure and 

aggressive environment. 

 

iv) As steel is susceptible to corrosion and higher weight, the introduction of 

better used and sustainable building material such as FRP is anticipated to 

help in improving the effect of environmental degradation as well as 

managing, handling and costing problem of steel as repair and strengthening 

materials. 
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