DEVELOPMENT OF A NOVEL SYSTEM FOR PROGRESSIVE FREEZE CONCENTRATION PROCESS

MAZURA JUSOH

UNIVERSITI TEKNOLOGI MALAYSIA

DEVELOPMENT OF A NOVEL SYSTEM FOR PROGRESSIVE FREEZE CONCENTRATION PROCESS

MAZURA JUSOH

A thesis submitted in fulfilment of the requirements for the award the degree of Doctor of Philosophy (Chemical Engineering)

Faculty of Chemical and Natural Resources Engineering Universiti Teknologi Malaysia

AUGUST 2010

DEDICATION

This thesis is especially dedicated to my ever loving wonderful husband, Zaki Yamani Zakaria and my beautiful, beloved children, Ikhwan Firdaus, Marsya Syazweena and Alya Humaira, as well as my beloved parents. You are all the sources of my strength. May Allah keep us all together forever.

ACKNOWLEDGEMENTS

Praise be to Allah. I wish to express my profound gratitude to my supervisors, Prof. Dato' Dr. Rosli Mohd Yunus and Associate Professor Dr. Mohd. Ariffin Abu Hassan, for their constant comments, suggestions, guidance, encouragement and support throughout this work. May all your contributions invested on me will be paid off not only by my success indirectly, but also by blessings from the merciful Allah Azzawajalla.

A very special thanks to my ever loving and helpful husband, Mr. Zaki Yamani Zakaria, for his wisdom in offering me advices either academically or otherwise. He has always been the person I turn to in times of troubles and rough endeavour, whenever I need comfort. Your insights, knowledge, act of wisdom and love, I will cherish forever.

Grateful appreciation to En. Mohd. Rafiza Othman, Puan Noraidah Zhwal and other laboratory staffs for the assistance they offered throughout my experimental work. The hardships I encountered were certainly more or less lightened by the aid offered.

Also to all my dear fellow academicians in FKKKSA who have touched even a tiny part of my research, which would be a long list if I were to mention, millions of thanks for all the inputs you have ever given me, for there are times that I was in a dire need for those helpful ideas and sometimes motivation. I would also like to acknowledge Universiti Teknologi Malaysia, not only for their financial support but for all other assistances in enlightening my route to this academic success.

Last but certainly not the least, a mountain of love and appreciation towards my father and mother for their encouragement and moral support and doa. May Allah reward all of you here and in the hereafter.

ABSTRACT

Freeze concentration (FC) was investigated focusing in terms of assessment towards benefiting industrial wastewater treatment. A new more productive crystalliser was aimed to be designed as the main component in a progressive freeze concentration (PFC) process, a more economical version of FC which forms ice crystals as a layer or a block on cooled surface. Subsequent analysis on its performance, a process optimisation and heat transfer study were intended following completion of design. As a result, a helical structured copper crystalliser was successfully developed and fabricated named coil crystalliser, designed in such a way to provide high surface area per coolant volume, easy scale up and practical. In the subsequent performance analysis carried out using glucose solution as simulated industrial wastewater treatment, it was found that the effective partition constant (K) was satisfactorily low at high circulation flowrates, low initial concentration and intermediate coolant temperature. Low coolant temperature of -10 °C was observed to cause high ice front growth rate which subsequently promote high solute entrapment in the ice layer formed, affecting its purity. High circulation flowrates of 1000 ml/min on the other hand resulted in low solute inclusion in solid phase thus giving out high ice purity. In terms of volume reduction, the highest achieved was 76.65 % and coolant temperature seems to influence the most where low temperatures resulted in high solution volume reduction as a consequence of high ice growth rate. A process optimisation employing Response Surface Methodology (RSM) in Statistica software to yield the optimum conditions to produce the best K, ice purity (IP) and solution volume reduction (ΔV) generated three regression models, which have been proven adequate by good R-squared, residual and Analysis of Variance (ANOVA) analysis. Interactions between process variables according to the model agree well with the fundamental theory of FC and finally optimum conditions for each response have been identified. The best K predicted was 0.17, 78.5 % for ΔV and 0.05 mg/ml for IP. In the subsequent heat transfer study standard lines for overall heat transfer coefficient (U_o) were plotted. The U_o lines then facilitate in generating a model to predict ice crystal mass produced, originated from a heat balance analysis. Error analyses have proven the model's reliability with Rsquared of 0.997 and Absolute Average Relative Deviation (AARD) of 10.6% between experimental and model data, with the highest predicted mass of 973.2g.

ABSTRAK

Pemekatan pembekuan (FC) telah dikaji untuk tujuan penggunaan di dalam olahan air sisa industri. Tujuan kajian adalah untuk merekabentuk penghablur yang lebih produktif, sebagai alat utama di dalam pemekatan pembekuan lapisan (PFC) yang lebih ekonomi di mana hablur ais terbentuk sebagai satu lapisan di atas permukaan yang disejukkan. Analisis ke atas prestasi sistem, optimasi proses dan kajian pemindahan haba juga perlu dilakukan sejurus setelah rekabentuk siap. Akhirnya, sebuah penghablur kuprum berbentuk pilin telah berjaya direkabentuk, dinamakan penghablur gulungan, yang mana boleh memberikan luas permukaan yang tinggi, memudahkan proses pembesaran skala dan praktikal. Di dalam analisis prestasi yang dilakukan menggunakan larutan glukosa sebagai air sisa buatan, pemalar pemisahan berkesan (K) didapati rendah pada kadar alir kitaran yang tinggi, kepekatan asal larutan yang rendah dan suhu cecair penyejuk medium. Suhu cecair penyejuk yang rendah pada -10°C didapati menyebabkan pertumbuhan hablur ais yang tinggi, yang mana menyebabkan penjeratan zat terlarut yang tinggi di dalam ais, mempengaruhi ketulenannya. Kadar alir kitaran yang tinggi pada 1000 ml/min pula menyebabkan penjeratan zat terlarut yang rendah, memberikan ketulenan ais yang tinggi. Dalam konteks penurunan isipadu, nilai tertinggi dicapai adalah 76.65% dan suhu cecair penyejuk dilihat paling banyak mempengaruhi di mana suhu rendah mengakibatkan penurunan yang tinggi disebabkan oleh pertumbuhan ais yang tinggi. Pengoptimuman proses menggunakan kaedah tindakbalas permukaan (RSM) dalam perisian. Statitica untuk memberikan keadaan optimum bagi menghasilkan K. ketulenan ais (IP) dan penurunan isipadu larutan (ΔV) terbaik telah menerbitkan tiga model regresi, yang telah dibuktikan kesahihannya berpandukan nilai R kuasa dua, sisa dan analisa varian (ANOVA) yang baik. Interaksi antara pembolehubah proses berpandukan model tersebut juga didapati selari dengan teori asas pemekatan pembekuan dan akhirnya keadaan yang optimum telah dikenalpasti. Ramalan nilai terbaik pada keadaan optimum untuk K adalah 0.17, 78.5 % untuk ΔV dan 0.05 mg/ml untuk IP. Dalam kajian pemidahan haba, garis-garis piawai untuk pemalar pemindahan haba keseluruhan (U_0) telah diplot. Garis-garis U_0 ini membantu dalam menerbitkan satu model ramalan jisim hablur ais yang terhasil, yang mana berasal daripada satu analisa keseimbangan haba. Model yang diterbitkan telah dibuktikan kesahihannya dengan nilai R kuasa dua 0.997 dan Purata Sisihan Mutlak Relatif (AARD) 10.6% di antara data eksperimen dan model, dengan nilai ramalan jisim tertinggi 973.2 g.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENTS	viii
	LIST OF TABLES	xiii
	LIST OF FIGURES	XV
	LIST OF PLATES	xviii
	LIST OF SYMBOLS AND ABBREVIATIONS	xviii
	LIST OF APPENDICES	xxii
1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Problem Statement	4
	1.3 Objective of Study	6
	1.4 Scope of Research	7
	1.5 Significance of Research	8
	1.6 Outline of the Thesis	9
2	LITERATURE REVIEW	12
	2.1 Wastewater	12
	2.1.1 Development in Wastewater Treatment	16
	2.2 Wastewater Treatment by Evaporation	20

viii

2.2.1	Evaporation of Wastewater Containing Volatile	
	Organic Compounds (VOCs)	21
2.3 Waste	water Treatment by Reverse Osmosis	21
2.4 Waste	water Treatment by Freeze Concentration (FC)	24
2.4.1	Suspension Freeze Concentration (SFC)	26
2	.4.1.1 Supersaturation	27
2	.4.1.2 Nucleation	27
2	.4.1.3 Crystal Growth	28
2.4.2	Progressive Freeze Concentration (PFC)	28
2.4.2.1 E	ffective Partition Constant, K	29
2.4.3	PFC on a Stainless Steel Plate	34
2.4.4	PFC on Aluminium Plate Heat Exchanger	35
2.4.5	PFC in Vertical Aluminium Tube	37
2.4.6	PFC in a Balloon Flask	39
2.4.7	PFC in Square Pillars	41
2.4.8	PFC Using a Stainless Steel Cylindrical Vessel	43
2.4.9	PFC in a Tubular Ice System	45
2.5 Factor	rs Affecting a PFC) System	49
2.5.1	Effect of Circulation Flowrate on the Process	
	Efficiency	49
2.5.2	Effect of Initial Concentration on the Process	
	Efficiency	50
2.5.3	Effect of Coolant Temperature on the Process	
	Efficiency	51
2.5.4	Effect of the Initial Temperature on Process	
	Efficiency	52
2.6 Desig	n of Experiment (DOE) and Optimisation	54
2.6.1	Response Surface Methodology (RSM)	55
2.6.2	Central Composite Design (CCD)	57
2.6.3	Analysis of Variance	58
RESEARC	CH METHODOLOGY	59
3.1 Gener	al Research Activity	59

3.2 Design and Construction of the Crystalliser 61

3

3.2.1	Preliminary Crystalliser	63
3.2.2	Actual Crystalliser	64
3.3 Exper	imental Set-up	64
3.4 Raw M	Materials	67
3.5 Const	ruction of Calibration Curves	68
3.6 Exper	imental Procedure	70
3.6.1	Sampling	71
3.7 Efficie	ency Assessment	72
3.8 Invest	igations Effects of the Operating Conditions	74
3.8.1	Effects of Coolant Temperature	75
3.8.2	Effects of Circulation Flowrate	76
3.8.3	Effects of Initial Concentration	77
3.8.4	Effects of Circulation Time	78
3.9 Optim	isation Process	79
3.9.1	Design of Experiment (DOE): Experimental Planning	80
3.10 Ter	nperature Profiling on the Heat Transfer	83
DESIGN O	OF THE COIL CRYSTALLISER	85
4.1 Basic	Shape and Dimensions of the CC	85
4.1.1	The Actual CC	87
4.2 Main	Features of the CC	89
4.2.1	Construction Material	90
4.2.2	Solution Movement	91
4	.2.2.1 Effect of Types of Pump	91
4.2.3	Large Surface Area for Ice Formation	93
4.2.4	Ice Visibility	95
4.2.5	Accessibility for Ice Sampling	96
4.2.6	Temperature Profiling Feature	97
PERFORM	IANCE OF COIL CRYSTALLISER C IN THE	
TREATMI	ENT OF SIMULATED WASTEWATER	98
5.1 Introd	uction	98
5.2 Calibr	ration Curves	99
5.3 Effect	of Circulation Time	102

Х

5.4 Effect of Circulation Flowrate	106
5.5 Effect of Coolant Temperature	112
5.5.1 Growth Rate Based on Coolant Temperature	116
5.6 Effect of Initial Concentration of Solution	118
OPTIMISATION OF PARAMETERS FOR THE FREEZE	
CONCENTRATION PROCESS	125
6.1 Introduction	125
6.2 Experimental Design	126
6.3 Optimisation of the System Efficiency According to the	
Effective Partition Constant (K) Value.	127
6.3.1 Model Adequacy Check	129
6.3.2 Response Surface Contour Plots Analysis	135
6.3.2.1 Effects and Interactions of CTemp (X_1) and	
$FL(X_2)$	136
6.3.2.2 Effects and Interactions of CTemp (X_1) and	
$ISC(X_3)$	138
6.3.2.3 Effects and Interactions of CTemp (X_1) and CT	
(X_4)	139
6.3.2.4 Effects and Interactions of FL (X_2) and	
$ISC(X_3)$	141

	(5.3.2.3	Effects and Interactions of CTemp (X_1) and CT	
			(X ₄)	139
	(5.3.2.4	Effects and Interactions of FL (X_2) and	
			ISC (X ₃)	141
	(5.3.2.5	Effects and Interactions of FL (X_2) and	
			CT (X ₄)	143
	(5.3.2.6	Effects and Interactions of ISC (X_3) and	
			CT (X ₄)	145
	6.3.3	Optir	num Operating Condition	147
6.4	Optir	nisatior	n of the System Efficiency According to Solution	
	Volu	me Red	luction	148
	6.4.1	Mode	el Adequacy Check	150
	6.4.2	Resp	onse Surface Contour Plots Analysis	155
	6.4.3	Effec	t and Interaction Model	161

6.4.4 Optimum Values1626.5 Optimisation of the Process Efficiency Based on Ice Purity1626.5.1 Model Adequacy Check164

	6.5.2	Response Surface Contour Plot Analysis	168
	6.5.3	Effect and Interaction Model for Ice Purity	171
	6.5.4	Optimum Operating Conditions for High Ice Purity	172
	6.6 Valida	ation Experiments	173
7	HEAT TR	ANSFER MODEL	174
	7.1 Introd	uction	174
	7.2 Temp	erature Distribution	175
	7.3 Overa	ll Heat Transfer Coefficient	176
	7.4 Mode	l for Prediction of Ice Crystal Mass	179
	7.4.1	Error Analysis	183
8	CHAPTER	8 8	186
	8.1 Gener	al Conclusions	186
	8.2 Recor	nmendations for Future Research	190
REFI	ERENCES		191

APPENDIX A – J	203 - 256

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Levels of wastewater treatment	17
2.2	Unit operations and processes used to remove constituents found	l in
	wastewater	17
2.3	Environmental Quality (Industrial Effluents) Regulation, 2009	20
3.1	Specifications of waterbath	66
3.2	Specifications of pump	66
3.3	Specifications of USB TC-08 temperature data acquisition tool	66
3.4	Freezing point of ethylene glycol based water solutions	68
3.5	Glucose solution preparation for $1 - 10$ mg/ml range	69
3.6	Specification of the refractrometer	69
3.7	Specifications of Spectrophotometer for COD Analysis	70
3.8	Range of Values for the Parameters	72
3.9	Operating conditions to study the effect of coolant temperature	75
3.10	Operating conditions to study the effect of circulation flowrate	76
3.11	Operating Conditions to study the effect of initial concentration	77
3.12	Specifications of DSC	78
3.13	Operating conditions to study the effect of circulation time	79
3.14	Arrangement of experiment using Central Composite Design	81
3.15	Range of process parameters for the PFC process	82
4.1	Conductivity of different materials	90
4.2	Specification of the temperature probe	97
5.1	Assessment according to the coolant temperature	125
5.2	Calculated data for ice growth	117

xiv

6.1	Experimental design with coded and actual value	127
6.2	Response (K) for each run	128
6.3	Experimental and predicted K for each run	130
6.4	ANOVA results for the model relating K to the operating	
	parameters	132
6.5	Regression analysis for K	134
6.6	Optimum range for operating conditions	148
6.7	Volume reduction for each run	149
6.8	Experimental and predicted ΔV for each run	151
6.9	ANOVA results for the model relating ΔV to the operating	
	parameters	153
6.10	Regression analysis for ΔV	154
6.11	Summary of the model for effect and interaction between two	
	operating parameters	161
6.12	Response (Ice Purity) for each run	163
6.13	Experimental, predicted and residual values for each run	164
6.14	ANOVA results for the model relating IP to the operating	
	parameters	166
6.15	Regression analysis for ice purity model	167
6.16	Optimum range of optimum conditions	171
6.17	Effect and interaction model for each combination	172
6.18	Summary of Optimum Value for Parameters and Validation	
	Experiments	173
7.1	Calculation of U _o	178
7.2	Calculation of ice crystal mass	182
7.3	Comparison of ice crystal mass, w, from experiments and model	184

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Different type of FC: (a) SFC and (b) PFC	5
2.1	Schematic diagram of a wastewater management infrastructure	13
2.2	Osmosis illustration	22
2.3	Reverse osmosis illustration	23
2.4	Conventional vertical vessel PFC system	33
2.5	Schematic diagram of the experimental apparatus by Chen et al.,	
	(1998)	34
2.6	Experimental apparatus for freeze wastewater treatment	36
2.7	FC set-up	38
2.8	Laboratory scale PFC	39
2.9	Schematic system flow diagram of freeze wastewater treatment	41
2.10	Schematic model of ice maker structure: up, arrangement of ice	
	making cylinder; left, agitation case; right, aeration case	42
2.11	Diagram of the apparatus for freeze-concentration of Andes berry	
	juice	44
2.12	Tubular ice system for scale-up of PFC	45
2.13	Basic schematic of the experimental freezing unit	47
2.14	Effect of flowrate on the contamination of glucose into ice	50
2.15	Effect of coolant temperature on contamination on organics in the	52
2.16	Effect of initial solution temperture on contamination of organics i	in
	the formed ice layer	53
2.17	Example of 3-D Graphic Surface Optimisation	56
2.18	Example of Contour Surface Plot	57

xvi

3.1	Flowchart of the research methodology	60
4.1	The structure of the helical copper crystalliser	88
4.2	Temperatures of fluid affected by different types of pump	92
5.1	Glucose calibration curve (RI)	100
5.2	Glucose calibration curve (COD vs RI)	101
5.3	Concentration of glucose in the solid phase at different circulation	
	time	103
5.4	Graphical representation of calculation of K	104
5.5	COD of melted ice against circulation time	105
5.6	Liquid phase volume reduction at different circulation time	105
5.7	Effect of circulation flowrate on the purity of water produced	106
5.8	Concentration polarization at the ice front in PFC	107
5.9	Effect of circulation flowrate on the effective partition constant, K	108
5.10	Effect of flowrate on K and C_L	109
5.11	COD of ice phase against circulation flowrate	110
5.12	A snapshot of Sigmaplot11 solver	110
5.13	Volume reduction of solution against circulation flowrate	111
5.14	Effect of coolant temperature on K	112
5.15	Electron density and location in a water molecule	113
5.16	Hexagonal structure of ice	114
5.17	Three dimensional structure of ice	114
5.18	Illustration of ice layer formed inside the copper tube of the CC	117
5.19	Ice growth as affected by coolant temperature	118
5.20	Effect of initial concentration on K	119
5.21	Ice crystal lattice	120
5.22	Solid-liquid equilibrium temperature at the interphase	120
5.23	Ice contamination in terms of COD according to initial solution	
	concentration	122
5.24	Effects of initial solution concentration on volume reduction of	
	solution	123
5.25	A sample of DSC curve	123
5.26	Freezing points of glucose solutions analysed by DSC	124
6.1	Predicted versus observed (experimental) of the response	131
6.2	Residual plot of the quadratic model for the response	132

xvii

6.3	Pareto chart of effects of variable on K	135
6.4	A contour plot of K as a function of CTemp and FL	136
6.5	Fitted response profile for CTemp and FL	137
6.6	Surface plot for K against ISC and CTemp	138
6.7	A contour plot representing the effect of ISC and CTemp	
	towards K	139
6.8	Surface plot of K against CT and CTemp	140
6.9	A contour plot of CT against CTemp	141
6.10	Surface plot of K against ISC and FL	142
6.11	Contour plot of ISC against FL	143
6.12	Surface plot of K against CT and FL	144
6.13	Contour plot of CT against FL	145
6.14	Surface plot of K against CT and ISC	146
6.15	Contour plot of CT against ISC	147
6.16	Predicted vs experimental values for ΔV	152
6.17	Residuals vs predicted values for ΔV .	152
6.18	Pareto chart of effects of variable on ΔV	155
6.19	Effects of FL and CTemp on ΔV	156
6.20	Effects of ISC and CTemp on ΔV	156
6.21	Effects of CT and CTemp on ΔV	157
6.22	Effects of ISC and FL on ΔV	157
6.23	Effects of CT and FL on ΔV	158
6.24	Effects of CT and ISC on ΔV	158
6.25	2D contour plot for all possible combinations of independent	
	variable to affect ΔV	160
6.26	Predicted vs observed value of Ice Purity (IP)	165
6.27	Residual vs predicted value of IP	166
6.28	Pareto chart of effect of variables on ice purity	168
6.29	3D surface plot for all possible combinations of two variables	169
6.30	2D contour plots for all possible combinations of two variables	170
7.1	Online PICOlog recorder temperature profile	175
7.2	U _o for each coolant temperature applied	179
7.3	Temperature distribution in the CC	180
7.4	Comparison between experimental and model ice crystal mass	183

LIST OF PLATES

PLATE NO.

TITLE

PAGE

4.1Preliminary CC84.2Actual CC84.3Top view of the CC84.4Detached CC95.1Ice layer formed at the inner wall of CC105.2A close-up of the ice layer formed10	3.1	Photograph of the PFC experimental set-up during running time	65
4.2Actual CC884.3Top view of the CC884.4Detached CC925.1Ice layer formed at the inner wall of CC105.2A close-up of the ice layer formed102	4.1	Preliminary CC	87
4.3Top view of the CC894.4Detached CC995.1Ice layer formed at the inner wall of CC105.2A close-up of the ice layer formed100	4.2	Actual CC	88
4.4Detached CC9.5.1Ice layer formed at the inner wall of CC105.2A close-up of the ice layer formed10	4.3	Top view of the CC	89
5.1Ice layer formed at the inner wall of CC105.2A close-up of the ice layer formed10	4.4	Detached CC	95
5.2 A close-up of the ice layer formed 102	5.1	Ice layer formed at the inner wall of CC	101
	5.2	A close-up of the ice layer formed	102

LIST OF SYMBOLS AND ABBREVIATIONS

IWW	-	Industrial wastewater
SSFE	-	Scrapped surface heat exchangers
FC	-	FC
PFC	-	Progressive Freeze Concentration
DOE	-	Design of experiment
CCD	-	Central composite design
RSM	-	Response surface methodology
CC	-	Coil Crystalliser
COD	-	Chemical oxygen demand
RI	-	Refractive index
DSC	-	Differential scanning calorimetric
IP	-	Ice purity
RO	-	Reverse osmosis
Κ	-	Effective Partition constant
FL	-	Flowrate
СТ	-	Circulation time
ISC	-	Initial solution concentration
CTemp	-	Coolant temperature
ΔV	-	Volume reduction
Uo	-	Overall heat transfer coefficient
C _L	-	Concentration of liquid phase
VOC	-	Volatile organic compounds
FBHE	-	Fluidized bed heat exchanger
TSS	-	Total suspended solids
UV	-	Ultra violet

BOD	-	Biochemical oxygen demand
BTEX	-	Benzene, toluene, ethylbenzene and xylene
TCE	-	Trichloroethylene
PCE	-	Perchloroethylene
μ	-	Chemical potential
μ_1	-	Chemical potential of the liquid
μ _s	-	Chemical potential of the solid
Т	-	Temperature
Cs	-	Concentration of ice/solid phase
C _L	-	Concentration of liquid phase
V_L	-	Volume of liquid phase
Vo	-	Initial volume of glucose concentration
Co	-	Initial solution concentration
\overline{v}_{ice}	-	Average ice growth
m^2	-	Meter squared
kg	-	Kilogram
ρ_{ice}	-	Mass of melted ice
τ	-	Length of time taken for ice growth
А	-	Area covered by ice on the plate surface
$\omega_{s,\infty}$	-	Mass fraction of the solute
w/w	-	Weight/weight
µms⁻¹	-	Micrometer per second
$\mathbf{u}_{s,\infty}$	-	Velocity of ice front
ppm	-	Part per million
F	-	Feed flow
Ср	-	Specific heat of the feed
dθ	-	Differential increase in time
dW	-	Amount of ice crystallized
ΔH	-	Heat of fusion of water
U	-	Overal heat transfer coefficient
A_{m}	-	Mean area for heat transfer
ΔT_{log}	-	Mean logarithmic temperature difference between feed and
		refrigerant

h _{amb}	-	Ambient difference between the outside surface of the
		freezer and the environment
ΔT_{amb}	-	Temperature difference between the outside surface of the
		freezer and the environment
R _F	-	Freezing ratio
Vs	-	Volume of the solid produced
Vi	-	Initial solution volume
ID	-	Immersion distance
IR	-	Immersion rate
t	-	Time of process
Bx	-	Brixx
Re	-	Reynolds number
D_e	-	Representative diameter
и	-	Average flowrate
<i>u</i> _o	-	Fluid viscosity
De	-	Diameter
S	-	Cross sectional area of the flow
l_p	-	Wetted perimeter
ANOVA	-	Analysis of variance
$K_2Cr_2O_7$	-	Potassium dichromate
Y	-	Predicted response value
В	-	Regression coefficient
Χ	-	Experimental factor influencing the process
α	-	Extreme values
R	-	Total thermal resistance from inside to outside flow $^{\circ}C/W$
h _i , h _o	-	heat transfer coefficient for inside and outside flow,
		respectively W/(m ² .°C)
k	-	Thermal conductivity of tube material W/(m.°C)
X	-	Thickness of medium wall
K _{exp}	-	K experimental
K _p	-	Model predicted K
ΔV_{exp}	-	Experimental value for ΔV
\mathbb{R}^2	-	R-squared
Twi	-	Temperature of the wall at the inlet

Tsi	-	Temperature of the solution at the inlet
Twm	-	Temperature of the wall at the middle point
Tsm	-	Temperature of the solution at the middle point
Tcm	-	Temperature of the coolant at the middle point
Two	-	Temperature of the wall at the outlet
Tso	-	Temperature of the solution at the outlet
Тсо	-	Temperature of the coolant at the outlet
Ao	-	Outside surface area
A _i	-	Inside surface areas of tube
hg	-	Heat transfer coefficient for glucose solution
ho	-	Heat transfer coefficients for ethylene glycol (50%)
k _i	-	Thermal conductivity of ice
X	-	Thickness of ice layer
A _m	-	Logarithmic mean area
R	-	Radius of copper tube for the CC
T_b	-	Bulk solution temperature
ΔT_{b}	-	Bulk solution temperature difference, °C
T _c	-	Bulk coolant temperature
L	-	Total length of the CC
dw/dt	-	Mass of ice formed in time t
ΔH	-	Heat of fusion of water
FPD	-	Freezing point depression

LIST OF APPENDICES

APPE	ENDIX	
------	-------	--

TITLE

PAGE

А	MSDS of Ethylene Glycol	203
В	Procedure of COD Measurement	212
С	Extreme Values Calculation for RSM	224
D	RI Calibration Curve Regression Report	227
Е	COD Calibration Curve Regression Report	230
F	Regression Report for Plate 5.13	233
G	DSC Curves	236
Н	Standard F-Table	245
Ι	Experimental Data	247
J	List of Publications	253

1 CHAPTER 1

INTRODUCTION

1.1 Introduction

Solution concentration is a process that would normally separate relatively pure water and leaves behind concentrates in a smaller volume. There are basically three methods available which are evaporation, reverse osmosis (RO) and freeze concentration (FC). Evaporation, a concentration method which produces pure water in terms of condensed vapour would leave behind a concentrated solution by applying heat to reach the solvent boiling point (Geankoplis, 1993). It is the simplest and commonest method but large amount of energy is needed to achieve the boiling point of solvent (in most cases is water) and consuming a large amount of fuel (Ramteke et al., 1993, Keshani et al., 2010).

RO separates the water molecules and the solutes in a solution by using water selective membrane. It can produce almost pure water and uses the least amount of energy as the process involves no phase change (Rodriguez et al., 2000). However, the membrane can easily be clogged during operation by the content of the solution which affects the cost highly when the membrane has to be replaced (Miyawaki et al., 2004). The process efficiency is also limited by the chemical

compatibility of the dissolved substances with the membrane. The high osmotic pressure involved is also very expensive to attain thus making RO not favourable to be applied in solution concentration (Rodriguez et al., 2000).

FC, a process that freezes or crystallises water molecules out as ice crystals and leaves behind a highly concentrated solution has become more and more favourable these days. The purging of highly pure water is enabled by the nature of the crystal lattice build up by pure water from an aqueous solution or suspension at temperatures lower than its melting point, rejecting all impurities which remain in the mother liquor (Halde, 1980). Approximately 80% of the dissolved compounds can be concentrated in 25% of the original volume through FC (Maurer et. al, 2006) and the process uses less energy compared to evaporation as the heat of crystallization of water (330 kJ/kg) is lower than heat of vaporisation (2200 kJ/kg) (Lorain et al., 2001).

FC could be engaged in many fields of applications, and among them is in liquid food concentration. Liquid food such as fruit juices are semi finished products for use in further production of fruit juice beverages and powder. The concentration process provides microbiological stability, and also leads to economical packaging, transportation and distribution of final products (Keshani et al., 2010). Because FC does not involve heating, it could successfully provide a concentration process with low loss of volatile components in the juice, thus preserving its original taste and aroma. This dewatering nature makes it the best concentration method in avoiding quality loss of liquid food and dairy products (Nakagawa et al., 2009).

This study however is focusing on another important area that could benefit from FC, which is treatment of wastewater. All life depends on water, ultimately the most valuable liquid on earth. Reputed as the universal solvent as it dissolves more substances than any other liquid, wherever it travels either through the ground or through human bodies, it takes along valuable chemicals, minerals, and nutrients. With this nature, water could easily be contaminated during consumption in a variety of applications on earth, where the polluted and/or contaminated fractions termed wastewater (Mark, 2004).

Although some kinds of water pollution can occur through natural processes, this phenomenon is mostly and frequently a result of human activities. Apart from generation sourced by unavoidable utilisation domestically, the industries are playing a major role in generating and increasing the amount of wastewater generated. Plants and factories are continuously expanded, established and operated as urged by modern living, to produce goods and materials to equip for the lifestyle. In most of the operations water is used as a very important utility, which is consequently converted into industrial wastewater (IWW) usually tainted with various kinds of substances. IWW should rightfully be treated according to the local municipal council or environmental department standard before being disposed off to the environment (Tchobanoglous et al., 1991).

IWW can contain various types of pollutant ranging from chemicals to suspended matters and the type of treatment depends on the type of the pollutants. Wastewater treatment can be divided into three major categories, which are biological, physical and chemical. In short, biological treatments involve the usage of microorganisms in the treatment, chemical treatments involve addition of chemicals to the wastewater to treat it and physical treatments usually engaged mechanical means (Tchobanoglous et al., 1991).

Regardless of the type of treatment afterwards, it is such an advantage if the volume of IWW could be reduced extensively, which in return would result in a reduction in operation cost in terms of the respective necessary utility. Hazardous IWW is frequently treated by incineration. But incineration of an aqueous solution with a solid content of less than 10% requires tremendous power to 'burn' the water and maintain the high temperature necessary to destroy the hazardous compound (Holt, 1999). In addition, the combustion gas produced contributes to the emissions from the process and can rapidly exceed local limits.

The three concentration methods mentioned earlier can provide a treatment for IWW through water removal which would yield concentrated wastewater in a smaller volume and almost pure water that can be readily disposed off to the environment. Despite the simplicity of evaporation process, it is very dangerous when hazardous volatile organic compounds (VOCs) constitute the IWW, (Rogers, 1999) which is one of the major setbacks to the method. With high operation and maintenance cost for RO, FC is seen as an appealing alternative to other wastewater treatment by water removal. It is safe to be applied to wastewater containing hazardous VOCs as it does not involve heating.

1.2 Problem Statement

FC could be carried out in two different methods; suspension freeze concentration (SFC) and progressive freeze concentration (PFC). SFC produces ice crystals as a suspension in the wastewater (Figure 1.1 (a)) and the subsequent separation of this solid-liquid mixture at this freezing temperature is difficult, involving filtration of the ice crystals to separate them from the mother liquor. This involves other unit operations, which are filtration unit at a near freezing temperature and also a washing tower, therefore increasing the capital and operating cost. The size of the ice crystals is also required to be as big as possible because small crystals will retain a large amount of concentrate on its surface and in the voids. This is not easy to be accomplished and require a close attention during operation. SFC also involves a high capital investment cost as it involves the usage of a scraped surface heat exchanger (SSHE) to generate ice crystal seeds, which is very expensive and accounts for roughly 30% of the total investment costs in a FC process (Habib and Farid, 2006).

Figure 1.1: Different type of FC: (a) SFC and (b) PFC (Miyawaki et al., 2005)

Researches have been carried out on FC in order to tackle all the limitations of SFC mentioned above and eventually PFC was discovered, which produces ice crystals in forms of a layer or a block on cooled surface. This ice block is not produced as a suspension in its mother liquor but formed at the wall where refrigeration is supplied as illustrated in Figure 1.1 (b). This eliminates the need of a complicated separation mechanism to remove the ice crystal block because the mother liquor can simply be drained out of the system to separate the two phases. It also eliminates the usage of SSHE that is used in producing small ice crystal and only utilizes the refrigeration system to obtain ice layers on the crystalliser surface.

Many kinds of design have been investigated for PFC other than the basic conventional design of PFC, which is just a cylinder with metal bottom supplied with refrigeration and the ice is formed layer by layer vertically. Other designs include ice maker channels in square pillars by Wakisaka et al. (2001), tubular PFC system by Miyawaki et al. (2004) and a multi-plate cryoconcentrator by Raventos et al. (2006) and Hernandez et al. (2009) to name a few.

PFC was proven to be a promising alternative to be applied in treating and concentrating wastewater based on its capability of lowering the capital cost involved in SFC through elimination of several unit operations such as the scraped surface heat exchanger (which is the ice crystal producer and usually contributes 30% of the capital cost) and the washing column. However, as previous related researches revealed, the productivity of such a system is very much lower compared to the conventional SFC. This is mainly due to the nature of the formation of ice layer which is normally very slow. The slow ice layer formation is a vital obstructive factor in making the PFC favourable commercially. Even with the lower capital cost that can be proposed by such a system, it would not be the choice for the industry if the process would not yield a good productivity and efficiency.

With the elimination of the ice crystal producer (SSHE) in PFC, the crystalliser as the equipment where the main heat transfer to occur must be of the right design and carefully outlaid. The ice layer is to be produced at a high rate and simultaneously resulting in ice block with high purity, thus requiring a high surface area per coolant volume ratio. A careful selection process of the suitable non-corrosive metal with high thermal conductivity to be used as the crystallisation surface has to be carried out in order to ensure high productivity. The shape of the crystalliser should also be competent in facilitating future scale of the process. Several heat transfer aspect of the crystallisation chamber design should be investigated as well as the operating condition of the process. An investigation leading to construction of a PFC system of satisfactory productivity and efficiency in order to compete with costly SFC system would be very much beneficial.

1.3 Objective of Study

This study is dedicated to design and develop a new crystalliser, the main component of a PFC process, to enable layer crystallisation of ice for the purpose of wastewater treatment. The objectives of the research are as listed below:

- i. To design/develop a new crystalliser for PFC of wastewater;
- ii. To study the effect of circulation flowrate on the performance of the crystallisation chamber;
- iii. To investigate the effect of coolant temperature on the partition constant (K), solution volume reduction and ice purity;
- iv. To explore the efficiency of the crystallisation chamber design by varying the initial concentration of solution;
- v. To study the effect of circulation time/period on the performance of the crystallisation chamber;
- vi. To determine the optimum process conditions (parameters) using Response Surface Methodology (RSM);
- vii. To profile the temperature distribution in order to calculate the overall heat transfer coefficient, U_0 , for the PFC process;

1.4 Scope of Research

With the intention of achieving the above-mentioned objective, a series of scopes was implemented. The scopes determine the extent of investigations in achieving all objectives mention in the previous section. Below is the listing of the scopes involved:

- The designing of the new crystalliser took into account new material of construction, shape to increase surface area and equipped with all relevant features for a successful PFC process;
- ii. The range of circulation flowrate studied was 400 to 1000ml/min, to investigate its effect on K, ice purity and solution volume reduction;
- iii. The coolant temperature range applied was -4 to -10°C, investigated on the K, solution volume reduction and ice purity;
- iv. Initial solution concentration was investigated in the range of 4 to 10mg/ml to explore the efficiency of the crystalliser design;
- v. The effect of circulation time/period on the performance of the crystalliser was investigated between 5 to 20 minutes of circulation;
- vi. RSM was carried out using STATISTICA software to generate an experimental design, followed by generation of a prediction model with subsequent investigations on the model's adequacy. Interactions between the process variable were also observed and the optimum conditions for the process were generated;
- vii. Overall heat transfer coefficient, U_o, was calculated for the PFC process according to different coolant temperature and time, followed by a development of a model predicting the ice crystal mass produced during operation.

1.5 Significance of Research

As this study is focusing on designing a new crystalliser to be used in a PFC process for the purpose of wastewater treatment, it provides an alternative for IWW

treatment by water removal. This PFC system should highly be in demand in industries producing IWW with high VOCs, where heating would cause an alarming danger. It is also suitable for removing water from IWW with high total suspended solids (TSS) and heavy metals as most particles are rejected during ice crystal lattice formation, making it a more advantageous solution to RO that would have a high rate of fouling in this situation. This research would also provide an understanding in how to design a PFC system with high productivity and also provide references for future application of PFC in concentration of food and pharmaceutical compounds.

1.6 Outline of the Thesis

Below is how the thesis is arranged in order to report the research carried out:

Chapter 1 introduces the research and highlights the objective and the scopes implemented in order to achieve it.

Chapter 2 titled Theories and Literature Review elaborates the various wastewater treatment methods available today and the advantages and the disadvantages of each method. In this chapter, previous work of researchers all over the world is also reviewed, which consists of researches on suspension FC, performance of various design of PFC FC crystalliser or freezer, evaluation and analysis aspect of the researches, including the ground work by ancient researchers in this field. This chapter also stated and elaborated the crystallisation theories, which is very important in understanding the process itself. The Design of Experiment, Response Surface Methodology (RSM), optimum condition determination and ANOVA were also discussed at the end of the chapter.

Chapter 3 provides explanations of the methodology of the experiment. A research methodology flow chart attached in the beginning of the chapter provides an overview of how the research is undertaken. Later in the chapter, the methods or experimental steps taken through the research are elaborated. Operating parameters investigated are circulation flowrate, coolant temperature, initial concentration of glucose solution and circulation time/period.

Chapter 4 presents the resulted design of the new crystalliser, which is termed, multi-layer crystalliser (CC). Material used and the geometry of the design is elaborated, equipped with all necessary chemical and physical characteristics. The designing work is carried out cautiously, considering the necessary aspects to result in good FC process. It also includes justifications of why each materials or equipment is used in the experimental rig that were used in the investigation.

Chapter 5 reports on the findings and theories to explain the effects of all the operating parameters investigated, which are the process fluid circulation flowrate, coolant temperature, initial concentration of solution and circulation time, on the performance of the PFC system. The performance was indicated by three variables, which are the partition constant, K, ice purity and volume reduction of the process fluid.

Chapter 6 focuses on the optimisation process carried out in order to obtain the optimum value for each operating condition, in order to give maximum performance of the system. The dependant variables investigated were partition constant, K, ice purity and volume reduction. The optimisation process was carried out using Response Surface Methodology, incorporated in Statistica Software. The models generated in order to obtain the optimum conditions corresponding to each respond are properly explained and justified. Chapter 7 reports on the heat transfer activity occurring during the FC process. The overall heat transfer coefficient, U_o , was calculated for each coolant temperature employed, generating standard lines as reference. A model was also proposed in order to predict the crystal mass produced at any time of the FC operation.

Chapter 8 concludes the research work and summarises all relevant findings generated from the study. Some suggestions to improve the design and to generate more data in the future are also given.