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ABSTRACT  

 

 

 

This study considers a Vehicle Routing Problem with Stochastic Demands 

(VRPSD) where the demands are unknown when the route plan is designed.  The 

VRPSD objective is to find an a priori route under preventive restocking that 

minimizes the total expected cost, subject to the routing constraints, under the 

stochastic demands setting.  Various metaheuristics based on Genetic Algorithm 

(GA) and Tabu Search (TS) were proposed to solve VRPSD.  This study began with 

investigating the effect of static and dynamic tabu list size in TS.  The results showed 

the advantage of dynamic tabu list size in significantly reducing the probability of 

cycling.  Further, Reactive Tabu Search (RTS) which has never been used in VRPSD 

was introduced.  This study showed that RTS give significant improvement to the 

solution quality of TS.  This study then explored the enhancement of GA for VRPSD 

by proposing Adaptive GA (AGA), Breeder GA (BGA) and two types of Hybrid GA 

with Tabu Search (HGATS).  Solutions generated using AGA were better than 

solutions from fixed parameter setting, and the use of AGA reduce the amount of 

time required in finding the appropriate mutation probability values of GA.  The 

BGA also gave an improvement to the solution quality of GA.  Different schemes of 

incorporating TS to GA lead to a significantly different performance of the HGATS 

algorithms.  Next, comparative studies between metaheuristics implemented in this 

study were carried out including the comparison with previous research on GA for 

VRPSD.  The HGATS showed superiority in terms of solution quality compared to 

other metaheuristics, followed by BGA and RTS in the second and third best 

performance respectively.  Furthermore, the proposed bi-objective Pareto BGA gave 

better solution qualities compared to Pareto GA.  Finally, the use of metaheuristics in 

a case study of solid waste collection reduced significantly the company current 

operation cost. 
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ABSTRAK 

 

 

 

Kajian ini mempertimbangkan suatu Masalah Perjalanan Kenderaan bersama 
Permintaan Stokastik (VRPSD) di mana permintaan tidak diketahui ketika 
perancangan laluan dibuat.  Objektif VRPSD adalah untuk menentukan suatu 
perjalanan a priori di bawah pencegahan stok semula bagi mengurangkan jumlah kos 
jangkaan, bergantung kepada kekangan perjalanan dengan permintaan stokastik.  
Pelbagai metaheuristik berasaskan Algoritma Genetik (GA) dan Carian Tabu (TS) 
telah dicadangkan untuk menyelesaikan masalah tersebut.  Kajian ini bermula 
dengan menyelidik kesan statik dan dinamik saiz senarai tabu di dalam TS.  Hasil 
kajian menunjukkan kebaikan saiz senarai tabu dinamik telah berupaya 
mengurangkan dengan signifikan kebarangkalian kitaran.  Seterusnya Reactive Tabu 
Search (RTS) yang belum pernah digunakan dalam VRPSD diperkenalkan di mana 
ia menunjukkan RTS mempertingkatkan kualiti penyelesaian TS.  Kajian ini 
seterusnya menerokai peningkatan GA untuk VRPSD dengan mencadangkan 
Adaptive GA (AGA), Breeder GA (BGA) dan dua jenis Hybrid GA-Tabu Search 
(HGATS).  Penyelesaian yang dihasilkan AGA adalah lebih baik berbanding 
penggunaan parameter tetap dan dengan menggunakan AGA, jumlah masa yang 
diperlukan untuk mencari kebarangkalian nilai mutasi GA yang sesuai juga boleh 
dikurangkan.  Kaedah BGA juga meningkatkan kualiti penyelesaian GA.  Skema 
berlainan dalam menggabungkan TS dengan GA membawa kepada perubahan 
pencapaian algoritma HGATS.  Seterusnya kajian perbandingan di antara 
metaheuristik yang dilaksanakan di dalam kajian ini dilakukan termasuk 
perbandingan dengan kajian terdahulu tentang GA untuk VRPSD.  HGATS yang 
dicadangkan, menunjukan keunggulan berbanding yang lain, diikuti oleh BGA dan 
RTS di tempat kedua dan ketiga pada tahap pencapaian.  Seterusnya Pareto BGA 
yang dicadangkan untuk menyelesaikan dua-objektif VRPSD telah menghasilkan 
penyelesaian yang lebih baik berbanding Pareto GA.  Akhirnya, penggunaan 
metaheuristik dalam satu kajian kes pengangkutan bahan buangan pepejal didapati 
mengurangkan dengan signifikan kos operasi semasa syarikat. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

Optimisation is a part of life.  In our day to day lives, we make decisions that 

we believe can maximize or minimize our objectives, such as taking a shortcut to 

minimize the time or distance required to reach a particular destination, or finding a 

lowest priced items in the supermarket.  Most of these decisions are based on our 

years of experience and knowledge about the system without resorting to any 

systematic mathematical formulation.  However, as the system becomes more 

complicated, further it is needed to formulate it into specific mathematical model, 

and with the advent of computer it is possible to exploit optimisation theories to their 

maximum extent.   

 

Combinatorial optimisation is a branch of optimisation that arises everywhere 

and certainly in applied mathematics and computer science, related to operations 

research, algorithm theory and computational complexity theory that sit at the 

intersection of several fields, including artificial intelligence, mathematics and 

software engineering.  Combinatorial optimisation algorithms solve problem 

instances that are believed to be hard in general, by exploring the usually large 

solution space of these instances.  Combinatorial optimisation algorithms achieve 

this by reducing the effective size of the space and by exploring the space efficiently.  

The Vehicle Routing Problems (VRP), Traveling Salesman Problem (TSP), 

minimum spanning tree problem and knapsack problem are examples of 

combinatorial optimisation problem.  
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Since late fifties, the Vehicle Routing Problem (VRP) has been and remains a 

rich topic for researchers and practitioners.  It becomes an area of importance to 

operations research as well as its use for many real world applications.  An integral 

component of logistics is transportation, and a frequently arising situation in the 

transportation and distribution of commodities has usually been modeled as a 

Vehicle Routing Problem (VRP).  Usually real world VRP arises with many site 

constraints.  VRP is a generalized problem of the Traveling Salesman Problem (TSP) 

in that the VRP consists in determining m vehicle, where a route is tour that begins at 

the depot.  The task is to visit a set of customer in a given order and returns to the 

depot.  All customers must be visited exactly once and the total customer demand of 

a route must not exceed the vehicle capacity.  Given a set of geographically 

dispersed customers, each showing a positive demand for a given commodity, the 

VRP consists of finding a set of tours of minimum length (or cost) for a fleet of 

vehicles.  According to Secomandi (2003), the class of VRPs is a difficult one, since 

its elements are usually NP-hard problems and they are generally solved by heuristic 

methods.  Lenstra and Kan (1981) has shown that VRP is NP-hard problem. 

 

The majority of these researches conducted on operations research are focus 

on static and deterministic cases of vehicle routing in which all information is 

determined before the time of planning the routes.  Whereas in this ICT age, 

information is gathered in real time and in many cases they are changing.  The 

complexity of the problem increases as more information is unavailable at the time 

of the planning or when the service has begun such as the time to begin service, the 

location and the actual demand.  In most real life application, stochastic or dynamic 

information occurs parallel to the routes being carried out.  Many of the vehicle 

routing problems have inherent randomness, which is not considered in deterministic 

models, probably travel times or demands are random variables with known 

distributions.  Tillman (1969) started the works to explore cases on VRP with 

stochastic demands.  Since that, many theories and algorithms on VRPSD have been 

proposed and or developed.  In this research, we are interested in studying the 

demand as the stochastic component.   
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This chapter presents the flow of the research proposal and it begins with the 

background and problem statement of the research.  It is important that an extensive 

work has been carried out in order to present a case for this work and this is given in 

Chapter 2.  Research objectives, the scope of this study and discussion on the 

research contribution are also given.  Finally, the brief of each chapter is outlined. 

 

 

  

1.2 Background of the problem 

 

The classical VRP models usually do not capture an important aspect of real 

life transportation and distribution-logistic problems, namely the fact that several of 

the problem parameters (demand, time, distance, city location, etc) are often 

stochastic.  Most existing VRP models oversimplify the actual system by assuming 

system parameter (e.g. customer demands) as deterministic value, although in real 

application, it may not be possible to know all information about customers before 

designing routes.  Stochastic information occurs and has major impact on how the 

problem is formulated and how the solution is implemented.  Neglecting the 

stochastic nature of the parameters in a vehicle routing model may generate sub 

optimal or even infeasible routes (Yang et al., 2000).   

 

As compared to the development in deterministic case, research in Stochastic 

VRP is rather undeveloped.  Gendreau et al. (1996) summarise the solution concepts 

and literature available on different kinds of SVRP including the TSP with stochastic 

customers, the TSP with stochastic travel times, the VRP with stochastic demands, 

the VRP with stochastic customers and the VRP with stochastic customers and 

demands.  Stochastic VRP cannot be solved as VRP since properties and the optimal 

VRP solution do not hold for the SVRP (Dror et al., 1989).  Further, it calls for more 

complex solution methodologies (Gendreau et al., 1995). 

 

This study focus on VRP with Stochastic Demands (VRPSD) in which 

demand at each location is unknown at the time when the route is designed, but is 

follow a known probability distribution.  This situation arises in practice when 

whenever a company, on any given day, is faced with the problem of collection/ 



 4

deliveries from or to a set of customers, each has a random demand.  In this study, 

we deal with specific case on solid waste collection.  It is hoped that optimisation 

can take into account the stochasticity of the problem in obtaining better routes and 

reducing cost.   

 

In stochastic environment, due to its randomness in customers’ demands, a 

vehicle capacity may be exceeded during service.  A route failure is said to occur if 

the demand exceeds capacity and a recourse action needs to be taken at extra cost.  

Assuming that enough capacity is available at the depot, the vehicle may return to 

the depot, replenish its load, and then resume service at the point where failure 

occurred.  Therefore the vehicle will always be able to satisfy all demands but the 

length of the corresponding tour becomes a random quantity.   

 

The recourse action could be the vehicle resumes service along the planned 

route, namely a priori approach, or visiting the remaining customers possibly in an 

order that differs from the planned sequence known as re-optimisation approach.  

There are two common recourse policies for a priori optimisation.  The first is the 

simple recourse policy (Dror et al., 1989; Gendreau et al., 1995; Chepuri and 

Homem-de-Mello, 2005) where a vehicle returns to the depot to restock when its 

capacity becomes attained or exceeded.  The second approach is the preventive 

restocking (Bertsimas et al., 1995; Yang et al., 2000; Bianchi et al., 2004) where 

preventive restocking is planned at strategic points preferably when the vehicle is 

near to the depot and its capacity is almost empty, along the scheduled route instead 

of waiting for route failure to occur.  On the other hand, most recent computational 

studies in re-optimisation approach were done by Secomandi (2000, 2001, 2003).   

 

In this study, we use a priori approach since redesign the routes when actual 

demand becomes known appears to be a problem for several reasons: 

 

1. Resources might not be available. 

2. Even if resources are available, it might be that redesign of routes is not 

sufficiently important to justify the required effort, cost and time. 

3. Redesigning the route might create confusing to the driver. 
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4. Regularity and personalization of service by having the same vehicle and 

driver visit a particular customer every day is not guaranteed if one redesigns 

the routes. 

 

For our case in solid waste collection, familiarity of driver and waste 

collector on the route visited every day is highly emphasized; usually the route is 

substantially not changed.  Redesign the routes might cause a problem in the 

situation when demand is highly variable, thus the routes could be different each day, 

creating route instability which has consequences to system nervousness in material 

requirements planning.  Further, if demand is stable, it still requires the company 

personnel to understand day by day task of gathering and inputting new demand to 

algorithm that generate routes and then deliver the output information to driver. 

 

Tillman (1969) was the first to propose algorithm for the VRPSD in the case 

where there were multiple terminal deliveries and multiple vehicles.  Since then, 

many researchers have studied this problem in two frameworks, namely the chance 

constrained and stochastic with recourse.  In the chance constrained VRPSD, the 

problem is to design a number of vehicle routes of least distance traveled, subject to 

the constraint that the probability of route failure on any route is within an allowable 

limit.  In contrast, VRPSD with recourse try to minimize the total expected cost (or 

distance), including the cost of travel as well as the cost of recourse action when a 

route failure occurs.  The VRPSD with recourse is considerably more difficult than 

chance constrained VRPSD (Gendreau et al., 1995).  

 

Various formulations and algorithms have been proposed and investigated, 

including the properties and solution frameworks of VRPSD studied by                 

Dror et al. (1989), Bertsimas (1992) who proposed cyclic heuristic and found a priori 

solution for single vehicle and Dror et al. (1993) who have examined a priori 

VRPSD in the context of Stochastic Programming where there is only one vehicle 

and the number of potential failures is small.  Yang et al. (2000) developed optimal 

restocking policy in conjunction with routing decisions for a priori VRPSD for single 

and multiple vehicles.  Secomandi (2001, 2003) considered re-optimisation-type 

routing policy by means of rollout policy for single vehicle.   
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Bianchi et al. (2004) considered basic implementation of five metaheuristics 

for single vehicle: Iterated Local Search, Tabu Search, Simulated Annealing, Ant 

Colony Optimisation and Evolutionary Algorithm (Genetic Algorithm) that found 

better solution quality in respect to cyclic heuristic.  Chepuri and Homem-de-Mello 

(2005) proposed a new heuristic method based on the Cross-Entropy method for 

single vehicle.  Instead of the work of Bianchi et al. (2004) and Gendreau et al. 

(1995), the work on the application of GA and TS for VRPSD are lacking in the 

literature.  The work of Bianchi et al. (2004) results that the performance of GA and 

TS seem to be not significantly different, due to the fact that these algorithms find 

solutions values which are not very different to each other, but can not compete ILS. 

 

These facts have opened a new direction to conduct research on GA and TS 

for solving VRPSD.  Moreover, it is widely known that GA has been proven 

effective and successful in a wide variety of combinatorial optimisation problems, 

including TSP and certain types of VRP, especially where time windows are 

included.  TS, the approach that dominates the list of successful algorithms, is known 

also as a robust, efficient and effective approach to the general VRP family of 

problem (Laporte, 1992; Osman, 1993).  TS often outperform other heuristic 

techniques in terms of computational speed and solution quality (Osman, 1993).   

 

The number of published work on the application of GA for solving basic 

VRP, TSP, VRPTW, VRPB, and multi depot VRP has been growing.  Different 

approaches were also proposed based on different crossover operator, different 

mutation operator, or replacement methods.  Although pure GA performs well, 

mostly it does not equal TS in terms of solution quality, sometimes pure GA perform 

inefficient on practical combinatorial optimisation.  To improve pure GA 

performance, some algorithms are combined with the simple GA, yielding a hybrid 

algorithm.   

 

The statement about GA hybridization is noted by Coley (1999) that hybrid 

algorithms, which combine a GA with more traditional algorithms, have been hinted 

as a highly powerful combination for solving practical problem, also by Lacomme et 

al. (2006) that it is well known that a standard GA must be hybridized with another 

search procedure to be able to compete with metaheuristics like TS.  Baker and 
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Ayechew (2003) showed that hybrid GA with neighbourhood search in the basic 

VRP is competitive with TS and SA in terms of solution time and quality.  Hybrid 

GAs also have widespread application to VRPTW, including the work of Blanton 

and Wainwright (1993), Thangiah (1995a and 1995b), Berger et al. (1998) and 

Braysy et al. (2000).   

 

Based on previous research on algorithms developed for VRPSD and the 

knowledge of the basic structure of GA and TS, in this study we develop 

metaheuristics based on GA and TS as the enhancement of basic GA and TS for 

solving single and multiple VRPSD in minimizing single objective function.  Our 

reviews also found that hybrid GA has not been used to solve VRPSD and most of 

researches in VRPSD with preventive restocking are dealing with single VRPSD and 

little work has been done for multiple VRPSD, even though decisions relating to 

routing fleets of vehicles are frequently taken into consideration in distribution and 

logistics operations.  This brings us to also develop the meta-heuristics based on 

hybrid GA and TS to solve a priori VRPSD comprises single vehicle and multiple 

vehicles.   

 

The approach developed was inspired also by the emerging interest in hybrid 

metaheuristics that has risen considerably among researchers in combinatorial 

optimisation.  The best results found for many practical or academic optimisation 

problems are obtained by hybrid algorithms (Talbi, 2002).  In this study, the GA will 

be hybridized with TS.  It is highly expected that this hybrid could combine the 

advantage of GA as population-based method and the strength of TS as trajectory 

method.  As known, population-based methods are better in identifying promising 

areas in the search space, whereas trajectory methods are better in exploring 

promising areas in search space. 

 

In this study, we also propose metaheuristics for solving bi-objective VRPSD 

to minimize the total expected cost and the number of vehicles.  This study is 

motivated by fact that many real world design or decision making problems involve 

simultaneous optimisation of multiple objectives (Srinivas and Deb, 1994).  But most 

of the existing literatures in VRPSD, except of multi-objective’s Tan et al. (2007), 

use single-objective based heuristics.  In a single-objective optimisation, the main 
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goal is to find the global optimum solution.  However, in a multi-criterion 

optimisation problem, there are more than one objective function, each of which may 

have different individual optimal solution.  If there is sufficient difference in the 

optimal solutions corresponding to different objectives, the objective functions are 

often conflict each other.  Multi-criterion optimisation with such conflicting 

objective functions gives rise to as set of optimal solutions, instead of one optimal 

solution.  The reason for the optimality of many solutions is that none can be 

considered to be better than any other with respect to all objectives. 

 

 

 

1.3 Problem Statement of Research 

 

The VRPSD is defined on a complete graph G = (V, A, C), where  

 

V =   {0, 1,…, n} is a set of nodes with node 0 denotes the depot and nodes           

1, 2, …, n correspond to the customers, 

A =    },,:),{( jiVjiji ��  is the set of arcs joining the nodes, and  

C  =  ( },,: jiVjicij �� ) is a non-negative matrix (a matrix where all the 

elements are equal to or above zero, C �  0, 0),,( �� ijcji ) that denotes the travel 

cost (distance) between node i and j. 

 

The cost matrix C is symmetric and satisfies the triangular inequality.  Customers 

have stochastic demands i� , i = 1,…, n, which are a non-negative discrete random 

variable with known probability distribution )(Pr kobp iik �� � , k = 0, 1,…, K � Q.  

Assume further that customers’ demands are independent and identical.  Actual 

demand is only known after the vehicle arrives at customer’s location.  If there is a 

route failure at any node, the recourse action has to be taken, the recourse action is to 

travel back to the depot for replenish and then resume its journey as planned at the 

node where failure occurred.  The problem objective is to find a priori routes that 

minimize the total expected cost, including travel cost and the expected recourse 

cost, subject to the routing constraints, under the stochastic demands setting. 
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A stochastic vehicle routing problem arises when not all information relevant 

to the planning of the routes is known by the planner when the routing process 

begins and information can change after the initial routes have been constructed.  

According to Secomandi (2003), for the class of deterministic VRPs, they are 

generally solved by heuristic or metaheuristic methods; whereas algorithms for 

stochastic VRP are considerably more intricate than deterministic and it calls for 

efficient algorithm that is able to work in real-time since the immediate requests 

should be served.  These have made them an important candidate for solution using 

metaheuristics.   

 

This research tries to propose new metaheuristics based on GA and TS to 

enhance the performance of basic GA and basic TS for solving VRPSD.  In this 

work, we initially consider a single-vehicle model and later expand the analysis to 

incorporate multiple vehicles.  We also develop metaheuristics for solving bi-

objective VRPSD.  The performances of the proposed algorithms were compared 

each other and with other heuristics/ metaheuristics.  The implementation of these 

algorithms also will be done to solve real problem in optimizing solid waste 

collection.   

 

 

 

1.4 Objectives of the Study 

 

The aim of this study is to develop various approaches to optimize VRPSD 

solution, particularly in the use of metaheuristics approach.  The objectives of this 

study are to: 

 

	 develop metaheuristics for solving single VRPSD that include: 

a. Tabu Search and Reactive Tabu Search. 

b. Genetic Algorithm and the enhanced GA, i.e. :  

-  Adaptive Genetic Algorithm 

-  Breeder Genetic Algorithm and  

-  Hybrid GA and TS 
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	 develop GA-based metaheuristic for solving bi-objective multiple VRPSD. 

	 conduct comparative evaluation on the performance among these 

metaheuristics. 

	 solving real problem data in optimizing solid waste collection by using the 

VRPSD model and the developed metaheuristics. 

 

 

 

1.5 Scope of the Study 

 

1. In this research, we confine the application of our algorithm to a priori 

VRPSD under restocking policy. 

2. The problem data for the performance testing in simulation study are 

randomly generated problem data following specific probability distributions. 

3. We confine our real problem solving in the case study of optimizing solid 

waste collection. 

4. It is assumed that vehicles start and end at a single depot.   

5. It is assumed that every customer demands have the same probability 

distribution but can have different parameters (for example: different mean 

and variance for each customer that have normal distribution).  

6. The problem data were generated using Minitab version 14 and were tested 

and analyzed using SPSS version 13 for Windows, while the implementation 

of metaheuristics was done using Delphi version 6.0.  Minitab has special 

feature in generating random data following specific probability distribution 

which SPSS does not have, while SPSS has advantage in better graphical 

representation of the output of data analysis than Minitab. 

7. The stopping criteria in addressing convergence for all procedures presented 

in this study will not using numerical analysis component/ complexity 

analysis.  
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1.6 Significance of the Study 

 

1. From the view point of algorithm development: our algorithms are the first 

implementation of  

- Reactive Tabu Search,  

- Adaptive GA, 

- Breeder GA, 

- and hybrid GA (especially hybrid GA with Tabu Search)  

for solving single and multiple vehicles appeared in the VRPSD literature.   

2. We also propose the new adaptive mutation probability measure. 

3. We contribute on the first considering bi-objective VRPSD under restocking 

policy and proposing new GA-based for solving bi-objective multiple 

VRPSD.   

4. From application aspect, real problem in optimizing waste collection was 

solved by using the proposed algorithm. 

5. We also develop software package for solving VRPSD.   

6. And the result of this study will be presented and published at the 

international publications/ journal. 

 

 Along the recent increase in the demand for an efficient management system 

for VRP and logistics and the advances in computer and information technology, the 

importance of being able to effectively make use of the huge amount of information 

has become important for a wide range of applications.  Cost efficient routing of 

vehicles play an important role to a wide range of industries.  As indicated earlier, 

our focus would be to work on the problem related to VRP for solid waste collection 

in the Municipality of the Johor Bahru city. 

 

 

 

1.7 Organisation of the Thesis 

 

This thesis contains eight chapters.  The first chapter is the introduction.  This 

chapter gives an introduction to the background of the problem, the statement of the 

problem, objectives and scope of the study, and significance of the study.   
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Chapter two is the Literature Review.  This chapter presents a literature 

review about the Vehicle Routing Problem with Stochastic Demands, solution 

techniques appeared in literature and also techniques which may be applied for 

solving VRPSD.   

 

Chapter three is the Research Methodology.  This chapter presents the 

direction of the study and an overview of the methods used.  It begins with the 

general steps of research framework.  A description of the data source for this study 

and test related to it are also presented include case-study of a real-life application at 

solid waste collection company (Perniagaan Zawiyah Sdn. Bhd).  It follows with the 

description of algorithm implemented with emphasis on Genetic Algorithm, Tabu 

Search and the enhancement of these two metaheuristics. 

 

In Chapter four, the development of metaheuristic methods based on Tabu 

Search and Reactive Tabu Search for solving single VRPSD are explored.  The 

discussion of this chapter begins with the detail development of Tabu Search and 

Reactive Tabu Search for single VRPSD, followed by the experimental results and 

discussion. 

 

Chapter five discusses the development of several Genetic Agorithm-based 

metaheuristics for solving single VRPSD.  The standard Genetic Algorithm is 

presented, followed by the enhancement of it through Adaptive Genetic Algorithm, 

hybrid Genetic Algorithm with Tabu Search, and the Breeder Genetic Algorithm.  

 

Chapter six considers multiple VRPSD which analog of the deterministic 

VRP.  The use of Breeder Genetic Algorithm is proposed to solve the bi-objective 

VRPSD in minimizing the number of vehicles required and the total expected cost 

concurrently, using Pareto-rank by modifying and extending the single-objective 

Breeder Genetic Algorithm.   

 

VRPSD finds its application on wide range of logistics and distribution sector 

in cases where it is impossible to know the demand of the customers before the 

vehicles arrives at customer’s location.  In Chapter seven, the implementation of 
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VRPSD in the case of picking up of garbage done by solid waste company in Johor 

Bahru namely Perniagaan Zawiyah Sdn. Bhd. is discussed. 

 

Finally, Chapter eight concludes the relevant and important findings from this 

research.  Recommendations on area related to the findings and possible directions 

for future research are presented. 
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