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ABSTRACT 
 

 

 

Network intrusion detection is a complex research problem especially when it 

deals with unknown patterns. Furthermore, if the amount of audit data instances is 

large, human labelling becomes tedious, time-consuming, and expensive. A 

technique which can enhance the learning capability of an anomaly intrusion 

detection system is required. Unsupervised anomaly detection methods have been 

deployed to address the weaknesses of both signature-based and supervised anomaly 

detection. These methods take a set of unlabelled data as input, in which the majority 

of data set is normal traffic, and attempt to find intrusion hidden in the data. 

Although the unsupervised anomaly detection has received a lot of attention from 

many researchers, it still has many drawbacks which can be improved. This thesis 

proposes a framework which comprises three components: feature selection, new 

clustering and novel cluster labelling. The task of feature selection is to choose 

relevant feature which is obtained through statistical testing. The new clustering 

technique is called F2ART which is a hybrid of Fuzzy c-means and Fuzzy Adaptive 

Resonance Theory. It incorporates a modified similarity measure and a new learning 

rule which also includes a fuzzy membership value in improving the detection rate. 

Finally this thesis also proposes a new cluster labelling algorithm called Normal 

Membership Factor (NMF). This algorithm introduces weighting degree of 

probability of clusters, which can decrease false positive rate. Based on the 

experimental results that have been carried out using the KDD Cup 1999 data set, it 

indicates that the framework provides the best performance in terms of detection rate 

compared to the current unsupervised anomaly detection approaches. Unlike 

traditional anomaly detection methods that require 98 percent of the unlabelled data 

to be in normal pattern, this framework can still work with only 80 percent of the 

normal pattern. In addition, it can also improve the analysis of new data over time 

without the need to retrain over all the previous and new data.    
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ABSTRAK 

 

 

Pengesanan pencerobohan rangkaian merupakan bidang kajian yang 

kompleks terutamanya jika  ianya melibatkan corak yang tidak dikenali. Di samping itu, 

jika data audit trafik menjadi besar, penglabelan mengambil masa yang lama, rumit serta 

mahal. Teknik baru yang boleh memberikan keupayaan pembelajaran yang lebih baik 

terhadap sistem pengesanan anomali adalah diperlukan. Kaedah pengesanan secara 

anomali tidak berselia dapat mengatasi masalah yang ada pada kaedah berasaskan 

tandatangan dan pengesanan anomali berselia. Kaedah-kaedah ini akan mengambil satu 

set data tanpa label sebagai input, di mana majoriti set data itu adalah trafik normal dan 

seterusnya akan mencuba untuk mengenalpasti pencerobohan tersembunyi di dalam data. 

Walau pun pengesanan anomali tidak berselia telah mendapat perhatian ramai penyelidik, 

masih terdapat kelemahan pada kaedah ini yang boleh diperbaiki.  Objektif kajian ini 

adalah untuk mencadangkan satu rangka kerja yang mengandungi 3 komponen asas iaitu: 

pemilihan ciri, kaedah pengkelompokan dan pelabelan kelompok yang baru. Pemilihan 

ciri adalah bertujuan untuk  menentukan ciri-ciri yang berkaitan sahaja yang diperolehi 

melalui ujian statistikal. Manakala teknik pengkelompokan baru yang dikenali sebagai 

F2ART iaitu gabungan Fuzzy c-means dan Fuzzy Adaptive Resonance Theory 

dicadangkan bagi mempercepatkan pengesanan terhadap serangan yang baru. Teknik ini 

menggunakan pengukuran persamaan yang telah diubahsuai dan peraturan pengetahuan 

termasuk nilai keahlian kabur. Kajian ini juga turut mencadangkan algoritma penglabelan 

kelompok yang baru yang dikenali sebagi Normal Membership Factor (NMF). Ia 

menggunakan pendekatan pemberat kepada kebarangkalian kelompok yang dapat 

mengurangkan kadar penggeraan palsu. Berdasarkan ujikaji yang menggunakan set data 

KDD Cup 1999, didapati rangka kerja cadangan memberi prestasi terbaik berbanding 

pengesanan anomali tidak berselia sedia ada. Berbeza dengan kaedah pengesanan 

anomali tradisional yang memerlukan 98 peratus data tidak berlabel bercorak normal, 

rangka kerja ini hanya memerlukan 80 peratus daripada data tidak berlabel bercorak 

normal. Di samping itu, ianya boleh memperbaiki analisis data baru tanpa perlu dilatih 

semula menggunakan data-data terdahulu dan data baru.
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CHAPTER 1 

INTRODUCTION

 

 

The computer networks security plays a strategic role in modern computer 

systems.  The continual increase of attacks against networks and their resources has 

created a necessity to protect these valuable assets. Attacks on computer networks 

are serious problem because most deployed computer systems are vulnerable to those 

attacks. Most attacks are composed of a series of anomaly events. Intrusion detection 

(ID) is a rapidly growing field and it is an important technology for the business 

sector in its effort to build systems for network security. It involves processing and 

learning of the large number of examples in order to detect intrusions. Such process 

becomes computationally costly and impractical when the number of records, to train 

against, grows dramatically. It is critical to develop methods for data dimension 

reduction, effective monitoring algorithms for intrusion detection, and means for 

their performance improvement [1]. Therefore, unsupervised learning is very 

beneficial for intrusion detection domain, since the labelled data is expensive while 

unlabeled data can be obtained very easily from log files and audit files.  

  

 

 

  

1.1 Overview 
 

 

In the era of information society, as computer networks and related 

applications are becoming more and more popular, the potential threats to the global 

information infrastructure have increased tremendously. To defend various cyber 
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attacks and computer viruses, lots of computer security techniques have been studied 

in the last decade, which include cryptography, firewalls and intrusion detection 

systems (IDSs). When an attack occurs, instead of taking preventive measures, 

intrusion detection mechanisms usually will only log or report the incident. It can be 

defined as the problem of identifying the activity of individuals who are using a 

computer system without authorisation or those who have legitimate access to the 

system but are abusing their privileges. Intrusion detection systems (IDS) have been 

actively investigated for about two decades. Despite the substantial research efforts 

and commercial investments, IDS are still immature and cannot be considered as a 

complete defence because of the low ability to detect new types of attack and high 

false alarms rates. Anomaly detection consists of analysing and reporting unusual 

behavioural patterns in computing systems. According to Axelsson, “the early 

anomaly detection systems were self-learning, that is they automatically formed an 

opinion of what the subject’s normal behaviour was” [2]. This is due in part to 

uncertain situations, which come from the unknown characteristics of attacks and 

system vulnerabilities. 

 

The implementation of early intrusion detection mechanisms was primarily 

based on the audit records generated by the host operating system. Audit data were 

manually inspected by system administrators or security experts in order to detect 

intrusions. This was expensive, time-consuming, and inaccurate due to the extremely 

large amount of audit data. As a result, the “misuse detection scheme” was then 

developed. In misuse detection, previous attack signatures are stored and attacks are 

detected by matching audit events with the stored signatures. Although misuse 

detection methods can find most known attacks if the signatures are well defined, 

they are useless for detecting unknown intrusions. Moreover, defining an attack 

signature is not an easy task at all. To address the weaknesses of misuse detection, 

the concept of anomaly detection was introduced to monitor systems by Anderson 

[3] in 1980 and was then improved by Denning [4] in 1987. Denning assumed that 

security violations could be detected by inspecting abnormal system usage patterns 

from the audit data. Deviations from normal behaviour patterns are flagged 

systematically as intrusions. The implementations of early anomaly detection 

techniques were based on self-learning. Knowledge about normal behaviours of 

subjects was automatically formed through training. The notion of anomaly detection 
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did not only consider the normal profiles but it also took into account the abnormal 

behaviours that are extracted from known attacks. Thus, according to whether the 

learning process, the anomaly detection schemes are naturally classified into two 

categories: supervised and unsupervised. Regardless of the approach used, the 

intrusion detection problem has been formulated to classify system behaviour 

patterns into two categories: normal and abnormal.  

 

Supervised anomaly detection schemes depend on labelled training datasets, 

making the intrusion detection process error-prone, costly and time consuming. It is 

concerned with a collection of labelled data that come in the form of ordered pairs 

namely a feature vector describing the data and its class assignments. Supervised 

learning methods build a model for rare events. Any mistake in labelling the training 

data may lead to decreased performance of the detector. On the other hand, 

unsupervised anomaly detection schemes allow training based on unlabeled datasets, 

facilitating online learning and improving detection accuracy. By facilitating online 

learning, unsupervised approaches provide a higher potential to find novel attacks, 

which are not always included in the training data. By removing the need to label the 

dataset, unsupervised approaches carry greater potential for detection accuracy. The 

clustering technique is a part of unsupervised learning for intrusion detection, 

whereby the task of determining the number of clusters is a difficult issue since the 

occurrence of intrusions is unknown [5]. It is require some techniques do not need 

labelled training data, which determines automatically the optimal number of clusters 

for a set of data. It also can learn a new pattern and it is not forgetting those learned 

previously, thereby significantly reducing false alarm rate when normal behaviour is 

changing. 

 

In the following sections, this chapter briefly states the background of the 

problem, statement of the problem, objectives of study, scope of study, significant of 

the study, and outline of the thesis. 
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1.2 Background of the Problem
  

 

Most of the existing IDS use all the features in network packet to measure 

and look for intrusive patterns. Some of these features are irrelevant and redundant. 

The drawback of all the features may degrade the performance of an IDS [6]. There 

are many techniques for feature selection including Artificial Neural Network, 

Support Vector Machine, Genetic Algorithm, Principal Component Analysis, Rough 

Set and few others [7]. The Feature selection in IDS is finding best feature subset to 

represent the data for next processing. The significance of feature selection can be 

viewed as following. First is to filter out noise and remove redundant and irrelevant 

features. Second, feature selection can be implemented as an optimization procedure 

of search for an optimal subset of features that better satisfy a desired measure [6]. 

The output of an IDS can only be as accurate as its input [8]. For detecting a given 

type of attack the IDS needs to be capable of making the appropriate observations, 

i.e., it needs access to data that are relevant for detecting the attack. As new network 

attacks are emerging, the need for IDS to detect novel attacks becomes pressing [9]. 

Misuse detection by nature is unable to detect new attacks [10]. Due to that, the 

method is very efficient in reducing false alarms; it requires training data with 

labelled attacks [11]. Indeed, training data with labelled attacks is rarely available. 

The problem is further complicated by a limitation of classification algorithms that a 

classifier can only recognise the classes it has seen in the training data. Many 

researchers have highlighted the conventional way of making misuse rather than 

anomaly detection [12]. Clustering is one popular method that has been used to 

discriminate against the normal deviations (normal activity) from abnormal 

deviations (attacks) [13]. The clusters may easily miss new attacks even when they 

are captured by an anomaly detection module. So the problem of how to reduce an 

anomaly detection system's false alarm rate and meanwhile preserving its ability to 

detect new attacks poses a challenge [14]. 

 

All the existing clustering methods have some built-in shortages: (1) the 

result of detection is sensitive to the parameters that are difficult to be determined 

and (2) it is not reasonable to assume that the smaller size clusters of objects have 

more possibilities of being anomalous [15]. A clustering technique can be used as a 
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classification one by assigning to each cluster the label of the class with more data 

samples in the cluster. If two or more class labels can be assigned, then a conflict 

resolution strategy can be applied. Clustering is used in anomaly detection systems to 

separate attack and normal samples. The most important advantage of using 

clustering to detect attacks is the ability to find new attacks that have not been seen 

before (i.e., no recorded pattern signatures associated with the new attacks) [15]. 

Traditional classification-based systems will have difficulty classifying such attack 

correctly. Clustering algorithms can group new data instances into coherent groups 

that can be used to augment the performance of existing classifiers. High quality 

(“pure”) clusters can also assist an expert with labelling [14].    

 

Traditional anomaly detection algorithms often require a set of purely normal 

traffic data from which models can be trained to represent normal traffics [16]. The 

labelled data or purely normal data is not readily available since it is time consuming 

and expensive to be manually classified. Purely normal data is also very hard to 

obtain in practice, since it is very hard to guarantee that there are no intrusions when 

it was collecting network traffic. The amount of available network audit data 

instances is usually large; human labelling is tedious, time-consuming, and 

expensive. Many methods of IDS totally depend on the training data sets, which 

should not only be “clean” data sets but also involve most normal behavioural 

patterns of the detected object. However, it is indeed very difficult and costly to meet 

both the requirements [17].  

 

Applying unsupervised anomaly detection in network intrusion detection is a 

new research area that has already drawn interest in the academic community. Eskin 

et al [18] investigated the effectiveness of three algorithms in Intrusion Detection. 

Supervised anomaly detection in network intrusion detection, which uses purely 

normal instances as training data, has been studied extensively in the academic 

community. An approach for modelling normal traffic using self-organising maps is 

presented in [19], while another one uses principal component classifiers to obtain 

the model [20]. Another approach uses the normal data to generate abnormal data 

and uses it as input for a classification algorithm [21]. Though unsupervised intrusion 

detections in general look promising, it is believed that their approach has a few 

problems. First, they modified the data significantly by limiting the number of 
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attacks to 1 ~ 1.5 % of the complete training dataset so that their hypothetical 

assumption is true. Second, each cluster is self-labelled as attacks or normal, based 

purely on the number of instances in it. This is also the primary reason they control 

the percentage of attacks in the whole dataset to be very small ( < 1.5 %)  [14]. Third, 

the results of detection are sensitive to the parameters which are difficult to be 

determined. Finally, it is not reasonable that the objects in the small clusters are 

labelled anomalous [17]. However, there have been insufficient discussions about the 

proportion ratio of normal pattern in data set. 

 

 Fuzzy logic techniques and theorems can deal with vagueness and 

imprecision in the real world. It has been widely used in control systems, decision-

making, and information retrieval, but has not yet made substantial inroads into 

computer security. To use fuzzy systems to identify malicious network activity that 

combines simple network traffic metrics with fuzzy rules to determine the likelihood 

of specific or general network attacks [22]. The advantage of using fuzzy logic is that 

it allows one to represent concepts that could be considered to be in more than one 

category (or from another point of view – it allows representation of overlapping 

categories) [23]. In standard set theory, each element is either completely a member 

of a category or not a member at all. In contrast, fuzzy set theory allows partial 

membership in sets or categories. Fuzzy logic has been combined with data mining 

techniques for solving the intrusion detection problem (IDP) [24]. The purpose of 

introducing fuzzy logic is to deal with the fuzzy boundary between the normal and 

abnormal classes. Fuzzy rules allow us to easily construct if-then rules that reflect 

common ways of describing security attacks. The types of attacks that can be 

described may be of a general nature or very specific, depending on the granularity 

of the data feeds used in the rules [25]. 

 

Some early research on IDS attempted to use neural nets for intrusion 

detection. Such systems were trained on normal or attack behaviour information and 

then detect intrusions or attacks. Supervised and unsupervised nets have been used in 

IDSs. Most supervised neural net architectures require retraining, in order to improve 

analysis capability due to changes in the input data. On the contrary, unsupervised 

nets offer an increased level of adaptability to neural nets, and have been used in 

intrusion detection systems. An Adaptive Resonance Theory (ART) networks cluster 
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inputs by unsupervised learning [26]. Each time a pattern is presented, an appropriate 

cluster unit is chosen, and the cluster’s weights are adjusted to let the cluster unit 

learn the pattern. The degree of similarity of patterns placed in the same cluster is 

controlled by a reset mechanism via a vigilance parameter [27]. A new pattern 

presented to the nets is associated with one of the existing clusters, only if the feature 

is similar to the members of the cluster. Otherwise, the nets create a new cluster. 

ART is used for classifying network traffic into normal and intrusive/attack [28]. 

 

The performance of intrusion detection system is measured by how well the 

system can accurately predict intrusion and low false positive rate [29]. There are 

numerous methods that discuss the evaluations of intrusion detection systems. Some 

methods emphasise on the importance of detection rate (DR) and false positive rates 

(FPR); while others look into the novel pattern detection rate [30]. The performance 

of classifiers is evaluated with respect to their classification of unseen normal and 

intrusive patterns. The metrics embraced here are the generalisation abilities of the 

classifiers because they are the most important aspects of an anomaly detection 

scheme. Evaluation of the generalisation capability of any intrusion detection should 

consider the ability of the system to recognise new normal as well as intrusive 

behaviours [31].  

 

Many researchers design the framework by integrates another component for 

increasing the accuracy detection and decreasing false alarm rate. It considers the 

issues involved in standardising formats, protocols, and architectures to co-manage 

intrusion detection and response systems [32]. Most current intrusion detection 

systems employ signature-based methods or data mining methods which rely on 

labelled training data [18]. Intrusion detection (ID) is an important component of 

infrastructure protection mechanisms. Intrusion detection systems (IDSs) need to be 

accurate, adaptive, and extensible. Given these requirements and the complexities of 

today's network environments, it needs a more systematic and automated IDS 

development process rather that the pure knowledge encoding and engineering 

approaches [33]. Currently anomaly intrusion detection framework has disadvantage. 

First, based on the practical assumption that normal instances dominate attack 

instances, the authors simplify self-labelling heuristic by find the largest cluster and 

label it normal; sort the remaining clusters in ascending order of their distances to the 
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larger cluster; label all the other clusters as attacks [13]. Secondly, the clustering 

groups of the data require a number of clusters before processing [14].� Thirdly, 

retraining over all data includes the previous and new data. It takes much time for 

this task [5]. Lastly, some framework was not handling unseen patterns [34].  

 

The normal behaviour is profiled based on normal data for anomaly detection 

and the behaviour of each type of attack are built based on attack data for intrusion 

identification. Given a data set with possible unlabelled attacks, it desires an 

algorithm that learns a model for anomaly detection. In this case, it does not assume 

the training data to be free of attacks. However, it assumes that the majority of the 

training data is normal; otherwise, the attacks are said to constitute “normal 

behaviour.” It also desires the algorithm and the learned models to achieve relatively 

high detection rates with low false alarm rates.  Three main issues need to be 

addressed here. Firstly, determining the number of clusters and secondly without the 

requirement of retraining over all the previous and new data. Thirdly, the ART 

models solve the so-called stability-plasticity dilemma where new patterns are 

learned without forgetting those learned previously.  

 
 
 
 

1.3 Statement of the Problem  
 

 

Many intrusion detection systems attempt to design the framework for 

increasing the accuracy detection and decreasing false alarm rate. In the complexity 

of today’s network environments, it needs the framework that cooperates with 

connected and related several component for accurate, adaptive, and extensible. 

Given these requirements it needs a more systematic and automated IDS 

development process rather that the pure knowledge encoding. A framework consists 

of components. Supervised anomaly detection is the one of component can be tackle 

IDS problem. It establishes normal profiles of systems or networks by training using 

a labelled dataset. It has drawback with incapability to the analysis of new data over 

time without the requirement of retraining over all the previous and new data. The 

biggest problem of supervised anomaly detection is the need to label the training 
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data. Otherwise, unsupervised anomaly detection uses unlabelled or noisy data to 

identify intrusions. It allows training based on unlabelled datasets, which is easy to 

obtain from a real world system, facilitating online learning and improving detection 

accuracy. Clustering analysis is the most widely used learning technique in 

unsupervised anomaly detection schemes [18]. When applying clustering techniques 

for intrusion detection, determining the number of clusters is a difficult issue since 

the occurrence of intrusions is unknown. The general approach and current practice 

assume that data instances always belong to two categories: normal clusters and 

intrusive clusters, and that the number of normal data instances largely outnumbers 

the number of intrusions [18, 35, 36]. However, if data instances are impurity, these 

assumptions unavoidably lead to a high false alert rate. It is to require the technique 

that to deal with the blur line between the normal and abnormal classes to deal with 

the fuzzy boundary between the normal and abnormal classes. It is not required to be 

determined the number of clusters previously and it also can improve the analysis of 

new data over time without the requirement of retraining over all the previous and 

new data. In addition, feature selection process in the intrusion detection systems for 

increase the accuracy of performance of the detection rate. However, to hybrid more 

than two techniques it is a challenging task to develop a clustering method that 

should handle the clustering problem in adaptive learning environment. It is 

incorporate with feature selection and labeling clusters for producing better results 

with high detection and low false alarm rate. 

 

After studying the background of the problem, there are several issues that 

should be addressed.    

1. How many components in a framework that can cover and can solve the 

IDS problem? 

2. Which are important component in a framework? 

3. How is the current anomaly intrusion detection being done? 

4. What are the existing techniques available? 

5. What are their strengths and weaknesses? 

6. What are the relevant attributes to be considered in anomaly intrusion 

detection? 

7. How to improve the detection rate and reduce the false alarm rate of 

anomaly intrusion detection? 
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8. How to efficiently and effectively design and implement an intrusion 

detection system to detect known and novel attacks? 

9. Current techniques used in computer security are not able to cope with the 

changing environment and increasingly complex nature of computer 

systems and their security. How can these be solved? 

10. How can PCA feature selection, F2ART, and NMF solve complex IDS 

problems, and new pattern detection?  

11. Is it possible for PCA to select feature without losing information? 

12. Is there any ability of a neural network to learn a new pattern and the 

ability for the new learning not to be affected by the previous learning?  

1.4 Objectives of the Study   
 

 

The main goal of this research is to improve versions of fuzzy techniques to 

cluster the attacks type of data. Therefore, this thesis is carried out in order to fulfil 

the following objectives: 

 

1. To propose a framework that comprise of feature selection, fuzzy 

clustering and labelling clusters for network anomaly detection with 

solving complex intrusion detection system problems, i.e. uncertain 

data, and handle about false alarm rate. 

2. To develop a clustering algorithm that hybrid benefit of two 

techniques together to increase the performance accuracy of detection 

rate.  

3. To develop a clusters labelling algorithms to decrease false positive 

rate by weighting clusters with a degree of probability of clusters.  

 

Intrusion detection systems attempt to design the framework for increasing 

the accuracy detection and decreasing false alarm rate. Various techniques were 

studied in intrusion detection field and still nowadays researchers are still focusing 
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on implementing the latest techniques in order to improve the intrusion detection 

model. This has raised recent interest in anomaly detection, in which a model is built 

of normal behaviour and significant deviations from the model are flagged 

anomalously. Most of the anomaly detection algorithms require the training datasets 

to be free of attacks.  However, the intrusion models that all these methods adopt to 

totally depend on the instances of the training data sets, so clean data sets (attack 

free) are crucial for building applied anomaly detection. In fact, collecting clean data 

sets is very difficult and costly, so it is essential to study the unsupervised intrusion 

detection methods. It needs to improve the analysis of new data over time without the 

requirement of retraining over all the previous and new data. 

 

 

 

 

1.5  Scope of the Study 
 

 

The objectives of this study have been stated in the previous section. In order 

to achieve these objectives, it is decided to follow the scope, which covers the 

following aspects:  

 

1. The study focuses only on secondary data, i.e., available from 

published, authoritative sources. It should be noted that this research 

is not concerned with real time detection systems but only proposes 

them.  

2. Performance benchmark on KDD Cup 1999 data sets,   in measuring 

the performance and ability of the proposed method by dividing the 

data into two groups, Group 1 has 88,911 instances and Group 2 has 

49,547 records. 

3. Using the several evaluations for the performance of the classifiers 

that calculated based on the testing patterns.  
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1.6 Significance of the Study 
 

 

Generally, anomaly intrusion detection approaches build normal profiles from 

labelled training data. However, labelled training data for intrusion detection is 

expensive and not easy to be obtained. This thesis addresses the unsupervised 

anomaly intrusion detection accuracy problem involved in false alarm rate. Towards 

the conclusion of this thesis it will portray a clearer view regarding the classification 

of the blurred line between normal behaviours and anomalous. It would be useful to 

examine the attack with impurity of data set in dynamic environment. 

  

 This thesis handles fuzzy attack data to encourage development of systems 

and algorithms with KDD Cup 1999 dataset by producing the new framework of 

hybrid Fuzzy c-means, Fuzzy ART, and labelling clusters, for network anomaly 

detection with solving complex intrusion detection system problems. In addition, it is 

intended to investigate the importance of pre-processing phase which includes data 

cleaning and feature selection process in the intrusion detection systems for increase 

the accuracy of performance of the detection rate. Moreover, this thesis also 

compared the performance of F2ART framework for network anomaly detection 

with previously proposed methods in finding the strengths and weaknesses of the 

proposed method. 

 

In addition, other researchers can take advantage of this research based on the 

following aspects. First of all, the study contributes to researchers to encouraging 

that more works should explore the advantages of F2ART through improved 

theories. Secondly, practitioner can enhance their understanding of this technique by 

looking at the exposure of another promising technique of intrusion detection system 

as the existing techniques. Thirdly, the findings from this research are also useful for 

researchers who are interested in applying F2ART algorithm in fundamental data due 

to the fact that historical data will be beneficial both in the commercial and academic 

sectors. Finally, the results of this research will be useful for practitioners who intend 

to further their study.  

�
�
�
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1.7 Thesis Outline
 

 

The outline of the thesis is provided in Figure 1.1. This thesis concerned with 

the clustering methods in the computer network intrusion detection areas. It stresses 

on the interest in detecting known and novel network intrusion attacks that can be 

detected with activity monitoring schemes. Below is an outline of the thesis.  Chapter 

1 introduces the problem of computer security and the need for intrusion detection 

systems that will be further elaborated in the thesis. Chapter 2 reviews literatures 

dealing with intrusion detection systems and research. It introduces concepts of 

clustering, soft computing, fuzzy logic, etc. It also includes a brief introduction to 

data mining, particularly to classification and clustering. A survey of the supervised 

and unsupervised learning that have been applied to intrusion detection is presented 

at the end of the chapter.  

 

Chapter 3 presents and discusses the research methodology. Chapter 4 

presents the feature selection for effective anomaly detection - some techniques of 

feature selection methods that have been widely used in this area and presents PCA 

feature selection with experiments this algorithm. Chapter 5 details the F2ART 

framework and the Hybrid Fuzzy c-means and Fuzzy Adaptive Resonance Theory 

(F2ART) clustering approach for intrusion detection. The procedures of FCM, Fuzzy 

ART are presented as well. A hybrid F2ART is constructed in order to improve the 

detection rate of attacks. 

 

Chapter 6 describes experimental setup and results for F2ART methods and 

description of the data was also presented for experimental. This chapter also 

illustrates the results of applying the FCM, Fuzzy ART, and F2ART methods that the 

data have used in the case study.  The performance of the clustering on intrusion data 

is also studied. Chapter 7 explains statements on the research achievements, 

discussions and conclusions of this thesis are presented in this chapter. This is 

included by the research findings and discussions directions will be made regarding 

the directions for future research. Appendix B shows the sample of data set in pre-

processing step. Appendix C shows list of the presentations and publications. 
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Performance F2ART with various vigilance parameter value,
proportion ratio normal pattern in data set, and result feature selection

with/without feature selected. Compare results with FCM, Fuzzy ART.

Principal Component Analysis (PCA) for feature selection in anomaly
detection by using principle variable (PV) of PCA. Rough Set theory.

Chapter 1:Introduction

  1. Background of the problem
  2. Statement of the problem
  3. Objectives of the study
  4. Scope of the study
  5. Significant of the study

Chapter 2: Literature Review

Chapter 3: Feature selection for effective anomaly detection

F2ART framework consist of component are : Data Provider,
PreProcessor, F2ART Analyzer, Responder and IDS evaluator.

To modified similarity measure and new learning rule which
incorporates a fuzzy membership (Fuzzy c-means) value in incremental

learning of the Fuzzy ART control structure for clustering.

Chapter 5: The F2ART framework and hybrid of fuzzy c-means
and fuzzy adaptive resonance theory

Chapter 7: Discussions and Conclusions

Chapter 6: Experimental Setup and Results

To describes the overall methodology adopted in this research to
achieve the objectives of this thesis.

Chapter 3: The Research Methodology

.

 
Figure 1.1 Outline of thesis
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