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ABSTRACT 
 

 

 

This thesis presents seismic hazard assessment (SHA) which covers 
macrozonation analysis for Peninsular Malaysia and microzonation analysis focused 
on Kuala Lumpur City Centre (KLCC) and Putrajaya.  The SHA is needed for 
mitigation of the effects of large earthquakes that may occur in the future.  KLCC 
and Putrajaya are the two major areas selected because these are the main business 
centres and administration centres of Malaysia, respectively; hence they have 
significant numbers of settlements, high rise buildings, monumental structures and 
other critical facilities.  Therefore, the risks of these areas are relatively higher than 
other cities in Peninsular Malaysia.  Generally, there are four steps involved in 
conducting the macrozonation study: (1) collecting and analyzing earthquake data; 
(2) developing and characterizing seismic source models; (3) developing and 
selecting appropriate attenuation relationships; and (4) calculating seismic hazard 
using total probability theory.  The results from this study are macrozonation maps 
for Peninsular Malaysia, uniform hazard spectra at bedrock and synthetic time 
histories for KLCC and Putrajaya.  The probabilistic seismic hazard assessment 
(PSHA) is performed for 10% and 2% probability of exceedance (PE) in design time 
period of 50 years or the corresponding to return period of approximately 500 and 
2,500 years, respectively.  The results show that the peak ground acceleration (PGA) 
across Peninsular Malaysia are in the range of 20-100 gals and 40-200 gals for 10% 
and 2% PE in 50-year hazard levels, respectively.  The hazard levels show that the 
trend of contour increasing consistently from the northeast to the southwest of 
Peninsular Malaysia.  Microzonation study is performed in order to obtain ground 
motion parameters such as acceleration, amplification factor and response spectra at 
the surface of KLCC and Putrajaya.  The analyses are carried out by using nonlinear 
one dimensional shear wave propagation analysis approach.  The results of site 
response analysis at several points were used to develop contour of acceleration and 
amplification factors at the surface of KLCC and Putrajaya for 500 and 2,500-years 
return periods.  The results show that the accelerations at the surface of KLCC are in 
the range of 80-220 gals and 170-340 gals for 500 and 2,500 years return periods, 
respectively.  The amplification factors for those two hazard levels range between 
1.2 and 2.9.  The accelerations at the surface of Putrajaya are in the range of 130-190 
gals and 220-340 gals for 500 and 2,500 years return periods, respectively.  The 
amplification factors for those two hazard levels range between 1.6 and 2.6.  Finally, 
the design response spectra for structural design purposes are proposed based on this 
research.  
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ABSTRAK 
 

 

 

Tesis ini berkenaan pengiraan risiko sismik (SHA) yang meliputi analisis 
macrozonation untuk Semenanjung Malaysia dan analisis microzonation yang 
difokuskan untuk pusat bandar Kuala Lumpur (KLCC) dan Putrajaya.  SHA 
diperlukan untuk mengurangkan risiko gempa bumi besar yang mungkin terjadi di 
masa akan datang.  Dua kawasan utama KLCC dan Putrajaya dipilih kerana kedua 
kawasan ini masing-masing merupakan pusat perniagaan dan pentadbiran di 
Malaysia yang memiliki kawasan perumahan, bangunan-bangunan tinggi dan 
kemudahan awam dengan jumlah yang besar.  Oleh kerana itu risiko sismik di 
kedua-dua kawasan tersebut melebihi kawasan-kawasan lain di Semenanjung 
Malaysia.  Secara umum, kajian macrozonation terdiri dari empat langkah: (1) 
pengumpulan dan analisis data gempa bumi; (2) penghasilan dan pengiraan 
parameter-parameter model sismik ; (3) penghasilan dan pemilihan fungsi 
attenuation yang sesuai; dan (4) Pengiraan risiko sismik dengan menggunakan teori 
jumlah probabiliti.  Hasil dari kajian ini adalah peta macrozonation untuk 
semenanjung Malaysia, uniform hazard spectra pada batuan dasar dan time histories 
untuk KLCC dan Putrajaya.  Analisis dengan kaedah probabilistik  dilakukan untuk 
10% dan 2% kebarangkalian terlampaui untuk waktu reka bentuk 50 tahun atau 
bersesuaian masing-masing dengan tempoh ulang 500 dan 2,500 tahun.  Hasil 
analisis menunjukkan nilai pecutan puncak di batuan dasar untuk Semenanjung 
Malaysia adalah antara 20-100 gals dan  40-200 gal untuk masing-masing 10% dan 
2% kebarangkalian terlampaui untuk waktu reka bentuk 50 tahun.  Aras risiko 
menunjukkan pola kontur yang meningkat dari bahagian timur laut ke arah barat 
daya Semenanjung Malaysia.  Kajian microzonation dilakukan untuk mendapatkan 
parameter-parameter gerakan tanah seperti pecutan, faktor penguatan dan tindak 
balas spektra di permukaan KLCC dan Putrajaya.  Analisis dilaksanakan dengan 
menggunakan analisis perambatan gelombang satu dimensi dengan pendekatan tak 
linear.  Hasil dari analisis tindak balas tanah di beberapa lokasi digunakan untuk 
menghasilkan kontur pecutan dan faktor penguatan di permukaan KLCC dan 
Putrajaya untuk tempoh ulang 500 dan 2,500 tahun.  Hasil analisis menunjukkan 
pecutan di permukaan KLCC adalah antara 80-220 gals dan 170-340 gals untuk 
masing-masing tempoh ulang 500 dan 2,500 tahun.  Faktor penguatan untuk aras 
risiko tersebut adalah antara 1.2-2.9.  Pecutan di permukaan Putrajaya adalah antara 
130-190 gals dan 220-340 gals untuk masing-masing tempoh ulang 500 dan 2,500 
tahun.  Faktor penguatan untuk aras risiko tersebut adalah antara 1.6 dan 2.6.  
Akhirnya, berdasarkan kajian ini, bentuk tindak balas spektra dihasilkan untuk tujuan 
reka bentuk struktur bangunan.  
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CHAPTER 1 
 

 

 

INTRODUCTION  
 

 

 

1.1 General 
 

Earthquake is one of the most devastating natural disasters on the earth.  

Generally, the effects of strong earthquakes are caused by ground shaking, surface 

faulting, liquefaction, and less commonly, by tsunamis.  Ground shaking is a term 

used to describe the vibration of the ground during an earthquake caused by body 

and surface seismic waves.  Surface faulting is caused by differential movement of 

the two sides of a fracture at the Earth's surface.  Liquefaction is a physical process 

that takes place during some earthquakes that may lead to ground failure.  In this 

phenomenon, the strength of the soil decreases, often drastically, to the point where it 

is unable to support structures or remain stable.  At this stage, the soil deposits will 

appear to flow as fluids.  Tsunamis are water waves that are caused by sudden 

vertical movement of a large area of the sea floor during an undersea earthquake.  As 

tsunamis reach shallow water around islands or on a continental shelf; the height of 

the waves could increase many times. 

 

Although it is impossible to prevent earthquakes from happening, it is 

possible to mitigate the effects of strong earthquake shaking and to reduce loss of 

life, injuries and damages.  The most effective way to reduce disasters caused by 

earthquakes is to estimate the seismic hazard and to disseminate this information for 



2 

used in improved building design and construction so that the structures posses 

adequate earthquake resistant capacity (Hu, 1996).   

 

Earthquake engineering can be defined as the branch of engineering devoted 

to mitigating earthquake hazards.  Earthquake engineering deals with the effects of 

earthquakes on people and their environment and with methods of reducing those 

effects.  In this broad sense, earthquake engineering covers the investigation and 

solution of the problems created by damaging earthquakes, and consequently the 

works involved in the practical application of these solutions, i.e. in planning, 

designing, constructing and managing earthquake-resistant structures and facilities. 

 

It has become customary in earthquake engineering and related areas to 

distinguish between seismic hazard and seismic risk, although the semantics of both 

words is the same.  Seismic hazard is used to describe severity of ground motion at a 

site regardless of the consequences, while the definition of seismic risk is based also 

on the consequences (Todorovska et al., 1995; Gupta, 2002).  High hazard does not 

automatically imply high risk and vice versa.  The hazard may be high at a site close 

to an active fault, whereas the risk may not be high if there is no settlement and 

industrial facility.  Along the same line, the seismic risk is large at the site of critical 

facilities, such as a dam or a nuclear power plant, even if the location is not so close 

to active faults and there is not much evidence of historic earthquake activities.  

 

Both seismic hazards and seismic risks analyses are required to develop the 

elements that can be used to make rational decisions on seismic safety (McGuire, 

2004).  McGuire (2004) shows the connection between seismic hazard and seismic 

risk (Figure 1.1).  He divided the methodology for evaluating the effects of future 

earthquakes (and the uncertainty about those effects) on people and structures into 

four steps.  First is probabilistic seismic hazard analysis (PSHA), which gives a 

probabilistic description (a frequency of exceedance) of earthquake characteristics 

such as ground motion amplitudes and fault displacements.  Second is the estimation 

of earthquake damage to the artificial and perhaps the natural structures.  Third is the 

translation of seismic hazards into seismic risks (frequency of damage or loss).  

Fourth is the formal analysis or the informal analysis of earthquake mitigation 

decisions.  The decision process should incorporate uncertainties in the earthquake 



3 

process and ground motion characteristic, uncertainties in the effects of the 

earthquakes on people and structures, costs of seismic safety and potential losses, 

and aversion to risk. 

 

 
Figure 1.1: Steps in the mitigation of earthquake risk (McGuire, 2004). 

 

According to Figure 1.1, the seismic hazard assessment using probabilistic 

method is the first step that should be done by engineers or researchers in the 

mitigation of earthquake risks.  Clear and well documented assessments of seismic 

hazard are the first and fundamental step in the mitigation process (Abrahamson and 

Shedlock, 1997).  This step is critical because it involves so many factors and 

uncertainties to be considered.  It should be noted that the method of seismic hazard 

assessment, which was applied in a certain region, may not be necessarily employed 

in other regions since an individual region has its own characteristics.  Therefore, it 

would be necessary to perform seismic hazard analysis for each region and to 

develop seismic design code suitable with the characteristics on that particular region 

rather than just adopt the existing code from other regions. 

 

Generally, seismic code used to design dynamic load for civil structures such 

as buildings, retaining walls, dams, bridges and other structures are based on 

compilation of earthquake engineering multidisciplinary field, i.e. seismology, 
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geology, geotechnical and structural engineering.  The design parameter is typically 

acceleration, velocity or spectral acceleration with a specified probability of 

exceedance.  These parameters are mapped on a national or a regional scale for a 

standard ground condition, usually rock or stiff soil.   Mapping to such a scale is 

called macrozonation (Finn et al., 2004).  

 

Geotechnical factors often exert a major influence on damage patterns and 

loss of life in earthquake events.  For example, the localized patterns of heavy 

damage during the 1985 Mexico City and 1989 Loma Prieta earthquakes provide 

illustrations of the importance of understanding the seismic response of deep clay 

deposits and saturated sand deposits (Bray et al., 1994).   

 

The pronounced influence of local soil condition on the characteristics of the 

observed earthquake ground motions also can be seen during 1957 San Francisco 

Earthquake (Seed et al., 1991).  Even within an area of a city, building response and 

damage are varied significantly due to variation of soil profiles in that particular city 

(Seed et al., 1991).  In other countries, several attempts have been made to identify 

their effects on earthquake hazards related to geotechnical factors in the form of 

maps or inventories.  Mapping of seismic hazard at local scales to incorporate the 

effects of local geotechnical factors is called microzonation (Finn et al., 2004).   

 

Microzonation for seismic hazard has many uses as mentioned by Finn et al. 

(2004).  It can provide input for seismic design, land use management, and 

estimation of the potential for liquefaction and landslides.  It also provides the basis 

for estimating and mapping the potential damage to buildings. 

 

 

 

1.2 Background 
 

Although Malaysia is located in the stable Sunda Shelf with low to moderate 

seismic activity level, it is surrounded by Indonesia and Philippine, which are close 

to active seismic faults.  The fact that Malaysia has not experienced any major 
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earthquake disasters should not be used as an argument to dismiss the need for taking 

any pro-active steps to look into the earthquake threat.   

 

In recent years, Malaysia is more aware to the seismic effect on their 

buildings because the tremors were repeatedly felt over the centuries from the 

earthquake events around Malaysia (SEASEE, 1985).  Peninsular Malaysia has felt 

tremors several times from some of the large earthquakes originating from the 

intersection areas of Eurasian plate and Indo-Australian plate near Sumatra, and 

some of the moderate to large earthquakes originating from the Great Sumatran fault.  

For instance, the earthquakes occurred on 2 November 2002 has caused cracks on 

some buildings in Penang, although the location of the epicentre is more than 500 km 

away from Penang.  The moment magnitude and the depth of this earthquake are 7.4 

and 33 km below the surface, respectively.  Another earthquake having magnitude, 

Mw7.3 occurred on 25 July 2004 in South Sumatra.  Although the location of the 

epicentre and the depth of the earthquake are more than 400 km from Johor Bahru 

and 576 km below surface, respectively; the earthquake has caused cracks on one 

apartment building in Gelang Patah, Johor Bahru.  There were no casualties or major 

damages reported due to those earthquakes, however, the tremors have caused panic 

to the people around that particular area.  

 

East Malaysia has experienced small to moderate earthquakes from local 

origin and tremors originating from the southern part of the intersection area of 

Eurasian and Philippines plates as listed by Surat (2001) and Rosaidi (2001).  The 

1976 earthquake of magnitude 5.8 in Lahad Datu caused some houses and buildings 

to develop cracks in the walls.  A four storey police complex nearing completion 

suffered severe structural damage.  Several roads in the district were reported to have 

cracked too, causing damage.  Similarly, the 1991 Ranau earthquake of magnitude 

5.2 on Richter scale caused extensive damages to a four-storey teacher’s quarters and 

were verified unfit for occupancy.  The earthquake of magnitude 4.8 that occurred on 

2 May 2004 near Miri, Sarawak likewise caused some damages to the non-reinforced 

concrete buildings and developed cracks on the ground (Bernama, 2004). 

 

The frequent occurrence of tremors within the country and nearby region 

seems to suggest that seismic risk in Malaysia is evident.  The question now is the 
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level of risk and its regional variation and whether it is necessary to consider seismic 

factors in the planning and design of structures and/or infrastructures.  These 

questions have so far remained unanswered due to a lack of understanding of 

seismicity and inadequate seismic data in Malaysia.  Hence, the level of seismic risk 

in Malaysia is still barely known.  It is not known if such risk should be considered 

in future design of structures and/or infrastructures.  This is further compounded by 

the fact that Malaysia is rapidly developing and major installations and high-rise 

structures are being constructed at a rapid pace.  These structures, especially those in 

the west coast of Peninsular Malaysia, may be susceptible to long period of ground 

motions originating from distant earthquakes.  

 

Based on the above facts, the earthquake engineering research is urgently 

required in order to predict the possibility of earthquakes in the future that can cause 

damages to the buildings and structures in Malaysia and to find the solutions for 

mitigating the effects.  The engineers have a responsibility to quantify the earthquake 

risks in Malaysia quantitatively and find the optimal solutions to deal with those 

effects.   

 

The research works regarding earthquake engineering in Malaysia are 

relatively behind compared to other engineering fields.  This is because the historical 

earthquake event in Malaysia especially in Peninsular Malaysia is not so profound.  

Moreover, the nearest distance of earthquake epicentre from Peninsular Malaysia is 

about 300-400 km.  Generally, the earthquakes can cause significant damages within 

100-200 km radius from the fault or epicentre.  At farther distance, amplitudes of 

incoming seismic shear waves are generally small (Lee, 1987), however, the “Bowl 

of Jelly” phenomenon, as what had happened to Mexico City in 1985 should be 

considered more seriously.  The phenomena have shown that an earthquake can have 

a significant effect although at longer distance due to the long period component of 

shear waves. 

 

In the case of the 1985 Mexican earthquake, the greatest concentration of 

damages occurred in the Lake Zone of Mexico City at which the location is 

approximately 400 km from the epicentre.  Distant fault together with soft soil 

amplified the vibration from the source to the ground surface at the site.  This effect 
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becomes more dangerous for high-rise building or structures, which have 

fundamental periods close to that of the soil.  Therefore, seismic hazard assessment 

accommodates geotechnical considerations such as geological, seismological and 

local soil conditions are required in order to anticipate the catastrophic effects due to 

potential large earthquakes in the future.  

 

This research is proposed to apply seismic hazard assessment for Malaysia.  

In light of the previous discussion, it can be concluded that geotechnical 

considerations play an integral role in the development of accurate safety against 

earthquake hazards and sound earthquake resistance designs.  The considerations that 

shall be included in the research to obtain accurate safety against earthquake hazards 

are geological and seismological conditions, attenuation of earthquake wave 

propagation in base rock, specific acceleration time histories, and local soil 

conditions.  Hence, in order to cover the above considerations comprehensively, this 

research focuses on Peninsular Malaysia for macrozonation analysis while Kuala 

Lumpur City Centre (KLCC) and Putrajaya are two major areas selected for 

microzonation analyses.  These two major areas are selected because they have 

significant numbers of settlements, high rise buildings, monumental structures and 

other critical facilities.  Moreover, since Kuala Lumpur and Putrajaya are the main 

centres for business and administration in Malaysia, respectively, therefore the 

seismic risks are relatively higher than other cities in Peninsular Malaysia.  They 

have a lot of population, investments and assets that should be protected against 

earthquake hazard. 

 

 

 

1.3 Problem Statement 
 

Seismic hazard assessment for Peninsular Malaysia is needed in order to 

mitigate the effects of large earthquake that may happen in the future.  The seismic 

hazard assessment should consider the seismology and geology of Peninsular 

Malaysia as well as the local site conditions.  This is because all these conditions are 
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related to each other so as to develop a reliable seismic code for designing dynamic 

loads for civil structures. 

 

 

 

1.4 Objectives  
 

There are three (3) primary objectives in this research.  The objectives are: 

1. To develop macrozonation maps as a function of return period using the 

probabilistic method for Peninsular Malaysia.  The analysis considered 

the geological and seismological conditions around Peninsular Malaysia.  

2. To develop microzonation maps of KLCC and Putrajaya.  The 

microzonation maps cover iso-acceleration and iso-amplification factor 

contours on the surface of KLCC and Putrajaya. 

3. To propose designed response spectra for structural design purposes on 

KLCC and Putrajaya.  In this study, the procedures proposed by 1997 

UBC and 1997 NEHRP (or 2000 IBC) were used as references for 

developing a design spectrum for a particular site category in KLCC and 

Putrajaya.  

 

The research works regarding the effects of distant earthquakes are not as 

many as short distance (less than 200 km).  This can be seen in the number of papers 

presented in international journals or conferences on earthquake engineering.  

Therefore, it is expected that the research will also contribute to the enhancement of 

earthquake geotechnical engineering knowledge and improvement in seismic 

resistance building design especially for countries that are affected by distant 

earthquakes such as Peninsular Malaysia.  

 

In addition, a software for preparing seismic hazard assessment has also been 

developed for supporting the research.  At this moment the software has the 

capabilities as follows: 1) to show visually the location of epicentre, 2) to make a 

cross section for plotting the depth of earthquake events, 3) to collect earthquake data 
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from some region, 4) to analyze catalogue completeness, 5) to separate main shock 

and accessory shock events, 6) to analyze the peak ground acceleration (PGA) at a 

particular location deterministically, and 7) to assess seismic hazard probabilistically 

using extreme value method from Gumbel. 

 

 

 

1.5 Scope and Limitations 
 

There are many parameters that may have effects on the results of analysis; 

therefore the analysis is limited to the following parameters:   

 

1. Data collection and preparation. 

a. Compiling the reliable earthquake catalogues.  

b. Obtaining homogeneous magnitude size. 

c. Separating between main shock and dependent shock earthquake 

events. 

d. Analyzing of earthquake catalogue completeness.  

e. Performing soil investigations including static and seismic tests on 

selected locations in KLCC and Putrajaya.   

 

2. Macrozonation Study. 

a. Developing reliable seismic source models for Peninsular Malaysia. 

b. Characterizing seismic source models.  The analysis is restricted only 

to find the a-b value, the rate and the maximum magnitude of the 

seismic source models.  

c. Developing and selecting appropriate attenuation functions for 

Peninsular Malaysia. 

d. Developing macrozonation maps of Peninsular Malaysia for 10% and 

2% probability of exceedance (PE) in 50 years or correspond to 500 

and 2500 year return periods of earthquake, respectively. 
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e. Developing uniform hazard spectra (UHS) for KLCC and Putrajaya. 

f. Generating artificial time-histories for KLCC and Putrajaya.   

 

3. Microzonation study. 

a. Analyzing soil dynamic properties on selected locations in KLCC and 

Putrajaya. 

b. Analyzing one dimensional shear wave propagation analysis on 

selected locations in KLCC and Putrajaya. 

c. Developing maps of iso-acceleration and iso-amplification factors on 

the ground surface of KLCC and Putrajaya.  

d. Proposed design response spectra of KLCC and Putrajaya for 

structural design purposes. 

 

 

 

1.6  Methodology 
 

The research design of this thesis is shown in Figures 1.2.  In the figures, the 

symbols I, O, and P stand for input, output and process of the analysis, respectively, 

while the arrows show the flows of input required by the process and the output as a 

result of the analysis. 

 

 

 

1.6.1 External Data 

 

As shown in Figure 1.2, there are three external input data required in the 

analysis: the historical earthquake data and the seismotectonic data for 

macrozonation study and the soil data for microzonation study (ground response and 

response spectra analyses).   
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The following works were performed in order to obtain external inputs for the 

macrozonation study:  

1. Collect historical earthquake data from national and international 

institutions.  The earthquake data required in the analysis are the 

magnitude, location of epicentre (longitude and latitude), focal depth, and 

date of the earthquake (year, month, and day). 

2. Study literature on the previous research works regarding the seismology 

and geology conditions in order to identify the location, the length, the 

rate of displacement, the direction, and the mechanism of active faults 

around Peninsular Malaysia.   

 

In this thesis, the collection of earthquake data and the identification of 

seismology condition around Peninsular Malaysia are discussed in more detailed in 

Chapter 3. 

 

The microzonation study requires soil data such as soil stratigraphy, ground 

water level and soil dynamic properties.  The measurement of soil dynamic 

properties from field tests can be performed on the ground surface (surface tests) or 

by drilling boreholes or by the advancement of probe into the soil.  Surface tests are 

often less expensive and can be performed relatively quickly.  On the other hand, 

borehole tests have the advantage of gaining the information directly from the 

boring: visual and laboratory-determined soil characteristics, and water table 

location.  Moreover, the interpretation of borehole tests is usually more direct than 

surface tests.  Alternatively, the soil data may also be obtained from static field test 

to find static soil parameters such as NSPT or other soil strength parameters.  The 

static soil parameters are then converted to soil dynamic parameters using empirical 

correlations.   

 

In this research, the following works were performed in order to obtain 

external inputs for microzonation study:  

1. Conduct the standard soil investigations and seismic tests in KLCC and 

Putrajaya. 
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2. Compile the existing soil data on selected points in KLCC and Putrajaya.   

 

In this research, the seismic down-hole tests were performed in order to 

measure dynamic soil properties in KLCC and Putrajaya.  The procedure for seismic 

down-hole test is described in more detail in Chapter 6. 

 

 

 

1.6.2 The Analyses 

 

Generally, there are five main processes performed in this research as shown 

in Figure 1.2: earthquake data analysis, seismic source model analysis, 

macrozonation analysis, ground response analysis, and response spectra analysis. 

 

1.6.2.1 Earthquake Data Analysis 

 

In this study, the historical earthquake data were compiled from several 

catalogues from local and International Institutions.  Typical characteristics of 

earthquake catalogues are as follows: 

1. The magnitude scales used in the catalogues are not uniform.  This is 

because the earthquake events were not recorded using only one type of 

instrument.   

2. The earthquake catalogues are mixed between main shock and accessory 

shock events.  Therefore, the data is not valid when the temporal 

occurrence of earthquakes is analyzed using Poisson model.  

3. The small events are usually incomplete in earthquake catalogue.  This is 

because of the limitation of the sensitivity and the coverage area of the 

seismographic networks. 

 

The first problem is solved by choosing a consistent magnitude for SHA, and 

then the other magnitude scales are converted to this magnitude scale.  In this 

research, a moment magnitude, Mw, is chosen as the measurement to quantify the 
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size of earthquake.  Other types of magnitude in the catalogue were then converted to 

Mw. Several formulas have been proposed to convert from other magnitudes to 

moment magnitude.  In this study, the new formulas for converting MS and mb to Mw 

and ML to mb were developed.  The statistical analyses were carried out to test the 

reliability of the formulas.     

 

The second problem is solved by declustering the catalogue using time and 

distance windows criteria (e.g. Gardner and Knopoff, 1974; Uhrhammer, 1986).  

Some previous research works were analyzed and selected in this thesis in order to 

separate the main shock and the accessory shock events (foreshock and aftershock).   

 

The third problem is solved by catalogue completeness analysis.  In this 

study, historical earthquake data occurred between 1900 and 2004 were analyzed for 

completeness using Stepp (1973) method.  The completeness analysis is applied only 

for main shock earthquake events. 

 

The procedures for process earthquake data are described in more detail in 

Chapter 3.  The output of this process is a reliable earthquake data.  

 

1.6.2.2 Seismic Source Modelling 

 

Seismic source models were developed in this study.  Generally, there are 

four steps were performed in this study for developing the new seismic source model 

for Peninsular Malaysia.  The four steps are as follows: 

1. Locating the source. 

2. Assessing the source dimensions. 

3. Assessing the source orientation. 

4. Representing the source.  

 

Steps 1 to 3 were performed based on the distribution of historical earthquake 

data and seismotectonic setting around Peninsular Malaysia.  The source orientations 
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have considered not only the strike angles of the source but also the dip angles as 

well. 

 

Step 4 was conducted by assessing and evaluating seismic hazard parameters 

for all source zones. The seismic hazard parameters are represented by frequency-

magnitude relationship (i.e. a-b values and maximum magnitude).  Several methods 

were considered in determining seismic hazard parameters in order to cover 

epistemic uncertainties.  Three methods for assessing seismic hazard parameters 

were used in this research; i.e., Least Square (LS), Weichert (1980), and Kijko & 

Sellevoll (1989). 

 

The procedure for developing seismic source model is described and 

discussed in more detail in Chapter 3.  The outputs of this process are the seismic 

source zone models including the geometries and the seismic hazard parameters.  

These outputs are required for macrozonation analysis. 

 

1.6.2.3 Macrozonation Analysis 

 

Macrozonation analysis is performed in order to obtain characteristics of 

ground motion at base rock such as maximum acceleration and targeted response 

spectra for certain return periods of earthquake.  In this study, the seismic hazard 

assessment (SHA) is performed using probabilistic approach for the following 

reasons: 

1. The probabilistic seismic hazard assessment (PSHA) approach is more 

appropriate to be used for highly quantitative decisions such as 

development of seismic design code, regional mitigation plans, and 

insurance. 

2. The probabilistic approach is convenient for comparing risks in various 

parts of a country and for comparing the earthquake risk with other 

natural and man-made hazards (e.g. floods, wind, and landslide). 

3. The probabilistic approach opens the possibility for risk-benefit analyses 

and respective design motions (Gupta, 2002).  The motivation for such a 

design principle is that, at the time of construction or strengthening, if it is 
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invested in strength beyond that required just to prevent collapse (e.g., by 

codes), the monetary losses during future likely earthquakes may be 

reduced significantly. 

 

The analysis includes as follows: 

1. Develop and select appropriate attenuation functions for Peninsular 

Malaysia.  This analysis is described in more detail in Chapter 4. 

2. Perform probabilistic seismic hazard analysis (PSHA), which gives a 

probabilistic description (a frequency of exceedance) of earthquake 

characteristics such as ground motion amplitudes.  

3. Develop uniform hazard spectra at bedrock for KLCC and Putrajaya. 

4. Perform time histories analysis to generate artificial time histories for 

KLCC and Putrajaya.  The time histories were generated so as to match 

the uniform hazard spectra given in PSHA.  This data is required for shear 

wave propagation analysis in microzonation study. 

 

Chapter 5 are discussed more detail the procedures for PSHA and time 

histories analysis.  The outputs of this process are macrozonation maps for 

Peninsular Malaysia and time histories at bedrock of KLCC and Putrajaya.  These 

outputs are required for ground response analysis. 

 

1.6.2.4 Ground Response Analysis 

 

This study is performed in order to obtain ground motion parameters such as 

acceleration, amplification factor and response spectra at the surface.  Analysis 

covers as follows:  

1. Analysis of soil dynamic parameters on the selected points to obtain shear 

modulus (G), damping ratio (D), and shear wave velocity (VS).  

2. Determination of site categories for selected locations in KLCC and 

Putrajaya. 
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3. Analysis of shear wave propagation from base rock to ground surface for 

each selected points to obtain peak surface acceleration, amplification 

factor, and response spectra at the surface.  In this analysis, local soil 

dynamic properties and several alternative input motions were considered. 

4. Development of iso-acceleration and iso amplification factor contours on 

KLCC and Putrajaya.  

 

The site categories proposed by the recent codes of UBC or 2000 IBC are 

used for classifying the selected site locations in KLCC and Putrajaya.  The 

determination of site category is based on the average shear wave velocity, VS to a 

depth of 30 m.  The ground response analyses were performed using nonlinear 

approach.  These analyses are discussed in Chapter 6.   

 

1.6.2.5 Response Spectra Analysis 

 

The response spectra analysis was performed in order to develop design 

response spectra for structural design purposes.  In this step, the response spectra at 

the surface (from the ground response analysis) were analyzed and compared to the 

response spectra proposed by the existing codes such as 1997 UBC and 2000 IBC.  

The process is described in more detail in Chapter 6.  The output of this process is a 

smooth or a design spectrum for a particular site category in KLCC and Putrajaya. 

 

 

 

1.7 Organization of Thesis 
 

The methodology of the research as discussed in the preceding section is 

implemented into seven chapters.  The connection between the methodology and 

each chapter is shown in Figure 1.3.  The second column in the figure shows the 

content for each chapter and the last column on the right side points up the output 

from the related chapter.  The dashed lines show input-output relations among the 

chapters.  
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Figure 1.3: Implementation of the methodology in the organization of thesis.  

 

The content of each chapter can be described briefly as follows: 

 Chapter 1 Introduction.  This chapter describes the background of the 

research, the objectives to be achieved, the research scopes, the 

methodology, and the structure of the thesis. 

 Chapter 2 Literature Review.  This chapter reviews and evaluates the 

topics which are related to earthquake engineering.  In this chapter, 

several methodologies for seismic hazard assessment including the effects 

of local soil conditions are discussed briefly.  Literature study regarding 

historical earthquake and seismotectonic setting around Peninsular 

Malaysia are also discussed in this chapter.   
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 Chapter 3 Earthquake Data and Seismic Source Zones.  In this chapter, 

earthquake data around Peninsular Malaysia are collected and processed 

so as to obtain reliable data for seismic hazard assessment in Chapter 5.  

Seismic source model and the seismic hazard parameters are also 

developed and analyzed in this chapter.    

 Chapter 4 Development and Selection Attenuation Functions.  

Attenuation function is one of the most critical point in seismic hazard 

assessment.  Hence, this topic requires detailed analysis and discussion.  

This chapter reviews and evaluates the appropriate attenuation functions 

for Peninsular Malaysia.  In this chapter, the proper attenuation functions 

are developed and selected.  The result is then applied in Chapter 5.    

 Chapter 5 Seismic Hazard Analysis.  This chapter analyzes seismic 

hazard for Peninsular Malaysia using total probability theory.  Seismic 

hazard parameters and attenuation functions from Chapter 4 are applied in 

probability seismic hazard analysis (PSHA) to develop peak ground 

acceleration (PGA) map for Peninsular Malaysia.  Time histories analysis 

is also discussed in this chapter.  PGA map and time histories obtained 

from this chapter are then applied in Chapter 6.  

 Chapter 6 Microzonation Study.  This chapter describes the effects of 

local soil conditions in Kuala Lumpur city centre and Putrajaya.  The 

analysis is based on soil investigation carried out in several locations 

around these two cities.  Finally, peak surface acceleration maps and 

design response spectra are developed for KLCC and Putrajaya. 

 Chapter 7 Conclusions and Recommendations.  This chapter concludes 

and summarizes the results on the previous chapters and also gives 

recommendations for further study. 
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