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ABSTRACT

Diamond tools are increasingly used in advanced manufacturing because of 
their unique properties such as high hardness and thermal conductivity, and low 
thermal expansion unbeatable by any other known material. Despite their importance 
in machining of precision parts, extensive research on diamond tool wear is still 
underway. Particularly, maintaining the cutting edge sharpness and prolonging tool 
life are very important for machining difficult-to-cut materials. It is believed that the 
existence of stagnant zone on the tool rake face during cutting can protect the cutting 
edge from rapid wear. In this research, a new analytical stagnant zone model is 
derived based on boundary layer theory in fluid mechanics. The stagnant zone model 
predicts the stagnant zone length on diamond tools when machining titanium alloy. 
The cutting tool stress and chip velocity distributions required for the analysis of the 
stagnant zone model were taken from Finite Element (FE) modelling and simulation 
of orthogonal machining. Machining of Ti-6Al-4V with polycrystalline diamond and 
diamond-coated tools were experimentally carried out to obtain cutting forces and 
stagnant zone information at various cutting conditions. Used tools and post-
processed chips were investigated under scanning electron (SEM), field-emission 
scanning electron (FE-SEM) and optical microscopes. In FE modelling, input data 
such as material properties and the constants required in Johnson-Cook constitutive 
model were taken from the literature, and the friction data were calculated from 
experimentally measured forces. FE simulations were carried out for various cutting 
speeds, feeds, edge radius and surface roughness of the tool. The developed FE 
model is validated by comparing the predicted and experimental cutting forces. The 
predicted cutting forces are agreeable with the experiments. MATLAB is used to fit 
the equations that represent velocity and stress distribution as well as to calculate the 
stagnant zone length in the developed stagnant zone model. It is found that the 
predicted values are closed to the experimental results for both diamond tools. The 
average stagnant zone lengths formed at certain cutting conditions are between 
0.1mm and 0.3mm. The used tool geometry, chip morphology and simulated shear 
strain, temperature, and velocity plots are also consistent with stagnant zone 
formation. The proposed stagnant zone model indicates that formation of stagnant 
zone is a function of cutting condition, tool geometry, the tool surface finish and 
material properties.  
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ABSTRAK

Penggunaan matalat intan meningkat dalam pembuatan termaju kerana 
keunikan sifatnya seperti kekerasan dan pengaliran haba yang tinggi, dan juga 
pengembangan haba yang rendah yang tiada tolok bandingnya dengan bahan yang 
lain. Disebalik kepentingannya dalam pemesinan komponen persis, kajian yang 
mendalam ke atas kehausan matalat intan masih sangat sedikit. Terutama sekali, 
pengekalan ketajaman mata pemotong dan hayat alat adalah sangat penting untuk 
memesin bahan yang sukar dipotong. Adalah dipercayai bahawa kewujudan zon 
genang di atas permukaan sadak matalat semasa memotong boleh melindungi mata 
pemotong daripada kehausan cepat. Dalam kajian ini, satu model analisis zon genang 
yang baru telah diterbitkan berdasarkan kepada teori lapisan sempadan dalam 
mekanik bendalir. Model zon genang yang diterbitkan berupaya meramal panjang 
zon genang di atas matalat intan apabila memesin aloi titanium. Tegasan matalat dan 
taburan kelajuan tatal yang diperlukan untuk menganalisis model zon genang telah 
diperolehi dari pemodelan Unsur Terhingga dan hasil simulasi pemesinan secara 
ortogon. Ujikaji pemesinan Ti-6Al-4V dengan menggunakan matalat intan polihablur 
dan matalat tersalut intan pada beberapa keadaan telah dijalankan untuk 
mendapatkan daya pemotongan dan maklumat zon genang.  Matalat yang telah 
digunakan dan tatal yang terhasil telah diperiksa di bawah mikroskop imbasan 
electron (SEM dan FE-SEM) dan optik. Dalam pemodelan FE, data masukan seperti 
sifat bahan dan angkatap yang diperlukan dalam model juzuk Johnson-Cook telah 
diperolehi dari kajian literatur, sementara data geseran pula dikira dari pengukuran 
daya. Simulasi FE telah dijalankan pada pelbagai kelajuan pemotongan, uluran, jejari 
dan kekasaran permukaan matalat. Model FE yang telah dibangunkan telah disahkan 
dengan membandingkan daya yang diramal dengan daya yang diperolehi dari ujikaji. 
Nilai daya pemotongan yang diramal adalah selaras dengan nilai ujikaji. MATLAB 
telah digunakan untuk memadankan persamaan yang mewakili taburan kelajuan dan 
tegasan. Ia juga digunakan untuk mengira panjang zon genang yang dihasilkan 
melalui model zon genang. Didapati bahawa nilai yang diramal adalah menghampiri 
kepada keputusan ujikaji bagi kedua-dua matalat intan. Purata panjang zon genang 
yang terbentuk pada keadaan pemotongan tertentu adalah di antara 0.1mm dan 
0.3mm. Geometri matalat yang telah digunakan, morfologi tatal dan plot simulasi 
terikan ricih, suhu dan kelajuan juga konsisten dengan pembentukan zon genang.  
Model zon genang yang dicadangkan menunjukkan bahawa pembentukan zon 
tersebut adalah bergantung kepada keadaan pemotongan, geometri matalat, kemasan 
permukaan matalat dan sifat bahan. 
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CHAPTER 1 

INTRODUCTION

1.1 Overview 

Diamond has been increasingly used as cutting tools in advanced 

manufacturing such as high precision finishing, single point diamond turning, and 

ultraprecision machining. Due to its very strong chemical bonding of the structure, 

diamond has unique mechanical and elastic properties. Its hardness, molar density, 

and thermal conductivity are higher than those of any other known materials (Evans 

et al., 1987; Davis, 1993). Such excellent properties of diamond are very important 

to make cutting tool with very sharp cutting edge that is crucial for machining ultra 

precision components. As the knowledge of the properties of diamond and the 

introduction of artifact diamond films have remarkably increased, the efficacious 

application of diamond to the technological requirements of the modern age is 

gaining momentum. Especially after single point diamond turning emerged as an 

economically viable technique for the machining of a range of components, the key 

‘enabling technology’ has been availability of diamond tools with nearly ideal 

properties.

Primarily, achievable form and finish of a machined surface were related to 

the machine performance. Now advances in machine tool performance are such that 

tool-chip interactions become a limitation to further improvements in achievable 

form accuracy and surface finish. Tool-chip interaction directly influences the cutting 

tool condition during cutting which in turn affects the machined product quality. 

Therefore, a number of research groups have turned their attention to diamond 
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machining ‘chip science’. Much effort has been devoted to developing analytical 

models of metal cutting to understand the mechanics of chip formation with the 

objective of obtaining more effective cutting tools. Traditional ways are using great 

amount of experimentation and prototyping (Nishigushi et al., 1988; Jared, 1999; 

Cook and Bossom, 2000; Manjunathaiah and Endres, 2000; Gubbles et al., 2004).

In modern research technique, prediction by numerical simulation has been 

efficiently applied to predict material response with minimum amount of 

experiments. This method offers a great deal of advantages such as cost and time 

savings, accurate prediction of important process parameters without the actual 

machine tools or equipment and environmental safety. A more promising approach 

for developing a metal cutting model is provided by an advanced numerical 

discretization scheme such as finite element method (FEM). The application of this 

method to a variety of complex problems in solid mechanics has been well 

documented. The difficulty of reaching a better understanding of a particular 

machining process impelled researchers in the field to apply the finite element 

method in modelling of the process. More attention has been paid to FEM in the past 

decades in respect to its capability of numerically modelling different types of 

machining problems. The advantage of the (FEM) is that the entire complicated 

process can be automatically simulated using a computer (Shih, 1996a; Xie et al.,

1998; Movahhedy et al., 2002; Wu et al., 2005; Cakir and Isik, 2005). 

Despite a number of simulation attempts reported in various papers, 

machining simulation has not become a common tool in industry due to the inherent 

complexity of the process which probably makes it one of the most challenging 

processes from the numerical point of view.  It is also clear that more work still 

needs to be done in order to make the process responses such as cutting tool 

performance predictable close to reality and become parts of the computer integrated 

manufacturing system.  

In many of these studies, various numerical codes were developed and used 

although some were not practical and not available commercially for the end user. 

Among these research efforts, the commercial FEM codes which have been 
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successfully used in chip formation simulation are NIKE-2D, ABAQUS, DYNA-3D, 

DEFORM-2D, FORGE-2D, MACH-2D and recently THIRD WAVE 

ADVANTEDGE (Jiang Hua, 2002; Sartkulvanich and Altan, 2005; Childs, 2006).

1.2 Research Background 

Metal cutting is one of the most important material removal processes which 

produce desired shape and dimensions by removing unwanted material in the form of 

chips. Reasons for developing a rational approach to material removal are (Shaw, 

1984 and 2005): 

- To improve cutting techniques regardless of how much as even minor 

improvements in productivity are of major importance in high volume 

production.

- To produce products of greater precision and of greater useful life. 

- To increase the rate of production and produce a greater number and variety of 

products with the tools available.

 Rapid developments in tool material come together with the consideration of 

improving tool geometry and favourable tool wear. Diamond tool is one of the latest 

development in cutting tool technology. Modified Taniguchi chart (Figure 1.1) 

shows that since the diamond tool was introduced round about 1970, machining 

method and precision level have also improved (Taniguchi, 1994).  

Single-crystal diamond is very expensive, but has been a perfect tool for 

ultraprecision machining. Ultraprecision machining using a single crystal diamond 

tool is generally termed single point diamond turning (SPDT). Now it has emerged 

as an economically viable technique for the fabrication of precision mechanical or 

optical parts of high geometrical and surface quality. Particularly due to the superior 

surface finish and form accuracy produced by SPDT, it is widely adopted for the 

manufacturing of precision lenses, laser mirrors, scanner mirrors, drums in photo 

copying machines and computer memory discs. This very precise way of fabricating 
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products can also reduce/eliminate the pollution compared to conventional 

manufacturing methods as the minimum amount of coolant or almost no coolant is 

needed to do the job (Weck et al., 1988; Nakasuji et al., 1990; Ueda et al., 1991; 

Lucca et al., 1993 and 1998; Beltrao et al., 1999).

Figure 1.1 Modified Taniguchi’s chart (Taniguchi, 1994).  

Polycrystalline diamond (PCD) tools are cheaper than single crystal diamond 

tool. They are used in high precision finishing. The benefits of PCD have been 

observed in routine tooling types such as turning, milling and grooving. The PCD 

cutting edge has better ability to resist impact and fatigue damage because of fewer 

material imperfections under the surface. Their properties and performances under 

severe working conditions are generally considered to be outstanding and highly 

competitive in comparison to most ordinary wear-resistant materials (Sreejith et al.,

2000; Cook and Bossom, 2000; Andrewes et al., 2000; Davim, 2002).  

Introduction of diamond tool
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Diamond-coated tools are a much newer product and consist of a pure 

diamond coating as thick as 15-25 �m over a general-purpose carbide substrate. 

These tools can eliminate such problems encountered with uncoated cemented 

carbide tools as build-up edge formation, abrasive wear and work surface damage. 

Single crystal diamond and PCD have limitations, the most significant of which, 

besides the high cost, is the inability to create tools of complex geometries such as 

chip control geometry and rotary tools. These limitations can be overcome by the 

diamond-coated tools in a relatively simple and cost-effective manner (Bhat et al.,

1995; Oles et al., 1996; Karner, 1996; Lahres and Jorgensen, 1997; Zalavutdinov et

al., 1998; Sun et al., 2002; Polini et al., 2002 and 2003).

Tool wear is an important factor influencing machined surface quality and 

manufacturing cost. Particularly wear of the diamond tool can affect the overall 

manufacturing cost significantly as a diamond tool costs much higher than a 

conventional tool. One of the various problems existing in industrial application of 

ductile regime turning involves edge wear of diamond tool. The problem becomes 

serious when machining large workpiece radius as tool wear dominates profiling 

errors and surface roughness as cutting distance increases (Nakasuji et al., 1990; Yan 

et al., 2002 and 2003; Davis et al., 2003). Moreover, as the required precision level 

increases cutting edge sharpness becomes the more crucial. Therefore any research 

which contributes to prolonging of cutting edge of a diamond tool is benefited to 

manufacturing of high quality products.  

There is still debate on the actual mechanism responsible for cutting edge 

chipping of diamond tool especially for a single crystal diamond. Cutting edge 

sharpness is very often demolished by edge chipping as it is major wear phenomenon 

during cutting. Due to characteristic length scales encountered in ultraprecision 

machining and the limited ability to resolve spatial dimensions at these scales, it has 

been difficult to bridge the understanding of wear phenomenon encountered in 

conventional cutting with those in ultraprecision machining (Lucca et al., 1993 and 

1998). Although there has been significant amount of wear study on PCD and 

diamond-coated tools, understanding of cutting edge condition during machining 

with these tools is lacking. Since the geometry of the contact zone between the tool 

and the work piece is extremely important for the attainment of plastic flow in 
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machining difficult-to-machined materials, knowledge of cutting edge condition 

during cutting is essential. 

In relation to manufacturing processes, FEM has been extensively used by 

manufacturing community for modelling and simulation of metal forming and 

machining processes. These processes are among the most important processes 

widely used in various industries like automotive, aerospace or electronics. The 

machining process involves large deformation of the material at very high strain rates 

(103 – 107) with the strains being much greater than unity. The chip produced is in 

contact with the tool face in very high pressure and friction. Large plastic work and 

high friction generate an enormous amount of heat locally. Since all of these 

phenomena occur in a very tiny region around the cutting edge, the complexity of the 

process is evident. The stress, strain, strain rate and temperature variables are all 

dependent on the cutting parameters such as the cutting speed and feed rate as well as 

on geometrical features of the tool such as the rake angle and edge radius. To 

accurately obtain the flow model under these conditions makes the process 

complicated further. Moreover unlike many forming processes, there is cutting action 

in which the bulk of material is separated. This action is similar to phenomenon in 

elastic-plastic crack-propagation problems. Therefore the numerical simulation of 

chip formation during cutting process has been a challenging research topic (Shih, 

1996; Xie et al., 1998; Movahhedy et al., 2002; Sartkulvanich and Altan, 2005). 

From the point of view of numerical formulation, the FEM based on the 

updated-Lagrangian, and Eulerian as well as Arbitrary Lagrangian Eulerian 

formulations has been developed to analyze the metal cutting process in the past 

decade (Strenkowski and Carroll, 1985; Strenkowski and Moon, 1990; Shih, 1996a, 

b; Xie et al., 1998; Movahhedy et al., 2002). Several special FE techniques such as 

element deletion (Shih, 1996a; Huang and Black, 1996; Zhang, 1999), modelling of 

tool geometry including worn tool and edge radius effects (Komvopoulos and 

Erpenbeck, 1991; Li et al., 2002; Movahhedy et al., 2002, Özel, 2003), mesh 

rezoning (Shih, 1996b; Bäker et al., 2002), friction modelling (Li et al., 2002) have 

been implemented to improve the accuracy and efficiency of FE modelling. Three-

dimensional modelling and modelling of tool wear and were successfully developed 
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by Guo and Liu (2002), Cheng (2003) and Yen et al. (2004) respectively. Detailed 

work material modelling, which includes the coupling of strain rate, strain hardening 

effect, temperature and microstructure has been applied to model the material 

deformation (Özel and Zeren, 2004 and 2005; Park et al., 2004). In terms of chip 

types, continuous as well as serrated chips have been successfully simulated 

(Obikawa and Usui, 1996; Jiang Hua, 2002; Chen et al., 2004; Childs, 2006). The FE 

simulation results have also been validated by experimental measurements (Zhang 

and Bagchi, 1994; Xie et al., 1998; Mackerle, 1999; Klocke et al., 2002; Jiang Hua, 

2002; Chen et al., 2004, Khadke et al., 2005). 

1.3 Problem Statements 

Studies on tool wear have evolved a lot of improvement on the cutting tool 

geometry as well as on the machine tools performance. Improvement in machine tool 

rigidity together with better cutting tool properties and geometry enable some 

advanced materials be cut effectively but still in general at relatively slow pace. 

Rapid rise of temperature during cutting titanium alloys, for example, aggravates 

wear on the cutting tool.  Despite many studies on the flank and crater wears, 

researchers pay very little attention on the small region on the rake face between the 

major cutting edge and crater boundary. This unworn region of about 0.75mm width 

was observed by numerous researchers (Venkatesh and Satchithanandam, 1980; 

Ranganatha, 1981; Sachithanandam, 1981) on the conventional cutting tools for 

almost two and half decades ago. Similar phenomenon was also reported recently by 

other researchers (Davim and Baptisa, 2000; Sahoo et al., 2002; Yan et al., 2003) but 

none of them paid serious attention to this peculiar region. Interestingly, this specific 

area is intact on the rake face for quite some time. As the crater wear get widen and 

deepen, this region gradually reduced and the cutting edge chipped off when crater 

groove meets the flank wear. It is believed that the tool edge collapses when this 

region completely demolished.  To date, detail study related to this phenomenon 

hardly being found in the literature especially involving diamond cutting tools. Thus, 

the presence of this phenomenon and its mechanism still remain unexplained. 
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Wear mechanism on the cutting tool always linked to attrition/adhesion, 

abrasion, oxidation, diffusion, plastic deformation or combination of one of those. It 

is very rare that the state of stress at the tool-chip interface is being exploited for 

explaining the wear mechanism; partly because of difficulty to get accurate stress 

information during cutting. Usually, the cutting forces that are captured using 

dynamometer during actual machining process are used to evaluate indirectly the 

magnitude of stresses. This method becomes very costly and less practical when both 

the cutting tool and work piece materials are expensive which definitely limits the 

number of trials. Therefore, software based finite element (FE) method is commonly 

being applied nowadays to model the process and solves complex engineering 

problems without wasting a lot of pricey resources. Since early 1980s, finite element 

modelling has been used in the metal cutting field to simulate chip formation, tool 

wear, cutting forces, temperature in both chip and cutting tool etc.  However, limited 

FE studies have been observed on the cutting stresses especially on the diamond tool. 

Most stress studies were focused on the chip rather than on the cutting tool. No direct 

comparison has been reported on the stress patterns obtained from FE results to the 

empirical models proposed by Zorev (1963) and Trent (2000). Literature also 

showed that stagnant zone phenomenon on the cutting tool has been neglected within 

research communities despite its importance preserving the cutting edge from wear. 

As such no concerted effort has been reported to relate this phenomenon to the stress 

state at the chip-tool interface either by conventional or numerical formulation 

methods.  

   

1.4 Objectives 

The objectives of the research are as follows: 

1. To investigate the range of stagnant zone retention length on the 

polycrystalline diamond and diamond-coated cutting tools when machining 

Ti-6Al-4V at various machining conditions  

2. To predict cutting tool stresses during orthogonal cutting of Ti-6Al-4V with 

diamond tool using finite element method  
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3. To propose an analytical stagnant zone model that predicts stagnant zone 

length on diamond tool. 

1.5 Scope 

The research is conducted within the following limits: 

1. Work piece understudy is limited to titanium alloy (Ti-6Al-4V). Actual 

experimental trials are conducted at the cutting speed in the range from 

60m/min to 150m/min and feed rate 0.1 to 0.2mm/rev. 

2. CNC Turning centre (MAHO 500E) is used for turning titanium alloy (Ti-

6Al-4V) to investigate the intact zone on the diamond tools which is the 

indicator of stagnant zone formation, while cutting force experiments are 

carried out on the conventional Harrison 500 heavy duty lathe.

3. Polycrystalline diamond and diamond-coated inserts are used in the study. 

The geometry of the insert is limited to TPGN160308 (ISO code). 

4. ABAQUS version 6.5 is employed for modelling the cutting process and 

analysis of stress-strain, material flow and temperature distribution. 

5. Used tool and chip morphology are characterized with field emission 

scanning electron microscope (FE-SEM), contact stylus profilers, and optical 

microscopes. 

1.6 Rationale and Motivation 

Stagnant zone is a desirable phenomenon as cutting edge sharpness is 

maintained by its presence. The sharpness of diamond tool is one of the most 

important factors to reduce damaged layer remaining at the machining surface. While 

diamond tools often face problem of edge wear, which results difficulties of shearing 

at cutting edge during machining, this problem could be overcome if the stagnant 

zone survived. Retention of this zone could possibly prolong the tool life as it 

preserves the tool edge from breakage easily. As such the occurrence of stagnant 
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zone on a diamond tool is worth to be investigated as it has great potential of saving 

tooling cost. Furthermore, the investigation of the stagnant zone formation on 

diamond tool when machining titanium alloy would provide a basis to understand 

stagnant zone phenomenon in diamond turning of difficult-to-cut materials.   

It has also been understood that knowledge of stress and stress distribution at 

the tool-work interface is useful in many ways, which should be the basis of analysis 

of cutting tool condition during cutting and thus provides avenue for detailed 

analysis of tool failure, the properties required for the tool materials and the 

influence of tool geometry on cutting performance.  

1.7 Summary of Research Methodology 

Figure 1.2 shows the schematic diagram summarizing the three main 

activities involved in this research with the inputs required, i.e. 1) Preliminary 

experimental trials, 2) Finite element modelling and 3) Development of stagnant 

zone model.  

The main objective of the preliminary experimental trials (activity 1) is to 

provide basic information in terms of cutting forces and the stagnant zone length at 

various machining conditions. In the FE modelling (activity 2), tool and workpiece 

properties and friction data are required to predict material behaviour during cutting. 

The cutting forces obtained from the experimental trials are used to validate the finite 

element model. In these experimental trials also, the actual stagnant zone lengths are 

measured on the used tool and these are used to compare with the predicted results 

obtained from proposed stagnant zone model. In activity 3, outputs from finite 

element simulation are utilized in order to develop an analytical stagnant zone model. 

Later, verification of the stagnant zone model is done by comparing the experimental 

and predicted stagnant zone lengths. Detail procedures for these activities are 

explained in Chapter 3.



11

Figure 1.2 Schematic diagram summarizes three main activities involved in the 

research.

1.8 Structure of the Thesis 

This thesis comprises of seven chapters. The first chapter is introduction. It 

overviews the application and importance of diamond tools in machining and finite 

element modelling in solving complex engineering problems, discusses background 

of metal cutting field in general, problem statements, research objectives, scope, 

rationale and motivation and summary of research methodology. Chapter 2 focuses 

on the literature reviews. This chapter highlights the background knowledge on the 

metal cutting principles, critical reviews on the chip-tool interface and finite element 

studies in the metal cutting field, and overview on the boundary layer theory in fluid 

mechanics. Detail procedure to run experimental trials, finite element modelling and 

simulation of cutting process flow chart and steps in developing of stagnant zone 

analytical model are described in Chapter 3. Results and discussion are presented in 

the three separated chapters, i.e Chapter 4, 5 and 6. Chapter 4 concentrates on the 

results of preliminary experimental trials. This chapter provides inputs required by 

the finite element and stagnant zone models. Chapter 5 presents finite element 

modelling results which comprise of the investigation of material model, the choice 

INPUT

�� Cutting forces 
�� Tool geometry 
�� Work & tool properties

�� Stress
distribution 

�� Velocity 
profile in chip

�� Actual stagnant zone length 

Preliminary 
Experimental 

trials

Development 
of  Stagnant 
Zone Model 

Finite 
Element 

Modelling 

1

3

2
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of FE machining model based on model validation results, the effect of machining 

parameters on process responses such as material behaviour, stress-strain in chips, 

cutting tool stresses and cutting temperatures. Chapter 6 reports on the development 

of stagnant zone analytical model which is based on the boundary layer theory. It 

also discusses the validation process and prediction of stagnant zone length at 

various machining conditions. Chapter 7 summarizes the conclusions, outlines the 

significant contributions from the findings and finally suggests recommendation for 

future works. 
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