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ABSTRACT 

 

 

 

 Air conditioning has traditionally been achieved by vapour compression 
equipment, which is considered very efficient when handling loads characterised by 
high sensible load fraction.  These machines would perform poorly when they 
process air with high latent load fraction as in the case of humid climates.  Global 
energy concern has accelerated the research on alternative technology options to 
replace traditional method or improve their performance.  Hybrid liquid desiccant 
system has been proposed as an energy saving alternative to reduce the vapour 
compression unit size used in air conditioning application, and improve its 
performance.  A hybrid system consisting of vapour compression unit, a liquid 
desiccant system consisting of an absorber and a regenerator, both of which are 
identical packed spray towers built from fibre glass with a cross sectional area of 600 
x 600 mm from five pieces each.  Each piece having a height of 200 mm to facilitate 
testing different heights of packing material, and a flat plate solar hot water collector 
with an auxiliary electrical heater to be used as supplement when solar energy is not 
enough or not available.  This hybrid system was designed, fabricated and tested with 
emphasis on liquid desiccant sub-system.  In this study, the performance of the 
absorber and the regenerator, which are the main items in the liquid desiccant 
system, was studied in terms of effectiveness.  Both units were tested over a range of 
different inlet liquid desiccant concentration of 20% to 40% by weight, and inlet 
temperature of 20oC, 25oC, and 30oC for the absorber, and 20%, 25% and 30% liquid 
desiccant concentration at temperature range of 35oC to 55oC for the regenerator.  
Both components were tested at liquid desiccant flow rate between 3.76 to 5.01 
ℓ/min with different air inlet flow rate 4.9 to 6.4 m3/min.  Experimental results were 
recorded using a complete data acquisition system to collect and log the data of the 
desiccant sub-system and the vapour compression unit, which enables thermocouples 
readings.  From the data collected, the coefficient of performance of the vapour 
compression unit was obtained using both refrigerant enthalpy and air enthalpy 
methods.  Absorber effectiveness was found to be between 0.5 and 0.7, while the 
regenerator effectiveness was found to be between 0.2 and 0.6.  A 800 mm packing 
height is found to be the breaking limit with both air supply either fully through the 
desiccant or partly (50% through the desiccant), would result in an improvement in 
the performance of the vapour compression unit ranging from 17.9 % to 54%, which 
indicate the hybrid system potential for energy savings.  Improving indoor air quality 
by controlling humidity, killing effect of bacteria and fungus by using liquid 
desiccant are among other benefits realised. 
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ABSTRAK 

 
 

 
Penghawadinginan biasanya dilakukan oleh alat mampatan wap, yang boleh 

dianggap cekap apabila mengelolakan beban yang berciri pecahan beban ketara yang 
tinggi.  Mesin ini akan berkelakuan dengan tidak memuaskan apabila memproses 
udara dengan pecahan beban pendam yang tinggi seperti dalam kes iklim lembab.  
Kebimbangan global tenaga telah mempercepatkan penyelidikan keatas opsyen 
teknologi alternatif untuk menggantikan kaedah tradisional atau meningkatkan 
prestasinya.  Sistem pengering cecair hibrid yang telah dicadangkan sebagai 
penjimatan tenaga alternatif untuk mengurangkan saiz unit mampatan wap yang 
digunakan untuk penghawa dingin serta memperbaiki prestasi. Sistem hibrid 
mengandungi unit wap mampatan, sistem pengering cecair yang mengandungi 
penyerap dan penjana semula, kedua-duanya adalah menara penyembur padat yang 
serupa dibina daripada kaca gantian dengan luas keratan rentas 600 x 600 mm dari 
lima kepingan dimana setiap kepingan dengan ketinggian 200 mm untuk  
memudahkan ujian pada ketinggian berlainan bahan padat, dan satu pengumpul air 
panas suria plat rata dengan pemanas elektrik untuk digunakan sebagai tenaga 
tambahan sekiranya tenaga suria tidak mencukupi atau tidak ada. Sistem hibrid ini 
direkakan, dibina dan diuji dengan tumpuan kepada sub-sistem pengering cecair.  
Dalam kajian ini, prestasi penyerap dan penjana semula yang menjadi komponen 
utama dalam sistem pengering cecair dikaji dari segi sebutan keberkesanan. Kedua-
duanya diuji pada julat kepekatan pengering cecair pada salur masuk yang berlainan 
dari 20% hingga 40% secara berat dan suhu salur masuk 20oC, 25oC dan 30oC bagi 
penyerap dan kepekatan pengering cecair 20%, 25% dan 30% pada julat suhu dari 
35oC ke 55oC bagi penjana semula.  Kedua-dua komponen diuji pada kadar aliran 
pengering cecair diantara 3.76 dan 5.01 ℓ/min, dengan kadar aliran salur masuk 
udara dari 4.9 hingga 6.4 m3/min.  Keputusan ujikaji direkod dengan menggunakan 
sistem pengumpulan data yang lengkap untuk mengumpul dan menyimpan data sub-
sistem pengering serta unit mampatan wap yang mencatat bacaan termogandingan.  
Dari data yang dikumpul, pekali prestasi unit mampatan wap telah diperolehi dengan 
kedua-dua kaedah entalpi penyejukan dan udara.  Keberkesanan penyerap didapati 
antara 0.5 dan 0.7, manakala keberkesanan penjana semula didapati antara 0.2 dan 
0.6.  Padatan setinggi 800 mm adalah dikenalpasti sebagai had pecahan dengan 
kedua-dua bekalan udara samada sepenuhnya melalui pengering atau sebahagiannya 
(50% melalui pengering) yang akan mengakibatkan peningkatan prestasi unit 
mampatan wap berjulat dari 17.9% hingga 54%.  Ini menandakan potensi sistem 
hibrid bagi penjimatan tenaga.  Peningkatan kualiti udara dalaman dengan mengawal 
kelembapan, membunuh bakteria dan fungus dengan menggunakan pengering cecair 
adalah antara faedah lain yang terhasil. 
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CHAPTER 1 

 

 

 

INTRODUCTION  

 

 

 

1.1 Background  

 

 The 1990s and 1980s were challenging decades for the Heating, Ventilation 

and Air- Conditioning (HVAC) industry.  The need for ever more efficient heating, 

cooling, ventilation and dehumidification technologies was more urgent than during 

the energy crisis of the 1970s.  Energy resources were more depleted and the energy 

demands of a growing global population continued to increase with the increase in 

the demand for comfort cooling even in the developing countries, due to the present 

modernisation.  Mankind are continuously endeavouring to improve their 

surroundings and make the working and residential environment more comfortable 

and healthy to the human beings.  Started with the first fire set at the mouth of a 

cave, people have created heating systems to remain comfortable when outside 

conditions turn cold.  However, only within the last century has mechanical cooling 

equipment been used to provide comfort in buildings.  Comfort in buildings can be 

more than a luxury; a recent study by Rensselaer Polytechnic Institute suggests that 

comfortable working environment can lead to a 2% improvement in job performance 

(Bobenhausen, W. 1994).  Furthermore is the reduction in absentees due to a 

reduction in Sick Building Syndrome (S.B.S.). 

 

 The introduction of the ASHRAE code to increase the ventilation air 

requirement in building so as to improve Indoor Air Quality (IAQ), “ASHRAE -

Standard 62-1989 Minimum ventilation rates for acceptable indoor air quality” even 
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makes the situation worse for conventional air conditioning equipment.  Their 

capacities need to be increased to accommodate the newly imposed loads.  However, 

with the increased efficiency of the vapour compression equipment the additional 

sensible load can be easily handled.  But the additional latent load is the remaining 

problem bearing in mind that the ventilation air contributes about 60% of the 

principal source of moisture load especially in commercial buildings (Harriman, L. 

G. et al 1999) that adds to the latent load required to be removed. 

 

 Traditionally air conditioning has been achieved by vapour compression 

equipment, that are usually very efficient in handling air conditioning load which is 

characterised by high sensible heat ratio.  These equipment performed poorly when a 

situation of low sensible heat ratio arises (high latent heat ratio).  In this case they use 

the technique of lowering the dew point temperature of the process air to a degree 

that satisfies the latent heat load removal by condensing the water vapour out of the 

process air.  This dew point temperature will be below the desired temperature level, 

then reheat or if possible mixing with the re-circulating air to bring the supply air 

temperature to the desired level.  This process of sub-cooling followed by reheat is 

an energy consuming process which increase the operational costs as well as the 

capital cost due to the purchase of the reheat equipment.   

 

 

 

1.2 Global Warming and Refrigerants 

 

The development of more efficient HVAC technology is much constrained 

now than it was 30 years ago. In recent years, ozone layer depletion and greenhouse 

effect have created considerable public concern.  The fully halogenated 

chloroflourocarbons “CFCs” which have provided much needed refrigeration and 

air-conditioning for about 60 years, are among the gases responsible for the depletion 

of ozone layer, and for creating global warming.  These CFCs must be phased out by 

now, but in fact they are still being produced and about 65 % produced annually are 

being used only to replace the leaked out CFCs and the remaining 35 % are used in 

manufacturing new refrigerators, air-conditioners and other cooling appliances.  

Knowing that these CFCs have an average lifetime of 100 years in the atmosphere 
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and today’s emission will continue to affect the ozone layer for another century or so, 

one can realise how it is important to find other refrigerants or other methods for 

cooling that did reduce the use of the refrigerant while meeting the same cooling 

load.  This leads to a considerable research for new refrigerants and the adaptation of 

the existing machinery to the alternative refrigerant.  Also efforts have been devoted 

to the development of alternative methods of refrigeration and air-conditioning and 

one of these alternative methods is desiccant cooling. 

 

 It is unlikely that a single cooling and dehumidification technology will 

emerge as the perfect solution to today’s CFCs /HCFCs systems in all applications.  

And in order to find a solution to this situation, designers, owners, and manufactures 

have to examine other options or systems that can solve this to eliminate or reduce 

the emission of these CFCs / HCFCs, independently or by integration with the 

conventional methods.  One of the most attractive option is the desiccant based 

cooling system.  Desiccants are materials that have strong affinity for water, they 

adsorb/ absorb water from the air when brought into direct contact with them, hence, 

the air become drier and warmer and requires to be cooled by other conventional 

method before being delivered into the conditioned space.  The desiccant becomes 

saturated or diluted after adsorbing/ absorbing the moisture from the air, and needs to 

be regenerated by adding heat to drive-off the adsorbed/ absorbed moisture.  Any 

integration of desiccant based cooling system with the vapour compression system 

will result in a hybrid system, which will benefit from the characteristics of both 

systems (vapour compression system is very efficient in handling the sensible load, 

while the desiccant system has the superiority of handling the latent load effectively) 

and hence, separating the load between them.  This also results in high coefficient of 

performance of the vapour compression system, because it’s evaporator will work at 

higher temperature, making the size of the unit to be used smaller. 

 

 

 

1.3 Market Forces 

 

In the late 1980s a number of market forces accelerate the demand for 

desiccant based cooling system equipment, these forces are: 
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(i) Indoor Air Quality (IAQ): 

 

The application of new ASHRAE standard (ANSI/ASHRAE 

STANDARD 62-1989, Ventilation for acceptable indoor air quality) 

to address the IAQ problems, increased the ventilation air on average 

from 5 cfm per person to 15-20 cfm per person, increasing the latent 

load fraction that the HVAC system should handle (McGahey, 

K.1998). 

 

(ii) Demand for comfort: 

 

Controlling the humidity level has shown a great effect on some air 

conditioning application economics, typical applications are hotels, 

hospitals, clean rooms (McGahey, K.1998). 

 

(iii) New economics of air conditioning: 

 

The economic cost involved in some applications that require tight 

control of humidity accelerated the implementation of desiccant based 

cooling system to address the high cost in such applications, typical 

applications are museums, libraries, and others (McGahey, K.1998). 

 

 

 

1.4 Problem Statement 

 

Desiccant systems (solid and liquid) are available for around 30 years or so, 

but surprisingly their full potential is yet to be realised.  Part of that is due to the 

precedence that they can only be used in special applications mainly in industrial 

process and industrial air conditioning which resulted in a lack of knowledge within 

the Heating, Ventilating, and Air Conditioning (HVAC) engineers about their 

potential applications in the area of residential and commercial air conditioning, 

especially when integrated with other technologies. Questions like the following 

have to be answered: 
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i) How can these systems be operated to achieve their optimal working 

conditions (with emphasis on liquid desiccant)? 

 

ii) What are the main components of the liquid desiccant system that need 

special consideration to help achieve such goal? 

 

iii) What is the benefit of using liquid desiccant in the air conditioning field and 

how they can be integrated with the most common technology like vapour 

compression equipment? 

 

iv) What kind of improvement is expected from such proposed system? 

 

Vapour compression units are well known for their superiority in the 

applications characterised with or dominated with higher sensible load fractions, and 

the desiccants are known for their ability to tackle humid air and they are superior in 

terms of dehumidification compared to the vapour compression.  Based on these 

facts the proposed hybrid system consisting of vapour compression unit and a liquid 

desiccant sub-system may offer better performance and have to be proven 

practically, hence the research problem/hypothesis can be formulated as: 

 

“What a hybrid liquid desiccant cooling system would offer in terms of 

improvement in the performance, and what are the optimal working conditions for 

the liquid desiccant sub-system in order to achieve such improved performance in 

terms of coefficient of performance and better humidity control”. 

 

 

 

1.5 Research Scope 

 

 The scope of this research is to study of a hybrid desiccant based cooling 

system.  This system containing vapour compression system is integrated with a 

liquid desiccant system and a flat plate solar hot water collector.  Development of the 

system and testing its performance and operational potential is undertaken to reduce 

the use of the conventional air conditioning methods with more emphasis on the 
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liquid desiccant sub-system.  Different liquid desiccant system arrangement and 

different modes of operation will be studied to find the optimal system configuration 

and hence to determine the available and economical method for regeneration (solar 

energy, waste heat reclaim) that is to be used to obtain improvement in the system 

coefficient of performance.  Also the effect of liquid desiccant on the coefficient of 

performance of the vapour compression unit will be studied. 

 

 

 

1.6 Research Objectives 

 

The objectives of the research can be summarised in the following points: 

 

i. To determine the effect of liquid desiccant-based cooling system on the 

performance of the vapour compression system when both systems are 

integrated together (hybrid system). 

 

ii To determine the working condition for the absorber and the regenerator of 

the liquid desiccant sub-system. 

 

iii To determine the methods and options of regeneration process (solar energy, 

waste heat recovery) and selecting the proper option to reduce energy 

consumption and hence reduce the system operating cost. 

 

iv To determine the improvement in the coefficient of performance of the 

vapour compression unit when it works at higher evaporator temperature. 

 

 

 

1.7 Thesis Outline  

 

 Chapter Two covers the literature review and work done in the field 

of desiccant application in the air-conditioning field.  Solar cooling and solar energy 

usage related to the same field are also given in Chapter Two with applications in 
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regeneration of desiccant materials with more emphasis on applications in liquid 

desiccant regeneration  

 

Chapter Three gives the theoretical framework of different air-conditioning 

cycles and systems, mainly the vapour compression cycle and the desiccant systems, 

and the principles of how desiccant sub-system works when integrated with the 

above mentioned cycle.  More theory about what desiccant materials are and how 

they work, their cycle, and their classifications are also explained.  

 

 Chapter Four is devoted to the methodology and system configuration and the 

setting of the testing facility with full description.  Data logging system and its 

features and limitations are also given.  Independent and dependent variables and all 

measurable values with details of how these measurements were conducted are fully 

explained. 

 

 Chapter Five deals with the results and calculations carried out with the 

discussion given.  Also Absorber effectiveness and regenerator effectiveness were 

calculated and discussed and the benefits from using desiccant sub-system are given. 

 

 Conclusions and recommendations for future work are discussed in Chapter 

Six. 
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