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ABSTRACT

This research aims to study the maximal amplification factor for the evo-
lution of nonlinear wave groups, particularly the evolution of bichromatic wave
groups governed by temporal nonlinear Schrödinger equation. A new numerical
method: implicit variational method has been proposed to simulate the nonlin-
ear wave groups’ evolution. The scheme combines the implicit differences and
variational techniques. When the results are compared to the exact solutions of
one soliton and bisoliton wave groups, the implicit variational method proved
to be better in terms of accuracy and conserving the energy property than the
existing known method, the explicit forward difference method and the Crank-
Nicolson implicit method. Given an initial condition, the simulation based on
the implicit variational method can be used to predict the maximal amplification
factor for various form of wave groups at any location. Two analytical approx-
imate models, namely the low-dimensional model and the optimization model
with conserved properties, are developed to further exploit the amplification fac-
tor. The low-dimensional model takes into account the primary mode and the
third order mode which are most relevant for bichromatic waves with small fre-
quency differences. Given an initial condition, an analytical expression for the
maximal amplitude of the evolution of bichromatic wave groups within this trun-
cated model can be readily obtained. Good agreement is observed between the
analytical and numerical solutions: when the initial amplitude is not too large, or
when the difference of frequencies is not too small. The optimization model with
conserved properties can predict the maximal amplification factor for all forms of
wave groups’ evolutions. Given an initial condition and a prescribed location, the
analytical expression of a function which not only achieves the maximal amplitude
at that location but is also consistent with the initial values of the conservation of
energy, linear momentum and hamiltonian of the nonlinear Schrödinger equation,
can be obtained. When tested with bichromatic wave groups, the model gives
rather accurate prediction of the maximal amplification factor compared to the
numerical simulations. The results obtained from numerical simulations and the
two analytical approximate models are motivated and relevant in the generation
of waves in hydrodynamic laboratories.
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ABSTRAK

Penyelidikan ini bertujuan untuk mengkaji faktor amplifikasi maksimum
bagi perambatan kumpulan gelombang, terutamanya kumpulan gelombang dwi-
kromat, yang dihuraikan oleh persamaan Schrödinger tak linear. Satu kaedah
berangka baru, iaitu kaedah ubahan tersirat yang menggabungkan teknik pem-
bezaan tersirat dan ubahan telah dicadangkan. Apabila dibandingkan dapatan
ini dengan penyelesaiaan tepat satu soliton dan dua soliton, ternyata kaedah be-
rangka ini lebih baik dari segi kejituan dan pengekalan sifat keabadian tenaga,
daripada kaedah berangka yang sedia ada, iaitu kaedah beza ke depan tak tersirat
dan kaedah tersirat Crank-Nicolson. Diberi satu syarat awal, simulasi berangka
berasaskan kaedah ubahan tersirat boleh digunakan untuk meramalkan faktor
maksimum amplifikasi pada mana-mana kedudukan untuk pelbagai kumpulan
gelombang. Dua model analisis, iaitu model matra rendah dan model optimum
dengan sifat keabadiaan dihasilkan untuk mengkaji faktor maksimum amplifikasi
dengan lebih mendalam. Model matra rendah mengambilkira mod utama dan
mod peringkat ketiga, yang mana mod ini sangat berhubungkait dengan gelom-
bang dwikromat yang perbezaan frekuensinya kecil. Di dalam model terpangkas
ini, ungkapan analisis amplitud maksimum bagi perambatan kumpulan gelom-
bang dwikromat boleh didapati jika syarat awal diberi. Tidak banyak perbezaan
didapati antara penyelesaiaan analisis dan penyelesaian simulasi, apabila ampli-
tud awal tidak terlalu besar, atau apabila perbezaan frekuensi tidak terlalu kecil.
Model optimum dengan sifat keabadian boleh menelah faktor amplifikasi mak-
simum perambatan kumpulan gelombang yang pelbagai bentuk. Diberi syarat
awal serta satu lokasi tertentu, ungkapan analisis boleh didapati bagi fungsi
yang bukan sahaja mencapai amplitud maksima di lokasi tersebut, tetapi juga
mengekalkan sifat keabadian tenaga, momentum linear serta hamiltonan bagi
persamaan Schrödinger tak linear. Apabila model ini diuji dengan kumpulan
gelombang dwikromat, model ini memberikan telahan yang baik bagi faktor am-
plifikasi maksimum berbanding dengan penyelesaian simulasi berangka. Dapatan
daripada simulasi berangka serta kedua-dua model analisis hampiran ini adalah
menggalakkan dan berhubungkait dengan penjanaan gelombang di makmal hidro-
dinamik.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

The subject of water waves has been a fascinating field being studied

for a century ago. The behaviour of water waves can be appreciated by any

of us in nature descriptively without any technical knowledge. Although the

literature is vast, apart from a few conjectures and some numerical simulations,

the phenomenon of waves with large amplitude has not yet been exploited or

understood fully (Liu and Pinho, 2004; Haver, 2004; Dysthe, 2000). The causes

of its occurrence and its properties are still an active area of research (Gunson

et al., 2001). This kind of waves, known as extreme wave, freak wave or rogue

wave is described as individual waves with exceptional wave height, steepness or

abnormal shape. Monster waves, giant waves, abnormal waves or mega waves are

other names used occasionally to define this huge breaking walls of water that

come out of the blue. Mallory (1974) describes these waves as having a steeper

forward face preceded by a deep trough, or “hole in the sea”. These waves are

different from tsunamis or tidal waves. Tsunamis or tidal waves are very rare

event when an earthquake or landslide displaces a large volume of water, and

create a single large wave. But, extreme waves or freak waves seem to be a

fundamental property of the ocean and are occurring far more regularly (Mori,

2004).
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Several definitions have been proposed during the last decades, but cur-

rently there is no general consensus on a unique definition of extreme waves or

freak waves (Belcher et al., 2001). The simple, commonly used definition in char-

acterizing possible extreme waves is the ratio of maximum wave height to the

significant wave height must be greater than 2 (Liu and Pinho, 2004). Skourup

et al. (1996) used the similar criteria but the significant wave height is defined

from the surrounding 20[min] wave record. Dean (1990) defined freak waves as

extraordinary large water waves whose heights exceed the significant wave height

of a measured wave train by a factor of 2.2. Technically the event of extreme

wave could happen even when the significant wave height is small. For example

when the significant wave height is 12[m], or 2[m] or even 0.5[m]. An interesting

question here is would such an event with low significant wave height still be

considered as freak or extreme? Thus, there exist some definitions which im-

posed restrictions on the extreme wave height. Paprota et al. (2003) defined the

extreme waves in Baltic Sea as wave exceeding twice the significant wave height

with the significant wave height must be larger than 1[m].

1.2 Significance of Research

There is a growing evidence suggesting that the risk of extreme waves is

higher than what had been expected, but the data are far from conclusive. Ac-

cording to Lloyd’s global database and Lloyd’s casualty report (Bitner-Gregersen

and Eknes, 2001) on the data of five years (1995-1999) of ship accidents due

to bad weather, only a few accidents were categorized as being caused by freak

waves. However, Gunson et al. (2001) concluded that this does not mean that

other ship accidents were not caused by extreme waves as extreme waves is a

newly introduced term. Furthermore, the definition of extreme waves is still con-

troversial. One of the most well known ship accidents due to extreme waves is
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the Spray’s hull which was completely submerged by a giant wave well off the

Patagonian coast (White and Fornberg, 1998). Kjeldsen (2000) reported that at

a special occasion, two large ships M/S “NORSE VARIANT” and M/S “ANITA”

disappeared at the same location in a lapse of one hour in time. The Court of

Inquiry finally concluded that the loss of these two bulk ships was due to an event

in which a very large wave suddenly hit and broke several hatch covers on the

ships’ deck, subsequently the ships were filled with water and sank before any

emergency call was given.

In view of the increasing awareness of the risks from extreme waves, the

issues raised in the field of research in extreme waves include identification of the

underlying mechanisms; role of refraction by sub-mesoscale currents; method of

prediction; cause of occurrence rate; role of nonlinearity; spatial-temporal statis-

tics of extremes and an acceptable definition for freak waves (Belcher et al., 2001).

Furthermore, there is an increasing need to generate the deterministic extreme

waves with large amplitude that do not break in a hydrodynamic laboratory for

the purpose of testing floating bodies such as ships and fixed structures (An-

donowati and Groesen, 2003a).

The hydrodynamic laboratory is a laboratory that provides facilities for

the testing of the performance of maritime structures on a model scale. This

would allow the designers of the structures to collect the hydrodynamic properties

of their designs before the actual construction. In order to meaningfully conduct

the tests, the model must be tested under the extreme condition apart from the

normal tests under the generation of regular waves. It is therefore becoming

increasing important for the wave generator to be able to generate the extreme

wave condition at a prescribed position in the water tank so that the model to

be tested can be placed at that location beforehand.
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The motivations of this project stem from the problem of generating the

extreme waves in the hydrodynamics laboratory for testing the performance of

the marine structure on scaled models. In a realistic situation involving large

spatial and temporal interval, such a generation is not easy due to the physical

limitation of the wave makers as well as the nonlinear behavior that dominates

the deformation of propagating signals from the wave maker. The dominant

nonlinear effects in large amplitude wave generation can be seen from the previous

theoretical, numerical as well as experimental investigation on bichromatic waves

(Stansberg, 1990; van Groesen et al., 1999; Westhuis et al., 2001). A bichromatic

wave group is resulting from the linear superposition of two regular waves with

different frequencies. A well known model for such collective behaviour of wave

groups evolution is the nonlinear Schrödinger (NLS) equation.

In a complete realistic investigation, the model of full surface equations

with 3-dimensional effects has to be taken into account. In this report, we would

like to investigate the amplitude amplification of the evolution of wave groups, in

particular the bichromatic wave groups, within the nonlinear Schrödinger equa-

tion framework. This thesis present various ways to predict the maximal ampli-

tude for different forms of wave groups when an initial condition is given. The

results are motivated in the generation of deterministic gravity waves in the hy-

drodynamic laboratory, especially in predicting the amplitude amplification for

the evolution of waves. The following section outlines the aims and scopes of this

research in more detail. This is followed by the literature reviews in Section 1.4.

Finally, we wrap up this chapter by giving an outlines of this thesis.
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1.3 Objectives and Scopes

The main aim of the research is to study the amplitude amplification of

the nonlinear deterministic gravity waves. The scope of the investigations will

be limited to the evolution of initial bichromatic wave groups generated in the

hydrodynamic laboratory and governed by the (focusing) nonlinear Schrödinger

(NLS) equation. In particular, we will seek to:

1. develop and implement a numerical model to simulate the evolution of wave

groups.

2. determine the maximal amplification factor by numerical simulation and

the approximate analytical models so as to elucidate the theoretical basis

of the nonlinear evolutions.

3. provide a means to predict the maximal amplitude amplification.

1.4 Literature Reviews

In this section, we present the literature reviews related to our research.

We begin our discussion in Subsection 1.4.1 on the general overview of different

model equation and various techniques that had been applied in the analysis of the

phenomenon of waves with large amplitude, inclusive of the research work related

to the amplitude amplification. Since we intend to develop a numerical code to

simulate the evolution of wave groups, the review on the numerical simulation of

nonlinear waves is presented in Subsection 1.4.2.
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1.4.1 Extreme Waves or Freak Waves

The early work on extreme wave or freak wave was based on linear mod-

els. Peregrine (1976) and Jonsson (1990) used interaction of waves with opposing

currents to explain the existence of freak waves. Stansberg (1990) analyzed the

extreme event by using the linear superposition of long waves with preceding

shorter waves. Shyu and Phillips (1990) explained the freak waves as the block-

age of short waves by longer waves and currents. Irvine and Tilley (1988) used

conservation of wave action to analyze the Synthetic Aperture Radar data of the

Agulhas current, and concluded that the extreme waves are due to the current

induced caustics. White and Fronberg (1998) investigated the extreme event by

using the wave ray theory, and they showed that the probability distribution for

the formation of a freak wave - formed from the concentration of wave action

in a caustic region did not depend on the statistics of the current. Donato et

al. (1999) analyzed the phenomenon based on the interaction of surface waves

with internal waves and found that the wave steepness was not necessarily asso-

ciated with a particular phase of the internal wave. Various formulations on the

maximal wave height of regular waves are given in Singamsetti and Wind (see

Dingemans, 2000a). These formulations are based on regular linear theory with

inclusion of breaking or dissipations effects. The conclusion from linear theory

show that the mechanisms are related to wave focusing of frequency modulated

wave groups (dispersive and geometrical focusing), and with blocking effects of

spectral components on opposite current (Kharif and Pelinovsky, 2003)

Alternatively, the probabilistic approach is proposed to perform the sta-

tistical analysis of the extreme wave on the aspect related to heights, crest am-

plitude, trough depths and etc. (Bocotti, 1981; Phillips et al., 1993; Azais and

Delmas, 2002). The Gaussian beam summation method are used to combine with

stochastic processes to calculate extreme wave statistics for wave propagation
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problems where caustics occurred randomly (Nair and White, 1991). Wavelet-

based approaches are proposed to process the time and frequency localized freak

wave (Liu and Mori, 2000; Jacobsen et al., 2001; Kim and Kim, 2003). Techniques

had also been developed to detect wave groups and corresponding individual ex-

treme wave in Synthetic Aperture Radar images (Lehner et al., 2002; Niedermeier

et al., 2002).

The nonlinear mechanism was proposed as an alternative approach in in-

vestigating freak waves. Dean (1990) suggested that the nonlinear superposition

of waves might produce waves larger than the waves generated under linear super-

position. The resulting statistical distribution of wave heights had larger waves

occurring more frequently than that predicted by Rayleigh distribution. Ben-

jamin and Feir (1967) demonstrated theoretically that nonlinearities can also

cause instability of a regular wave train. They showed that regular wave train

were unstable to perturbations for weakly nonlinear surface gravity waves in deep

water. Gerber (1987) found the instability of wave groups in the neighborhood

of a caustic caused by a shear current based on a variation of the Benjamin-Feir

instability. The approach of nonlinear wave focusing was studied in situations

resembling the rough seas in natural conditions, and has been theoretically vali-

dated in several models.

Smith (1976) used the adapted nonlinear Schrödinger equation and Pere-

grine (1986) used the NLS method to estimate the extreme wave. The breather

type solutions (Henderson et al., 1999; Dysthe and Trulsen, 1999), and the so-

lution of the soliton on finite background (Osborne et al., 2000; Osborne, 2001)

of nonlinear Schrödinger equation had been related to the analysis of extreme

wave event. The phenomenon of nonlinear wave focusing was also demonstrated

numerically in the framework of 2-dimensional Schroëdinger equation (Onorato

and Serio, 2002). Slunyaev et al. (2002) used 2 dimensional model of the Davey-
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Stewartson equation to study the extreme wave event.

Some experiments had been carried out to show the effects of possible freak

or extreme waves occurring in a laboratory waveflumes (Baldock and Swan, 1996;

Kaldenhoff and Schlurmann, 1999; Johanessan and Swan, 2001). By introducing

a spatial ordering of frequencies in a chirped wavetrain, Pelinovsky et al. (2000)

proposed that this effect could produce short groups of large waves at a given

position in a wave tank at the laboratory. They developed a one-dimensional

model of Korteweg & de Vries equation for the analysis. However, the question of

how such a situation may develop spontaneously has not been answered. Besides,

the limits of the elevation have not been analyzed in details.

Another mathematical model which utilized Kadomtsev-Petviashvili (KP)

equation was used to describe the nonlinear shallow water gravity waves (Kadomt-

sev and Petviashvili, 1970), with the exact solution can be obtained using Hi-

rota bilinear formalism (Hirota, 1971). In this framework, the interaction of 2-

dimensional two-soliton has also been analyzed (Satsuma, 1976; Freeman, 1980).

Based on this model, many authors concluded that the amplitude of the water

elevation at the intersection point of two solitons exceed the sum of the amplitude

of the incoming solitons (Segur and Finkel, 1985; Haragus-Courcelle and Pego,

2000; Chow, 2002). Using the same framework, Peterson et al. (2003) found that

the extreme surface elevations was found to be up to four times exceeding the

amplitude of the incoming waves, and the maximum amplification factor is 2 in

the case of the Mach reflection.

Though scientists are still unsure of the causes of the existence of extreme

waves, in general they believed that the occurrence of extreme waves in the coastal

waters may be explained by focusing due to refraction by bottom topography,

current gradients, or even reflection from land (Lavrenov, 1998). On the other

hand, the extreme waves in the open ocean may be a result of nonlinear self-
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focusing mechanisms (Trulsen and Dysthe, 1997; Henderson et al., 1999; Osborne

et al., 2000; Peterson et al., 2003) which causes a high concentration of wave

energy (Dysthe, 2000).

It has recently been established that the nonlinear Schrödinger equation

can describe many features of the dynamics of extreme waves which are found to

arise as a result of nonlinear self-focusing phenomenon (Henderson et al., 1999;

Osborne et al., 2000; Onorato et al., 2001). Thus, we employ the framework of

NLS equation, particularly the temporal-nonlinear Schrödinger equation which is

more relevant in describing the wave groups evolution in laboratory.

1.4.2 Numerical Simulation of Nonlinear Waves

The numerical simulation of nonlinear waves depends on the mathematical

model employed. The conservation of mass and momentum in an isothermal flow

lead to the Navier-Stokes equations for the fluid velocity, pressure and density.

If the fluid is inviscid, the equations are further reduced to Euler’s equations

for the velocity. By introducing the velocity potential based on the assumptions

that the fluid is incompressible and irrotational, we have the potential flow model

described by the quantities in terms of potential and the shape of the free surface.

If further assumptions are imposed, we have numerous free-surface models in

terms of the quantity describing the free surface as discussed in Section 2.2.

The research work on the numerical simulation of nonlinear potential flow

are vast, and there are extensive reviews on this subjects. These include arti-

cles by Schwartz and Fenton (1982) on the theoretical aspect of ideal, nonlinear

flow; Yeung (1982) for both linear and nonlinear flow; Tsai and Yue (1996) on

the treatment of the free surface and (large) nonlinearity. All numerical methods

for nonlinear potential flow model are developed under specific sets of condi-
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tions, assumptions, and have different degree of approximation depend on the

point of view of the application. Generally, the schemes can be categorized into

boundary-discretization and volume-discretization approaches (Tsai and Yue,

1996). Boundary-discretization methods are used for inviscid irrotational flows,

whereas volume-discretization scheme can be applied to both inviscid and viscous

flows.

In boundary-discretization approaches, the boundary integral equation is

used in approximating the boundary value problems. Longuet - Higgins & Cokelet

(1976) were the first to simulate the dynamics of nonlinear waves by employing the

Eulerian-Lagrangian method in separating the elliptic boundary value problems

from the dynamics equations at the free surface. The boundary integral equa-

tion is then discretized using boundary element method, among are the work by

Dommermuth et al. (1988) with 2d constant panel method, Romate (1989) with

3d second-order panel method, Grilli et al. (1989) with 2d higher order boundary

elements and Celebi et al. (1998) with 3d desingularised boundary integral.

In volume-discretization scheme, the boundary value problems of the po-

tential flow models are solved by finite difference and finite element methods. In

finite difference method, the geometry is usually mapped to a rectangular do-

main, for example the work by Chan (1977) and DeSilva et al. (1996). Finite

element method is more widely used in viscous flow problems and linearised free

surface problems (Washizu, 1982). Not until recently, it is used in potential flow

problems, for example, in the work by Wu and Eatock Taylor (1994), Cai et al.

(1998).

By posing various and additional assumptions to the potential flow models,

we have the nonlinear uni-directional free surface model with the KdVKorteweg

& de Vries equation as the governing equation. Another widely used model equa-

tion for nonlinear wave propagation is the nonlinear Schrödinger equation which
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describes the dynamic evolution of the slowly varying complex wave envelope.

For the initial value problem involving either the Korteweg & de Vries equa-

tions or nonlinear Schrödinger equations as the model equations, the numerical

schemes can be roughly categorized into two categories: namely the finite differ-

ence method and the finite fourier/pseudospectral method.

In finite difference approaches, the schemes could be calculated explicitly

or implicitly. The explicit finite difference method include the classical method

(see Taha and Ablowitz, 1984a), the Zabusky and Kruskal scheme (1965) which

utilized the explicit leapfrog scheme in approximating the solutions of Korteweg

& de Vries equations. For implicit approach, Greig and Morris (1976) proposed

a hopscoth scheme which leads to a quasi-tridiagonal system of equations to be

solved at each time step. Goda (1975) proposed an implicit scheme for Korteweg

& de Vries equation which requires solving a quasi-pentagonal system of equations

at each time level. Various implicit approaches have also been suggested (see Taha

and Ablowitz, 1984b).

For the category of finite fourier transform or pseudospectral methods,

Tappert (see Taha and Ablowitz, 1984b) introduced a split step Fourier method

which utilize the discrete fast Fourier transform. Fornberg and Whitham (1978)

proposed the pseudospectral methods which use the fast Fourier transform method

combined with the leap-frog time step.

The new numerical scheme, namely implicit variational method proposed

in this thesis differs from the previous reported schemes as the proposed method

combines the idea of finite difference approach and pseudospectral methods.
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1.5 Thesis Outline

This section gives the main contents of the thesis and serves as an outline

for quick reference to the appropriate section. The thesis is divided into 6 chapters

including this introductory chapter. Chapter 2 discusses some fundamentals in

the linear and nonlinear wave groups evolutions, particularly the derivation of the

model equation, the temporal-nonlinear Schrödinger equation which governs the

evolution of wave groups for the deterministic free surface waves generated in the

hydrodynamic laboratory. In Chapter 3, we develop a new numerical approach:

implicit variational numerical method to approximate the solutions of the nor-

malized nonlinear Schrödinger equation. The implicit variational method is used

to predict the maximal amplification factor of the nonlinear Schrödinger equation

in Chapter 4 and Chapter 5. These results are then compared with two analyti-

cal approximate models; namely low-dimensional model and optimization model

with conserved properties, in Chapter 4 and Chapter 5 respectively. Chapter 6

contains the concluding remarks and the recommendations for further research.

In the following, detail contents from Chapter 2 to Chapter 6 are summarized.

Chapter 2 concerns with the model equation that we used to describe the

evolution of wave groups in the hydrodynamic laboratory. In Section 2.1, we

begin with a literature review of the nonlinear focusing, which has been recently

established as one of the possible causes that leads to the wave with large am-

plitude. In particular, we discuss the instability of the nonlinear wave groups

evolutions governed by the nonlinear Schrödinger equation. This is then followed

by Section 2.2 on the derivation of the field equations describing the potential

flow, and the assumptions leading to the equations describing the free-surface

dynamics of the unidirectional waves. We then introduce the improved Korteweg

& de Vries equation which is known to be more relevant in representing the

evolutions of free-surface waves in the hydrodynamics laboratory compared to
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the original Korteweg & de Vries equation. Next, the equation governing the

free-surface wave groups evolutions, namely the temporal-nonlinear Schrödinger

equation is derived from the improved Korteweg & de Vries equation. Materials

from Chapter 2 are mainly extracted from the references and provides the funda-

mentals for the research work carried out in this thesis. However, we observe that

there are some errors for the given coefficients in the work related to the deriva-

tion of the temporal-nonlinear Schrödinger equation and thus the improvements

have been done in Section 2.4. The chapter ends with some brief introduction

of the properties of temporal-nonlinear Schrödinger equation. For the remaining

discussion of this thesis, the abbreviations of KdV equation and NLS equation

will be used to denote Korteweg & de Vries equation and nonlinear Schrödinger

equation respectively.

The aim of Chapter 3 is to introduce a new numerical scheme in simulating

the wave groups evolutions governed by the NLS equation. The new method com-

bines the implicit idea and the variational idea in deriving the difference equation,

and thus this new method is given the name as implicit variational method. For

validation of this new numerical scheme, we check the numerical results with two

established solutions: the exact analytical solution for one-soliton wave groups as

well as the exact analytical solution for bisoliton wave groups. Further to that,

we also conduct a comparison among the proposed method with two other ex-

isting well known methods, namely finite difference and Crank-Nicolson implicit

method. For the purpose of comparisons, we calculate the absolute errors ob-

tained from both schemes with the exact solutions for one-soliton wave groups

and bisoliton wave groups. Besides that, we also carried out a study to check

which numerical methods can preserve the wave energy conservation property of

NLS equation. We first introduce the idea of the finite difference and Crank-

Nicolson implicit method in Section 3.2. Detail working in developing our new

proposed method is delivered in Section 3.3. Stability analysis has been carried
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out in Section 3.4 for the three numerical schemes. Whereas, results of com-

parisons are treated in Section 3.5. Our comparisons show that the implicit

variational method yields better results and is more superior in conserving the

wave energy conservation property. Hence, the implicit variational method devel-

oped would be used to simulate the numerical results in predicting the maximal

amplification factor in Chapter 4 and Chapter 5.

In order to further exploit the maximal amplification factor of the non-

linear wave groups evolutions, two analytical approximate mathematical models

have been constructed besides the numerical simulations. Chapter 4 discusses

the low-dimensional model which investigates the dynamics of wave groups with

initial bichromatic wave groups. Whereas, Chapter 5 presents another alterna-

tive approach in studying the maximal amplification factor by looking at several

conserved properties of the NLS equation. The optimization model developed in

Chapter 5 is capable to suit for all the different types of wave groups.

Chapter 4 begins with the literature reviews on the bichromatic wave

groups, this is followed by a discussion on the scaling and the transformation

used to relate the normalized dimensionless coordinates to the physical laboratory

coordinates. Section 4.3 presents the mathematical set up of the low-dimensional

model in the four-dimensional manifold. By exploiting the conservation of energy

of the NLS equation, a reduction is obtained to a two-dimensional Hamiltonian

system, and the system is further reduced to one-dimensional dynamic equation.

The analytical approximate results obtained are begin discussed in Section 4.4.

In Section 4.5, we relate the results obtained in the normalized coordinate to the

physical laboratory coordinate, correspond to the dimensions of the High Speed

Basin at Maritime Research Institute Netherlands (MARIN), and further made

a comparison between the numerical simulations and the results obtained from

low-dimensional model. Due to the fact that the maximal amplification factor
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obtained from the low-dimensional model is at most
√

2 (Tan and Andonowati,

2003), we thus extend the model to high dimensional model in Section 4.6 and

give the detail working on the derivation of the actional functional in terms of

N modes. However, due to the fact that the resulting actional functional is

defined in a 2N -dimensional manifold, the complication makes the analysis work

a nontrivial task.

In order to investigate the amplification factor larger than
√

2, we intro-

duce another analytical approximate model; the optimization model which cou-

ples the conserved properties of NLS equation in Chapter 5. This model provides

a general means to study the maximal amplification factor, not only restricted to

the bichromatic wave groups, but also to other type of wave groups. The model

is constructed based on the normalized NLS equation which can be easily scaled

or transformed to fit the physical laboratory setting. Section 5.2 discusses the set

up of this new model, this is followed by the discussion of its analytical solutions

in Section 5.3. In Section 5.4, the analytical results are being tested with the

well known exact solution of one-soliton wave groups in Section 5.4.1 and both

results agree well. We then use this model to generate the prediction of maximal

amplification factor and the results are then compared with numerical simulation

in Section 5.4.2. The parameters used in the comparison of bichromatic wave

groups are related to the actual dimension of the High Speed Basin at MARIN.

Chapter 6 is the final and concluding chapter, which contains the con-

cluding remarks, summary of the research findings as well as some suggestions

for future research. All the references quoted are listed in the reference section at

the end of Chapter 6. There is one appendix on the discussion of the numerical

solver of in solving the nonlinear systems obtained from both numerical methods,

the Crank-Nicolson implicit method and the implicit variational method.
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